18
Sm-AHTR – the Small Modular Advanced High Temperature Reactor Presented to 4 th Annual Asia-Pacific Nuclear Energy Forum Berkeley, CA June 18, 2010 By Sherrell Greene Director, Nuclear Technology Programs Oak Ridge National Laboratory [email protected] , 865.574.0626

Smahtrfor4thapnef17jun10

Embed Size (px)

DESCRIPTION

Presentation for the 4th Asia-Pacific Nuclear Energy Forum, held in Berkeley California in June 2010

Citation preview

Page 1: Smahtrfor4thapnef17jun10

Sm-AHTR – the Small Modular Advanced High Temperature Reactor

Presented to 4th Annual Asia-Pacific Nuclear Energy Forum Berkeley, CA June 18, 2010

By Sherrell Greene Director, Nuclear Technology Programs Oak Ridge National Laboratory [email protected], 865.574.0626

Page 2: Smahtrfor4thapnef17jun10

2 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

Presentation overview

• SmAHTR design objectives • Preliminary SmAHTR concept • SmAHTR concept optimization and design trades • Principal SmAHTR development challenges

Page 3: Smahtrfor4thapnef17jun10

3 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

The SmAHTR concept is the product of ORNL’s ongoing investigation of the FHR design space

• Reactor power level • Physical size • System complexity • Operating temperatures • Fuel forms • Material classes • Economics • Safety

Page 4: Smahtrfor4thapnef17jun10

4 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

SmAHTR design objectives target both electricity and process heat production

•  Initial concept operating temperature of 700 ºC with future evolution path to 850 ºC and 1000 ºC

•  Thermal size matched to early process heat markets •  Integral system architectures compatible with remote

operations • Passive decay heat removal • Dry heat rejection •  Truck transportable

Page 5: Smahtrfor4thapnef17jun10

5 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

SmAHTR is a small, integral system, thermal spectrum FHR

Parameter   Value  

Power  (MWt  /  MWe)   125  /  50+  

Primary  Coolant   LiF-­‐BeF2  Primary  Pressure  (atm)   ~1  

Core  Inlet  Temperature  (ºC)   650  

Core  Outlet  Temperature  (ºC)   700  

Core  coolant  flow  rate  (kg/s)   1020  

OperaJonal  Heat  Removal   3  –  50%  loops  

Passive  Decay  Heat  Removal   3  –  50%  loops  

Power  Conversion   Brayton  

Reactor  Vessel  PenetraJons   None  

Overall System Parameters

Page 6: Smahtrfor4thapnef17jun10

6 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

SmAHTR is small…

AHTR SmAHTR

Page 7: Smahtrfor4thapnef17jun10

7 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

SmAHTR employs prismatic core block concept with removable TRISO compacted stringer fuel elements

Prismatic  fuel  block   Stringer  fuel  

Radial  re6lector  graphite  

Coolant  hole  in  radial  re6lector  

Parameter   Value  

Fuel  Design   TRISO  UCO  fuel  in  stringer  fuel  assemblies  

Number  fuel  assembly  columns   19  

Number  fuel  pins/column   72    

Number  graphite  pins  /  column   19  

IniJal  Fissile  Mass  (kg)   195  

Total  Heavy  Metal  (kg)   987  

Enrichment   19.75%  

Avg.  Power  Density  (MW/m3)   9.4    

Refueling  Interval  (yr)   2.5    

SmAHTR Core Parameters

Page 8: Smahtrfor4thapnef17jun10

8 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

SmAHTR employs “two-out-of-three” heat transport design philosophy

Parameter   Value  

Number  of  Intermediate  Heat  Exchangers  (IHX)   3  

Number  IHX  needed  for  full  power  opera@ons   2  

IHX  Design  Concept   Single-­‐pass,  tube-­‐in-­‐shell  

Primary  Coolant   LiF-­‐BeF2  

Primary  Inlet  Temperature  (ºC)   700  

Primary  Outlet  Temperature  (ºC)   650  

Primary  flow  rate  (kg/s)   350  (each)  

Secondary  Coolant   LiF-­‐NaF-­‐KF  

Secondary  Inlet  Temperature  (ºC)   582  

Primary  Outlet  Temperature  (ºC)   610  

Secondary  flow  rate  (kg/s)   800  (each)  

Intermediate Heat Transport Loop Parameters

Page 9: Smahtrfor4thapnef17jun10

9 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

SmAHTR employs “two-out-of-three” passive decay heat removal

In-­‐vessel  DRACS  HX  Parameter   Value  

Number  DRACS  in-­‐vessel  heat  exchangers   3  

Number  DRACS  loops  needed  for  full  power  opera@on  

2  

DRACS  Salt-­‐to-­‐Salt  Design  Concept   Single-­‐pass,  tube-­‐in-­‐shell  

Primary  Coolant   LiF-­‐BeF2  

Secondary  Coolant   LiF-­‐NaF-­‐KF  

In-vessel Passive Decay Heat Removal System Parameters

Page 10: Smahtrfor4thapnef17jun10

10 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

SmAHTR employs “two out of three” passive decay heat removal

Ex-­‐vessel  DRACS  HX  Parameter   Value  

Number  DRACS   3  

Number  DRACS  needed  for  full  power  opera@ons  

2  

DRACS  Salt-­‐to-­‐Air  Design  Concept   Ver@cal  finned  tube  radiator  

Primary  Coolant   LiF-­‐NaF-­‐KF  

Air  Flow  Area  (m2)   4  

In-­‐vessel  HX  –  to  –  air  HX  riser  height  (m)   8  

Total  chimney  height  (m)   12  

Ex-vessel Passive Decay Heat Removal System Parameters

In-vessel DRACS

HX

Salt-to-Air

Radiator FLiNaK

Air

FLiBe ~

Page 11: Smahtrfor4thapnef17jun10

11 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

SmAHTR is good match with indirect Brayton power conversion approaches

• Options –  Standard closed –  Supercritical closed –  Open air (similar to ANP & HTRE)

•  Issues to consider –  Physical size & weight –  Multi-unit clustering –  Heat exchanger pressure differentials –  Efficiency and scalibility to higher temperatures –  Tritium leakage –  Compatibility with dry heat rejection

• Analysis beginning

Page 12: Smahtrfor4thapnef17jun10

12 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

1178°C

650°C 700°C

Peak center-line fuel temperatures during normal operations are acceptable

Page 13: Smahtrfor4thapnef17jun10

13 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

Peak fuel temperatures for Alpha Transient (20 s pump coast-down with 10 s scram delay) only increase ~50 ºC

Page 14: Smahtrfor4thapnef17jun10

14 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

727°C

712°C

Two DRACS loops provided adequate decay heat removal

Page 15: Smahtrfor4thapnef17jun10

15 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

SmAHTR design attributes should promote favorable economics*

* Ingersoll et al., “Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)”, ORNL/TM-2004/104, May 2004

FHR  A]ribute  Phenomenological  

Impact(s)   Cost  Implica@ons  High  primary  coolant  volumetric  heat  capacity  

•  Low  fluid  pumping  requirements  •  Near-­‐constant-­‐temperature  energy  

transport  

•  Compact  coolant  and  heat  transport  loops  (small  pipes,  pumps,  heat  exchangers)  

Low  primary  system  pressure  

•  Low  pipe  break  /  LOCA  energeJcs  •  Low  source  term  driving  pressure  

•  Thin-­‐walled  reactor  vessel  and  piping  

•  Smaller,  less  complex  containments  

Transparent  coolant  with  low  chemical  acJvity  

•  Visible  refueling  operaJons  •  Low  pipe  break  /  LOCA  energeJcs  

•  Efficient  refueling  •  Smaller  containments  

High  primary  system  temperatures  

•  High  power  conversion  efficiencies  •  High  temperature  fluid  –    materials  

corrosion  and  strength  performance    

•  Lower  fuel  costs  •  Higher  materials  cost  •  Hot  refueling  

TRISO  fuels   •  Large  fuel  temperature  margins  •  Good  fission  product  afenJon  

•  Robust  operaJng  margins  and  safety  case  

Page 16: Smahtrfor4thapnef17jun10

16 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

SmAHTR primary and secondary salt options match many desirable process heat applications

0 100 200 300 400 500 600 700 800 900 1000 110 1200 1300 1400 1500 1600 1700

Petro Refining

Oil Shale/Sand Processing

Cogeneration of Electricity and Steam

Steam Reforming of Nat. Gas & Biomass Gasification

Electrolysis, H2 Prod., Coal Gasification

NaF-BeF2 (57-43)

LiF-NaF-KF (46.5-11.5-42)

LiF-BeF2 (67-33)

Temperature (C)

Fluoride Salt Liquid Temperature Range

Melts Boils

Page 17: Smahtrfor4thapnef17jun10

17 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

A SmAHTR materials technology evolution strategy is in development

System  Element    @  700  ºC    @  850  ºC    @  1000  ºC  Graphite  Internals   Toyo  Tanso  IG110  or  430

Toyo  Tanso  IG110  or  430 Toyo  Tanso  IG110  or  430

Reactor  Vessel   Hastelloy-­‐N   • Ni-­‐weld  overlay  on  800H  • Insulated  low-­‐alloy  steel  • New  Ni-­‐based  alloy  

•  Interior-­‐insulated  low-­‐alloy  steel  

Core  barrel  &  other  internals  

Hastelloy-­‐N   • C-­‐C  composite  • New  Ni-­‐based  alloy  

• C-­‐C  composite  • SiC-­‐SiC  composite  • New  refractory  metal  

Control  rods  and  internal  drives  

• C-­‐C  composites  • Hastelloy-­‐N  • Nb-­‐1Zr  

• C-­‐C  composites  • Nb-­‐1Zr  

• C-­‐C  composites  • Nb-­‐1Zr  

IHX  &  DRACS     Hastelloy-­‐N   • New  Ni-­‐based  alloy  • Double-­‐sided  Ni  cladding  on  617  or  230  

• C-­‐C  composite  • SiC-­‐SiC  composite  • Monolithic  SiC  

Secondary  (salt-­‐to-­‐gas)  HX  

Coaxial  extruded  800H  tubes  with  Ni-­‐based  layer  

• New  Ni-­‐based  alloy  • Coaxial  extruded  800H  tubes  with  Ni-­‐based  layer  

?  

Page 18: Smahtrfor4thapnef17jun10

18 Managed by UT-Battelle for the U.S. Department of Energy

S. R. Greene, 18 Jun 10

Summary •  SmAHTR concept explores the small FHR design space •  NOTHING OPTIMIZED

–  Many design trades still to be evaluated •  Design objectives selected to

–  address near-term process heat and electricity applications –  enable long-term evolution to higher efficiency electric

generation and higher temperature process heat applications •  SmAHTR relies on new configurations and architectures of

many demonstrated technologies •  SmAHTR attributes should promote cost-competitive

system •  Imagine …