34
1 Analytical Modeling of Optical Polarimetric Imaging Systems 2011 IEEE International Geoscience and Remote Sensing Symposium Lingfei Meng: [email protected] John P. Kerekes: [email protected] Rochester Institute of Technology 29 July 2011 This work was supported by the AFOSR under agreement FA9550-08- 1-0028.

Meng.pptx

Embed Size (px)

Citation preview

1

Analytical Modeling of Optical Polarimetric Imaging Systems

2011 IEEE International Geoscience and Remote Sensing Symposium

Lingfei Meng: [email protected]

John P. Kerekes: [email protected]

Rochester Institute of Technology

29 July 2011This work was supported by the AFOSR under agreement FA9550-08-1-0028.

Outline

• Introduction− Background− Motivation

• Analytical Model of Optical Polarization− Scene Model− Sensor Model− Processing Model

• Application for Target Detection• Conclusions

2

Outline

• Introduction− Background− Motivation

• Analytical Model of Optical Polarization− Scene Model− Sensor Model− Processing Model

• Application for Target Detection• Conclusions

3

Polarization of Light

4

http://en.wikipedia.org/wiki/Polarizer

Circular polarization

Linear polarization

5

Iθ3

Optical Filter CCD CameraLinear Polarizer

Stokes Images

Multi-channel Intensity Images

θ1θ2θ3

Iθ2

Iθ1S1S2

S0DoLP

Conventional Operation MethodsPickering: 0°, 45°, 90°Fessenkov: 0°, 60°, 120°M-Pickering: 0°, 45°, 90°, 135°

Polarization-sensitive Optical System

6

Example of Polarization Imagery

Image was collected by Dr. Michael D. Presnar on May 25 2010.

7

Iθ3

Optical Filter CCD CameraLinear Polarizer

Stokes Images

Multi-channel Intensity Images

Iθ2

Iθ1S1S2

S0DoLP

Polarization-sensitive Optical System

Outline

• Introduction− Background− Motivation

• Analytical Model of Optical Polarization− Scene Model− Sensor Model− Processing Model

• Application for Target Detection• Conclusions

8

Analytical Modeling Framework

9

ProcessingModel

SensorModel

SceneModel

PerformanceMetrics

Material Database

Sensor Parameter

Files

Processing Algorithm

Description

SceneDescription

SensorSettings

ProcessingSettings

UserInputs

Stokes RadianceStatistics

Intensity Signal

Statistics

,S LSL , II

J.P. Kerekes and J.E. Baum, "Spectral Imaging System Analytical Model for Subpixel Object Detection," IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 5, pp. 1088-1101, May 2002.

Characterize Material Reflectance• Bidirectional reflectance distribution function (BRDF)

10

( , )

( , )r r

i i

Lf

E

( , )i iE

( , )r rL

ir

i

r

Characterize Material Reflectance

• Polarimetric BRDF (pBRDF)The pBRDF can be expressed as the sum of a polarized specular component and an unpolarized diffuse component

11

00 01 02

10 11 12

20 21 22

f f f

f f f

f f f

F

M. W. Hyde, J. D. Schmidt, and M. J. Havrilla, “A geometrical optics polarimetric bidirectional reflectance distribution

function for dielectric and metallic surfaces,” Opt. Express, vol. 17, no. 24, pp. 22138–22153, Nov 2009.

0 00 01 02 0

1 10 11 12 1

2 20 21 22 2out in

S f f f S

L S f f f E S

S f f f S

12

Glass DoLP Concrete DoLP Vegetation DoLP

60i

80i

pBRDF Model Determined DoLP

0 0 0

0 0 0

13

Polar Coordinate Definition

14

Polar Coordinate Definition

Sensor zenith angle Radial coordinate

15

Polar Coordinate Definition

Relative azimuth angle Angular coordinate

16

Glass DoLP Concrete DoLP Vegetation DoLP

60i

80i

pBRDF Model Determined DoLP

0 0 0

0 0 0

17

• Direct solar reflected radiance

0 1 2 00 10 20cosr i sr r r

T TL L E fL f f L

• Surface reflected radiance from sky

• With the upwelled radiance , the total sensor reaching radiance can be found as

0 1 2 ,( , ) cosT

d i d i id d dL L dL L F L

0 1 2

T

u u u uL L LL

0 1 2

T

S d uS S rSL L L L L L L

• The solar illumination and polarized atmospheric radiance are computed using MODTRAN-P.

Modeling Sensor Reaching Radiance

18

MODTRAN-P Predicted Downwelled Radiance

MODTRAN-P Input Parameter Setting

Atmospheric Model 1976 US Standard

Haze Parameter Rural Extinction

Surface Meteorological Range 23 km

Scattering Type Single

Solar Zenith Angle 60°

Day of the Year 170

Center Wavelength 450 nm

19

S1

S2 DoLP

MODTRAN-P Predicted Downwelled RadianceS0

W/s

r/cm

2 /μm

Nor

mal

ized

Uni

t

Nor

mal

ized

Uni

tN

orm

aliz

ed U

nit

20

MODTRAN-P Predicted Skylight DoLP

MODTRAN-P Predicted Skylight DoLP

21

22

Sensor Reaching Radiance Statistics• Mean

For object surface viewed by the sensor over K pixels within a viewing angle range of

( , )r

,

1( )

r

r

S i Si rL LK

• Covariance matrix Variance due to viewing geometry

22,

1( )

1

r

r

g i Si r SiL LK

Covariance matrix of sensor reaching radiance

LS g v

Analytical Modeling Framework

23

ProcessingModel

SensorModel

SceneModel

PerformanceMetrics

Material Database

Sensor Parameter

Files

Processing Algorithm

Description

SceneDescription

SensorSettings

ProcessingSettings

UserInputs

Stokes RadianceStatistics

Intensity Signal

Statistics

,S LSL , II

Sensor Model

• System matrix

24

ψ1 ψiψN

m1

• Polarizer leakage effect

mi mN

• Sensor input radiance —> electrons —>output signal

25

2

· · · · ·( ) ·

1 4 #i t

i d e

L tI R d N g

f h c

• The total sensor noise can be expressed as

2ni e i cg I

• The covariance matrix of the N-channel signal is as

TI LS n M M

Sensor Model (cont.)

Analytical Modeling Framework

26

ProcessingModel

SensorModel

SceneModel

PerformanceMetrics

Material Database

Sensor Parameter

Files

Processing Algorithm

Description

SceneDescription

SensorSettings

ProcessingSettings

UserInputs

Stokes RadianceStatistics

Intensity Signal

Statistics

,S LSL , II

Processing Model

• Incident Stokes vector estimation

27

1S M I

TS I W W

• DoLP calculation 2 2

1 22

0

S SDoLP

S

2 2 22 2

1 22 1 20 1 22 2 2 2 2

0 0 1 2 0 1 2

,

2 iji ji

DoLP S S S

Si

j

Sj

S S S S

S S S S S S S

DoLP DoLP

S S

1( )W M

Outdoor Imagery Collection

28

0.05

0.1

0.15

0.2

0.25

0.3

0.35

White painted panel

Black painted panel

DoL

P

Model Validation

0 0.2 0.4 0.60

10

20

30

40

50

S1

Pro

babi

lity

Den

sity Black

White

−0.1 0 0.1 0.2 0.3 0.40

10

20

30

40

50

S2

BlackWhite

0 0.2 0.4 0.60

10

20

30

40

50

DoLP

BlackWhite

29

0 0.2 0.4 0.60

10

20

30

40

50

S1

Pro

babi

lity

Den

sity Black

White

−0.1 0 0.1 0.2 0.3 0.40

10

20

30

40

50

S2

BlackWhite

0 0.2 0.4 0.60

10

20

30

40

50

DoLP

BlackWhite

Realdata

Analyticalmodel

Analytical Modeling Framework

30

ProcessingModel

SensorModel

SceneModel

PerformanceMetrics

Material Database

Sensor Parameter

Files

Processing Algorithm

Description

SceneDescription

SensorSettings

ProcessingSettings

UserInputs

Stokes RadianceStatistics

Intensity Signal

Statistics

,S LSL , II

Signal-to-clutter ratio (SCR) 2 1( ) ( )T

t b t bSCR V V

t Target mean

b Background meanV Background covariance

V Interested vector space

Outline

• Introduction− Background− Motivation

• Analytical Model of Optical Polarization− Scene Model− Sensor Model− Processing Model

• Application for Target Detection• Conclusions

31

Adaptive Polarimetric Target Detector (APTD)

32

1, , N initial

Acquire Intensity & Stokes

Images

Stokes Vector Statistical Model

Searching Optimal Multi-channel

s.t. Max(SCRV)V

, vSS ,t bμ μ Stop Criterion

Meet?

Multi-channel Setting 1, , N optimal No

Intensity Images

Target Detection

Yes

Initial Multi-channel Setting

Stokes Parameter Images

Sensor Noise Calibration

L. Meng and J. P. Kerekes, Adaptive Target Detection with a Polarization-sensitive Optical System, Applied Optics, Vol. 50, Issue 13, pp. 1925-1932 (2011) .

0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

Probability of False Alam (PFA)

Prob

abili

ty o

f D

etec

tion

(PD

)

APTDM−PickeringFessenkovPickering

0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

Probability of False Alam (PFA)

Prob

abili

ty o

f D

etec

tion

(PD

)

APTDM−PickeringFessenkovPickering

ROC Curve Comparison

RX GLRT

Outline

• Introduction− Background− Motivation

• Analytical Model of Optical Polarization− Scene Model− Sensor Model− Processing Model

• Application for Target Detection• Conclusions

33

Conclusions

• An analytical model for optical polarization has been designed, and initial validations have shown encouraging results.

• A system performance metric based on signal-to-clutter ratio (SCR) has been suggested, and can be potentially used for system optimization.

34

Thank you!