149

Mellis.matt

  • Upload
    nasapmc

  • View
    13.671

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mellis.matt
Page 2: Mellis.matt

Matt MelisNASA Glenn Research Center

Cleveland Ohio

Lessons from Columbia

Ballistic Impact Dynamics

Project Management Challenge 2009Daytona Beach, Florida

Page 3: Mellis.matt

Matt MelisNASA Glenn Research Center

Cleveland Ohio

Contributions of Ballistic Impact Research inThe Columbia Accident Investigation

&NASA’s Return to Flight

Project Management Challenge 2009Daytona Beach, Florida

Page 4: Mellis.matt
Page 5: Mellis.matt

A Brief Overview of the Shuttle Launch System

Page 6: Mellis.matt

A Brief Overview of the Shuttle Launch System

Page 7: Mellis.matt

A Brief Overview of the Shuttle Launch System

Page 8: Mellis.matt

A Brief Overview of the Shuttle Launch System

Page 9: Mellis.matt

A Brief Overview of the Shuttle Launch System

Page 10: Mellis.matt

The Columbia Accident

Page 11: Mellis.matt

On January 16 2003, Columbia’s leading edge was impacted by a piece of foam suspected to have separated from the external tank bipod ramp at 81 seconds into its launch.

Columbia was traveling at Mach 2.46, at an altitude of 65,860 feet. The foam was calculated to have hit the Orbiter at 700 – 800 feet per second

Page 12: Mellis.matt

Insulating Foam Separates from Bipod Ramp andImpacts Left Wing of Columbia

Page 13: Mellis.matt

Insulating Foam Separates from Bipod Ramp andImpacts Left Wing of Columbia

Page 14: Mellis.matt

Image from CAIB Report

Showing shuttle ramp and wing

BipodRamp

ImpactPoint

Page 15: Mellis.matt

The Bipod Ramp

Page 16: Mellis.matt

The Bipod Ramp

Page 17: Mellis.matt

Redesign of the External Tank Bipod Ramp

Old Design New Design

Page 18: Mellis.matt

The Orbiter Leading Edges

Page 19: Mellis.matt

Reinforced Carbon-Carbon (RCC) Panels Protect the Leading Edges of the Orbiter

22 panels per wing

Page 20: Mellis.matt

RCC Panels 6, 8 & 9 of Specific Interest

Page 21: Mellis.matt

RCC T-Seals Seal the Gap Between Panels

Page 22: Mellis.matt

Leading Edge Panel Used for Full Scale Tests

Page 23: Mellis.matt

Forensic Reconstruction

Establish Probable Cause

Support Findings with Full Scale Testing

Efforts of theColumbia Accident Investigation Board

Page 24: Mellis.matt

The Reconstruction Effort

Page 25: Mellis.matt

The Debris Field

Page 26: Mellis.matt

The Debris Hanger

Page 27: Mellis.matt

The Debris Hanger

Page 28: Mellis.matt

The Debris Hanger

Page 29: Mellis.matt

Reconstructing the Left Wing Leading Edges

Page 30: Mellis.matt

Reconstructing the Left Wing Leading Edges

Page 31: Mellis.matt

Panel 8 Found with Significant Spatter Deposition and Erosion

Page 32: Mellis.matt

Right Wing Leading Edges Exhibited No Significant Spatter

Page 33: Mellis.matt
Page 34: Mellis.matt

The NASA Impact Analysis Development Effort

With the Explicit Finite Element Code LS DYNA

Boeing, NASA GRC, JSC, LaRCExtensive impact dynamics experience at Glenn & Langley

Page 35: Mellis.matt

• BX-250 External Tank foam characterization

• Develop finite element mesh of panels and T-seals

• Reinforced Carbon-Carbon characterization

• Demonstrate valid impact analysis capability with LS DYNA

Impact Analysis Development Effort

For the Accident Investigation

Page 36: Mellis.matt

LS DYNA Predicts Car Collisions

Courtesy of LSTC

Page 37: Mellis.matt

LS DYNA Predicts Fan Blade Containment

Page 38: Mellis.matt

SRB Aft Skirt Splashdown with TVC Upgrade Tank

LS DYNA Predicts Water Impacts

Page 39: Mellis.matt

The NASA Glenn Ballistic Impact Lab

Page 40: Mellis.matt

Large Vacuum Gun

The NASA Glenn Ballistic Impact Lab

Page 41: Mellis.matt

2 Inch Vacuum Gun

The NASA Glenn Ballistic Impact Lab

Page 42: Mellis.matt

BX-250 External Tank Foam Characterization

Page 43: Mellis.matt

No Vacuum708 ft/sec

Vacuum693 ft/sec

High Speed Video of 90 Degree Impacts

BX-250 External Tank Foam Characterization

Ballistic Research Supporting the Accident Investigation

Page 44: Mellis.matt

LS Dyna is an industry standard commercial finite element analysis code typically used to model impact events

LS DYNA Predicts 90 Degree

Foam Impact on Load Cell

LS DYNA - explicit finite element impact analysis

Ballistic Research Supporting the Accident Investigation

Page 45: Mellis.matt

LS DYNA Predicts 23 Degree Foam Impact on Load Cell

LS DYNA - explicit finite element impact analysis

Ballistic Research Supporting the Accident Investigation

Page 46: Mellis.matt

Reinforced Carbon-Carbon Characterization

Page 47: Mellis.matt

Ballistic Impact Tests on RCC Coupons

Ballistic Research Supporting the Accident Investigation

Page 48: Mellis.matt

Ballistic Impact Tests on RCC Coupons

Ballistic Research Supporting the Accident Investigation

Page 49: Mellis.matt

RCC Coupon Shows No Damage After 397 ft/sec Foam Impact

Ballistic Impact Tests on RCC Coupons

Ballistic Research Supporting the Accident Investigation

Page 50: Mellis.matt

Foam Fractures RCC coupon in half at 695 ft/sec

Ballistic Impact Tests on RCC Coupons

Ballistic Research Supporting the Accident Investigation

Page 51: Mellis.matt

400 ft/second Impact

700 ft/second Impact

Ballistic Impact Tests on RCC Coupons

Ballistic Research Supporting the Accident Investigation

Page 52: Mellis.matt

Full Scale Impact Analysis with LS Dyna

Page 53: Mellis.matt

Dyna - explicit finite element impact analysis

Full Scale Panel Analysis

Ballistic Research Supporting the Accident Investigation

Page 54: Mellis.matt

43,000 Panel Shell Elements147,000 Foam Brick Elements

Dyna - explicit finite element impact analysisBallistic Research Supporting the Accident Investigation

Page 55: Mellis.matt

Dyna - explicit finite element impact analysisBallistic Research Supporting the Accident Investigation

Page 56: Mellis.matt

Panel 6 Edge Impact Case

Dyna - explicit finite element impact analysisBallistic Research Supporting the Accident Investigation

Page 57: Mellis.matt

Dyna - explicit finite element impact analysisBallistic Research Supporting the Accident Investigation

Panel 6 Edge Impact Case RCC Damage

Page 58: Mellis.matt

The Full-Scale Testing Effort

Page 59: Mellis.matt

Tests conducted at Southwest Research InstituteOrbiter Leading Edge Full-Scale Tests

Page 60: Mellis.matt

Orbiter Leading Edge Full-Scale Tests

Page 61: Mellis.matt

Installation of internal high speed cameras

Orbiter Leading Edge Full-Scale Tests

Page 62: Mellis.matt

Leading edge panels mounted after camera installation

Orbiter Leading Edge Full-Scale Tests

Page 63: Mellis.matt

Phantom digital cameras set up inside of full scale test article

Orbiter Leading Edge Full-Scale Tests

Page 64: Mellis.matt

High intensity lights required both in and outside of test article

Orbiter Leading Edge Full-Scale Tests

Page 65: Mellis.matt

Orbiter Leading Edge Full-Scale Tests

Page 66: Mellis.matt

External View of RCC Panel 8 Test

Orbiter Leading Edge Full-Scale Tests

Page 67: Mellis.matt

Barrel View of RCC Panel 8 Test

Orbiter Leading Edge Full-Scale Tests

Page 68: Mellis.matt

External View of RCC Panel 8 Test

Orbiter Leading Edge Full-Scale Tests

Page 69: Mellis.matt

Internal View of

RCC Panel 8 Test

Orbiter Leading Edge Full-Scale Tests

Page 70: Mellis.matt

Post Impact of Panel 8

Orbiter Leading Edge Full-Scale Tests

Page 71: Mellis.matt

Latest Dyna Predictions Correlate with Panel 9 Test

Dyna – explicit finite element impact analysisAnalysis Supporting Full-Scale Tests

Page 72: Mellis.matt

LS DYNA Analysis of Panel 8 Full-Scale Test

Page 73: Mellis.matt

Return to Flight

Page 74: Mellis.matt

• Additional foams, ice, ablator material characterization

• Begin advance RCC model development (coating)

• Full development of analysis capability with LS DYNA

Impact Analysis Development Effort

For Return to Flight

Page 75: Mellis.matt

2 grams foam2054 ft/sec

2 grams foam2054 ft/sec

8 grams ice650 ft/sec

8 grams ice650 ft/sec

Impact Studies on RCC for Model ValidationBallistic Impact Research Supporting Return to Flight

Page 76: Mellis.matt

2 grams foam2371 ft/sec

2 grams foam2371 ft/sec

8 grams ice858 ft/sec

8 grams ice858 ft/sec

Impact Studies on RCC for Model ValidationBallistic Impact Research Supporting Return to Flight

Page 77: Mellis.matt

Impact Studies on RCC for Model ValidationBallistic Impact Research Supporting Return to Flight

Page 78: Mellis.matt

Aramis Displacement Measurement SystemPhotogrametric Technique Determines Full 3-D displacements

Page 79: Mellis.matt

Aramis Displacement Measurement System

Point Displacement vs Time Displacement Contour Plot

Photogrametric Technique Determines Full 3-D displacements

Page 80: Mellis.matt

Aramis Adapted to Full-Scale Wing Leading Edge Tests

Page 81: Mellis.matt

ARAMIS Validates LS-DYNA Analysis Models

Aramis Adapted to Full-Scale Wing Leading Edge Tests

Page 82: Mellis.matt

Full-Scale Leading Edge Test Setup with Aramis at SwRI

Page 83: Mellis.matt

Full Field Displacements of Wing Leading Edge Impact Test

Aramis Data Validates LS DYNA Analysis Predictions

Page 84: Mellis.matt

Aramis Indicated2100-2700 Microstrain

Gauge Indicated 2100 Microstrain

Note Much Higher Amplitude 2” From Gauge

Principle Strain Comparison to Bonded Gauges

Aramis Data Validates LS DYNA Analysis Predictions

Page 85: Mellis.matt

RT 455 ablator impact at approximately 300 ft/sec

Ballistic Impact Research Supporting Return to Flight

Page 86: Mellis.matt

NCFI foam impact at approximately 800 ft/sec

Ballistic Impact Research Supporting Return to Flight

Page 87: Mellis.matt

Tile Gap Filler Material Impact Testing

Ballistic Impact Research Supporting Return to Flight

Page 88: Mellis.matt

Tile Repair Putty Material Impact Testing

Ballistic Impact Research Supporting Return to Flight

Page 89: Mellis.matt

Ice Formations on External Tank

Page 90: Mellis.matt

Ice Research Supporting the Return to FlightHigh Density Ice (no air bubbles entrained)

Page 91: Mellis.matt

Identification of Ice Microstructure

Ice Research Supporting the Return to Flight

Page 92: Mellis.matt

Impact Testing of IceHard ice impact at approximately 800 ft/sec

Page 93: Mellis.matt

Hadland Camera Captures Fracture Wave Propagation700 ft per second ice impact 280,000 frames per second

Page 94: Mellis.matt

Cordin Camera Captures Fracture Wave Propagation600 ft per second ice impact at 480,000 frames per second

Page 95: Mellis.matt

Ice Impact Testing on Full Scale Leading Edge

Page 96: Mellis.matt

External Tank Impact Testing

Page 97: Mellis.matt

External Tank Impact Test Article with Acreage FoamBallistic Impact Research Supporting Return to Flight

Page 98: Mellis.matt
Page 99: Mellis.matt

Orbiter Windows Impact Testing

Page 100: Mellis.matt

Orbiter Windows Testing at NASA GRC

Page 101: Mellis.matt

NCFI Foam Impact Test on Orbiter WindowBallistic Impact Research Supporting Return to Flight

Rear View

Side View

Page 102: Mellis.matt

Typical Aluminum Oxide Projectiles

Al3O2 Particles Measured and Weighed

Page 103: Mellis.matt

Stereo Microscope Used to Load Gun

Page 104: Mellis.matt

Tweezers Required to Place Particles in Gun Barrel

Page 105: Mellis.matt

70 degree, 127 ft/sec

90 degree 359 ft/sec

50 degree 118 ft/sec

Aluminum Oxide particles impact orbiter windows

Ballistic Impact Research Supporting Return to Flight

Page 106: Mellis.matt

July 26, 2005

The most photographed mission

Return to Flight

Page 107: Mellis.matt
Page 108: Mellis.matt
Page 109: Mellis.matt
Page 110: Mellis.matt
Page 111: Mellis.matt
Page 112: Mellis.matt
Page 113: Mellis.matt

Forward and Aft SRB Cameras on STS-121

Page 114: Mellis.matt

Chase Plane Video of STS-114 Launch

Page 115: Mellis.matt
Page 116: Mellis.matt
Page 117: Mellis.matt
Page 118: Mellis.matt
Page 119: Mellis.matt
Page 120: Mellis.matt
Page 121: Mellis.matt
Page 122: Mellis.matt
Page 123: Mellis.matt

Rendezvous Pitch Maneuver

Page 124: Mellis.matt
Page 125: Mellis.matt
Page 126: Mellis.matt
Page 127: Mellis.matt
Page 128: Mellis.matt
Page 129: Mellis.matt
Page 130: Mellis.matt
Page 131: Mellis.matt
Page 132: Mellis.matt
Page 133: Mellis.matt

Orbiter Boom Sensor System

Page 134: Mellis.matt

Orbiter Boom Sensor System

Page 135: Mellis.matt
Page 136: Mellis.matt
Page 137: Mellis.matt
Page 138: Mellis.matt
Page 139: Mellis.matt
Page 140: Mellis.matt
Page 141: Mellis.matt
Page 142: Mellis.matt
Page 143: Mellis.matt
Page 144: Mellis.matt
Page 145: Mellis.matt
Page 146: Mellis.matt
Page 147: Mellis.matt
Page 148: Mellis.matt
Page 149: Mellis.matt

- The Columbia Accident Investigation Board Final Report

- The Challenger Launch Decision by Diane Vaughan

- Lessons from Everest: The Interaction of Cognitive Bias, Psychological Safety, and System Complexity by Michael Roberto. Obtain from Harvard Bussiness Online

Additional Reading

- To Engineer is Humanby Henry Petroski - Organization at the Limit

by William Starbuck andMoshe Farjoun