79
Production of Bioethanol from Mahua flowers (Madhuca indica) using Saccharomyces cerevisiae with Statistical optimization of Physico-Chemical and Nutritional Factors in Batch Bioreactor by Response Surface Methodology (RSM) through Submerged Fermentation (SmF) Prof. C.Ayyanna. B.Tech, Ph.D (I.I.Sc)., M.I.I.Ch.E., F.I.E. School of of Biotechnology Chemical Engineering Department Visakhapatnam, Andhra Pradesh, India By Dr. Dovari Surendra Nadh Benerji M.Sc, M.Phil, Ph.D Ph.D awarded in Natural Science Acharya Nagarjuna University Guntur-522510, India. 2014 Research Supervisor

Ph.D THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Embed Size (px)

Citation preview

Page 1: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Production of Bioethanol from Mahua flowers (Madhuca indica) using Saccharomyces cerevisiae with Statistical optimization of Physico-Chemical and Nutritional Factors in Batch Bioreactor by Response

Surface Methodology (RSM) through Submerged Fermentation (SmF)

Prof. C.Ayyanna.B.Tech, Ph.D (I.I.Sc)., M.I.I.Ch.E., F.I.E.

School of of BiotechnologyChemical Engineering Department

Visakhapatnam, Andhra Pradesh, India

ByDr. Dovari Surendra Nadh Benerji

M.Sc, M.Phil, Ph.D

Ph.D awarded in Natural Science Acharya Nagarjuna University

Guntur-522510, India.2014

Research Supervisor

Page 2: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Mahua flower (Madhuca indica)

Page 3: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Microorganisms-Yeast and Bacteria

Page 4: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Fermenter-5L-B-Lite, Sartorious Private Limited, Mumbai, India

Page 5: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Gas Chromatography

Page 6: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

AbstractCurrently, the most widely used biofuel produced from the biomass

through fermentation process is Bioethanol, which is now blend of Diesel and Petrol.(Gasohol and Dioseil)

Bioethanol can significantly reduce the accumulation of Green House gases in the Atmosphere.

Bioethanol production from renewable sources have gained the demand for various industrial purposes such as an alternate fuel, solvent in Pharmaceutical industry, Disinfectant, Cleansing agents, Motor fuel, Germicide and as Preservative.

In the present investigations, it was found that Mahua flowers (Madhuca indica) is an alternative agricultural feedstock, which is next to the cane molasses in the world.

Page 7: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Abstract Flowers of Madhuca indica contain High sugar concentrations as well

as mineral ions (Wealth of India, CSIR, 1964,1998, New Delhi). In the present investigation, the Mahua flower contains 73.13 % of

Fermentable sugars, 4.6 mg of Protein, 0.5 % of Fat and Moisture content 17%.

Mahua flower itself has Antibiotic activity. Hence, it was selected as a source of sugars to produce bioethanol through submerged fermentation using yeast and Bacterial strains.

Present studies were carriedout by screening of Saccharomyces cerevisiae-171 MTCC , Kluyveromyces thermotolerance-30 MTCC, S.cerevisiae-3288 NCIM, S.cerevisiae-3190 NCIM, K.marxianus-1389 MTCC, Zymomonas mobilis-92 MTCC, Escherichia coli, S.cerevisiae-463 MTCC.

Page 8: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Research Work (1). Biochemical Analysis of Mahua flower (Madhuca indica)(A). Determination of Moisture Content (AOAC,2000) (B). Estimation of Total Sugars(Anthrone method)(C). Estimation of Reducing Sugars(Dinitro-Salisylic acid reagent)(D). Estimations of Proteins(Lowry’s method)(E). Estimation of Fat (AACC,2000)(2). Screening of Microorganisms for Bioethanol production.(A). Preparation of Nutrient Media(B). Preparation of Nutrient Agar slants(C). Preparation of Nutrient Broth(D). Pure culture of yeast Cells(E). Determination of Number of CFU(F). Selection of Microorganisms for Bioethanol production

through screening process.(G). Total viable cells count(Methylene Blue Reagent)

Page 9: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Biochemical Analysis of Mahua flower (Madhuca Indica)

Moisture content: 17%Total sugars: 731.343 gm/100gmReducing sugars: 18%Protein content: 4.6gmFat:0.5%

Page 10: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Optimization Studies(3). Optimization:- In fermentation process, the suitable Physico-

Chemical and Nutrient conditions favors Growth of Microorganisms and Bioethanol productions were optimized.

pH optimization

The fermentations are carriedout with pH is in the range of 1 to 14, if maximum production of ethanol was obtained at pH 5, which is found to be optimum pH, at which the maximum bioethanol production and maximum yeast cells were obtained. Hence, the process is called “Optimization”.

Standardization of Physico-Chemical and Nutrient conditions

through optimization studies for the preparation of Medium-I on Bioethanol production.

Page 11: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Statistical Optimization Method(4). Statistical optimization studies:- Statistical optimization

was carriedout using Statistica8, Statsoft, USA.(5). Optimization of Physico-Chemical and Nutrient conditions

using Response Surface Methodology.(6). Preparation of Fermentation Medium-II using Statistically

optimized Physico-Chemical and Nutritional conditions to enhance Bioethanol production.

(7). Comparative studies of Medium-I and Medium-II on bioethanol production using potential Microorganism.

(8). Economic Impact of Bioethanol production in India.

Page 12: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Studies on Physico-Chemical and Nutritional Parameters on Bioethanol Production.

Initially, the Physico-Chemical and Nutritional parameters were optimized individually in 5l bioreactor using batch fermentation for bioethanol yields.

Physical Parameters

(1). Substrate Concentration (g.l-1 )(2). Fermentation Time (Hours)(3). Temperature (0C)(4). pH(5). Agitation (RPM)(6). Inoculum Volume (v/v)(7). Inoculum Age (Hours)

Page 13: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Chemicals and Nutritional factors

(1). Inorganic Nitrogen source (A). Ammonium Sulphate (NH4)2 SO4) (B). Ammonium Chloride (NH4 Cl)(2). Copper Chloride (CaCl2) (3). Manganese Chloride (MnCl2.4H2O) (4). Magnesium Chloride (MgCl2.6H2O) (5). Zinc Sulphate (ZnSo4.7H2O)(6). Biotin (8). Proline(9). Glycine(10). Sodium Di-hydrogen Phosphate

(NaH2PO4)

(11). Calcium Chloride (CaCl2) (12). Cobalt Chloride (CoCl2)

(13). Sodium Chloride (NaCl)(14). EDTA(15). Potassium Phosphate (K2HPO4) (16). Oxygen (O2)(17). Ferrous Sulphate (Fe2(So4)3.H2O)(18). Peptone(19). Urea(20). Yeast Extract

Page 14: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

24000002500000

3400000

3600000

2400000

270000

2300000

210000

Microorganisms Growth

Microorganisms

Num

ber

of c

ells

/ml

Page 15: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

24 hours 48 hours 72 hours 92 hours0

5

10

15

20

25

30

35

40

45

50

22.731

43.86542.253

31.7429999999998

Screening of Microorganism

S.cerevisiae-171 MTCC

K.thermotolerance-30 MTCC

S.cerevisiae-3288 NCIM

S.cerevisiae-3190 NCIM

K.marxianus-1389 MTCC

Z.Mobilis-92 MTCC

E.coli

S.cerevisiae-463 MTCC

Fermentation time in hours

Prod

uctio

n of

Bio

etha

nol g

.l-1

Page 16: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

40 80 120 160 200 240 280 320 360 400 440 4800

20

40

60

80

100

120

8.413

17.1570000000001

26.129

35.874

45.673

56.193

66.174

77.542

88.1

98.14

65.264

51.531

Effect of Substrate Concentration on Bioethanol Production

Concentration of Substrate (Mahua Flower Extract, MFE) g.L-1

Bioe

than

ol P

rodu

ctio

n g.

l-1

Page 17: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

10 20 30 40 500

20

40

60

80

100

120

35.835

59.859

103.15

55.368

44.672

Effect of Temperature on production of Bioethanol % w/v

Temperature (0C)

Bioe

than

ol P

rodu

ctio

n g.

l-1

Page 18: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

2 3 4 5 6 7 80

20

40

60

80

100

120

46.856

57.682

84.832

108.69

67.231

55.934

39.693

Effect of pH on Bioethanol production

pH

Prod

uctio

n of

Bio

etha

nol g

.l-1

Page 19: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

30 60 90 120 150 180 2100

20

40

60

80

100

120

25.481

36.741

57.446

110.63

47.31

36.481

26.182

Effect of Agitation (RPM) on Bioethanol Production

Agitation (RPM)

Prod

uctio

n of

Bio

etha

nol g

.l-1

Page 20: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

4 8 12 16 20 240

20

40

60

80

100

120

77.835

111.19

76.724

65.925

55.472

45.173

Effect of Inoculum volume v/v% on Bioethanol production

Inoculum volume w/v%

Inoculum volume v/v%

Prod

uctio

n of

Bio

etha

nol w

/v%

Page 21: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

0.1 0.2 0.3 0.4 0.5

0.600000000000001

0.700000000000001 0.8 0.9 10

20

40

60

80

100

120

36.316

46.458

56.786

67.087

87.353

112.98

98.56

77.56

56.93753.869

30.112

41.923

48.825

59.927

82.628

106.638

88.782

64.853

47.68242.754

Effect of Inorganic Nitrogen source Ammonium sulphate

Ammonium chloride

Inorganic Nitrogen, g.L-1

Prod

uctio

n of

Bio

etha

nol g

.L-1

Page 22: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

0.1 0.2 0.3 0.4 0.5

0.600000000000001

0.700000000000001 0.8 0.9 10

20

40

60

80

100

120

56.682

67.753

78.967

89.975

110.189

99.568

78.954

67.684

56.643

45.943

Effect of Copper on Bioethanol production

Copper

Concentration of Copper, Cu+2 , g.l-1

Prod

uctio

n of

Eth

anol

g.l-

1

Page 23: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

20

40

60

80

100

120

140

24.676

35.748

46.566

54.343

76.099

116.64

88.654

78.578

65.341

54.257

Effect of Manganese on Bioethanol production

Concentration of Manganese g.L-1

Prod

uctio

n of

Bio

etha

nol g

.l-1

Page 24: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

0.1 0.2 0.3 0.4 0.5

0.600000000000001

0.700000000000001 0.80

20

40

60

80

100

120

140

66.895

78.539

89.531

118

89.083

68.985

57.375

46.859

Effect of Mg+2 on Bioethanol production

Magnesium

Concentration of Magnesium, g.L-1

Prod

uctio

n of

Eth

anol

, g.L

-1

Page 25: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

10 20 30 40 50 60 70 80 900

20

40

60

80

100

120

140

45.653

56.363

67.542

78.682

114.75

85.412

75.473

65.256

54.115

Effect of Zinc on Bioethanol production

Zinc

Zinc mg.L-1

Prod

uctio

n of

Bio

etha

nol g

.L-1

Page 26: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

6 12 18 24 30 36 42 48 540

20

40

60

80

100

120

140

55.392

67.302

89.973

115.68110.873

104.537

98.392

88.65285.306

Effect of Biotin on Bioethanol production

Biotin, mg.L-1

Prod

uctio

n of

Bio

etha

nol,

g.l-1

Page 27: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

30 60 90 120 150 180 210 240 2700

20

40

60

80

100

120

140

25.968

36.957

57.663

89.391

114.36

75.438

65.875

58.524

47.142

20.741

32.871

51.382

84.812

100.871

112.753

62.561

52.718

42.524

Effect of Proline & Glycine on Bioethanol production

Proline

Glycine

Concentration of Proline and Glycine, mg.L-1

Prod

uctio

n of

Eth

anol

, g.l-

1

Page 28: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

1 2 3 4 5 6 7 8 90

20

40

60

80

100

120

140

43.871

54.739

65.431

87.121

119.342

84.135

72.152

64.081

56.004

Effect of Phosphorous on Bioethanol production

Concentration of Phosphorous, g.L-1

Prod

uctio

n B

ioet

hano

l, g.

l-1

Page 29: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

1 2 3 4 5 6 7 8 90

20

40

60

80

100

120

140

41.986

52.868

63.866

75.543

117.653

79.858

65.561 63.683

52.659

EDTA effect on Bioethanol Production

EDTA, g.L-1

Prod

uctio

n of

Bio

etha

nol,

g.l-1

Page 30: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

20

40

60

80

100

120

140

54.412

66.971

87.099

116.981

78.342

67.097

52.98

45.568

34.56130.102

Effect of Potassium on Bioethanol production

Concentration of Potassium g.L-1

Prod

uctio

n o

f Bio

etha

nol g

.l-1

Page 31: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

0

20

40

60

80

100

120

140

34.948

45.473

55.862

76.952

97.642

115.947000000001

85.594

65.287

54.397

43.756

Effect of Calcium on Bioethanol production

Concentration of Calcium, g.L-1

Prod

uctio

n of

Bio

etha

nol g

.l-1

Page 32: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

20 40 60 80 100 120 140 160 1800

20

40

60

80

100

120

140

56.303

67.001

87.249

118.635

85.562

67.683

53.742

46.231

35.001

Effect of Cobalt on Bioethanol production

Concentration of Cobalt, mg.L-1

Prod

uctio

n of

Bio

etha

nol,

g.L

-1

Page 33: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

0

20

40

60

80

100

120

49.538

63.892

77.728

90.543

102.721

88.782

63.089

43.231

35.00132.782

Effect of Ferrous on Bioethanol production

Concentration of Ferrous, g.L-1

Prod

uctio

n of

Bio

-eth

anol

g.L

-1

Page 34: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

0

10

20

30

40

50

60

70

80

90

100

30.7829999999997

61.392

90.53

85.64881.783

74.793

69.69265.891

59.691

50.863

Effect of Oxygen on Bioethanol production

Concentration of Oxygen, mg.L-1

Prod

uctio

n of

Bio

etha

nol g

.L-1

Page 35: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

0.2 0.4 0.600000000000001 0.8 0.1 0.12 0.14 0.16 0.18 0.20

10

20

30

40

50

60

70

80

90

100

20.251

36.271

45.957

60.573

93.641

83.673

72.961

63.573

55.7320000000001

42.978

Effect of Sodium Chloride on Bioethanol production

Sodium Chloride, g.L-1

Prod

uctio

n of

Bio

etha

nol,

m g

.L-1

Page 36: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

20

40

60

80

100

120

140

50.578

66.628

75.36780.562

92.583

100.63495.976

89.713

75.23970.713

60.142

76.171

85.65790.273

114.735

93.773

82.261

73.363

65.592

52.892

70.783

89.682

118.462

80.863

74.793

65.852

55.756

61.853

55.756

45.972

Effect of Organic Nitrogen on Bioethanol production

Peptone Urea

Yeast Exctract

Organic Nitrogen, g.l-1

Bio

etha

nol p

rodu

ctio

n g.

l-1

Page 37: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Optimal Physical and Chemical Parameters with S.cerevisiae-3190

S.no Parameter Optimal value EtOHProduction

Productivityg.l-1.h-1

EtOH%

1 S.cerevisiae-3190 3.6x106 cells.ml-1/48 hr2 Fermentation time 48 Hours 43.865 0.913 28.613

3 Substrate concentration 400 g.l-1 98.14 2.044 48.013

4 Temperature 30 0C 103.15 2.065 50.4645 pH 5 108.69 2.25 53.1756 Agitation 120 RPM 110.63 2.179 54.1247 Inoculum volume 8 v/v 111.19 2.316 54.3988 Ammonium Sulphate 0.6 g.l-1 112.98 2.353 55.27

10 Copper chloride 0.5 g.l-1 110.189 2.295 53.90811 Manganese chloride 0.06 g.l-1 116.64 2.43 57.06412 Magnesium 0.4 g.l-1 118.00 2.458 57.72913 Zinc sulphate 50 mg.l-1 114.75 2.390 56.13914 Biotin 24 mg.l-1 115.68 2.430 56.59415 Proline 0.150 g.l-1 114.36 2.382 55.94916 EDTA 5 g.l-1 117.653 2.451 57.56017 Phosphorous 5 g.l-1 119.342 2.486 58.38618 Potassium 2.0 g.l-1 116.981 2.437 57.23119 Calcium chloride 0.60 g.l-1 115.947 2.415 56.72520 Cobalt chloride 80 mg.l1 118.635 2.471 58.04021 Ferrous sulphate 0.5 g.l-1 102.721 2.140 50.25422 Oxygen 0.3 mg.l-1 90.530 1.886 44.29023 Sodium chloride 1.0 g.l-1 93.641 1.950 45.81224 Peptone 3 g.l1 100.634 2.090 49.23325 Urea 2.5 g.l-1 114.735 2.390 56.13226 Yeast extract 1.5 g.l-1 118.462 2.467 57.955

Page 38: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Chromatogram of bioethanol and n-butanol

Page 39: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Chromatogram of bioethanol yield with Medium-I

Page 40: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Bioethanol production with Medium-I

24 48 72 960

50

100

150

200

250

300

350

400

255

360

330

299

87.654

150.562 144.537130.638

55

9885 79

Total sugars utilized on bioethanol production,g/l

Bioethanol production,g/l

Yeast viability,%

Fermentation time in Hours

Bio

etha

nol p

rodu

ctio

n, %

Page 41: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Determination of Bioethanol concentrationin fermentation medium

% of Improved Bioethanol= Bioethanol recovery of Medium II – Bioethanol recovery of Medium I

Page 42: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Bioethanol production Medium-I with S.cerevisiae-3190

• Peak area bioethanol = 7054528 • Peak area n-butanol = 11135140 • Wt of standard = 1.3732 mg • Standard volume = 100 ml• Weight of sample = 1.1752 mg• Sample volume = 100 ml• Standard potency of ethyl alcohol = 99.5 • Therefore,• Total content of bioethanol in fermented medium-I

=73.562gm/100ml

Page 43: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Response Surface Methodology• Statistica7 , State Ease Inc., USA (Software Package)• CCD (Central Composite Design) or 23 – Factorial Experimental Designs• Design= 3 variables and 17 Experiments• Number of Centre points (no = 3) where Optimum Concentrations of 3 Variables • N= 2k + 2K + no (where is K=3)• Total Number of Experiments=17• Axial points=2 (with the 1.67332)• Independent Variables= X1, X2 and X3

Coded Values= +1 (Coded value), 0 (Optimum value) and -1 (Low Value)

γi = -β̥+β1x1+ β2x2+ β2x3+ β11 x12+ β22 x2

2+ β33x32+ β12x1x2+ β13x1x3+β23x2x3

β̥ is Offset termβ1, β2 and β3 are Linear effectsβ11, β22 and β33 are Squared effects β12, β13 and β23 are Interaction terms

Page 44: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Analysis Of Variance (ANOVA) table

• Source of Degree of Sum of Mean squares F value Probability˂F• Variation freedom squares • (DF) (SS) (MS) • Due to p-1 SSR MSR/MSE • SSR Regression • (fitted model) • N-p SSE SSE/(N-p)• Residual (error) • N-1 SST• Total

Page 45: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

S.no No of ExperimentsUsing CCD

Coded values

(X1) (X2) (X3)

1 1 - 1.00000 - 1.00000 - 1.00000

2 2 - 1.00000 1.00000 1.00000

3 3 1.00000 - 1.00000 1.00000

4 4 1.00000 1.00000 - 1.00000

5 5 0.00000 0.00000 0.00000

6 6 - 1.00000 - 1.00000 1.00000

7 7 - 1.00000 1.00000 - 1.00000

8 8 1.00000 - 1.00000 - 1.00000

9 9 1.00000 1.00000 1.00000

10 10 0.00000 0.00000 0.00000

11 11 - 1.67332 0.00000 0.00000

12 12 1.67332 0.00000 0.00000

13 13 0.00000 - 1.67332 0.00000

14 14 0.00000 1.67332 0.00000

15 15 0.00000 0.00000 - 1.67332

16 16 0.00000 0.00000 1.67332

17 17 0.00000 0.00000 0.00000

Page 46: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

S.No Central Composite Design(CCD)

Independent Variables Coded ValuesLow Value

(-1) Center Value

(0)High Value

(+1)

1 Design-ISubstrate Concentration, g.l-1 -1 0 +1Temperature, 0C -1 0 +1

pH -1 0 +1

2 Design-IIInoculum Volume, v/v -1 0 +1

Agitation, RPM -1 0 +1

Inoculum age, Hours -1 0 +1

3 Design-IIIInorganic Nitrogen, g.l-1 -1 0 +1

Copper, g.l-1 -1 0 +1

Manganese, g.l-1 -1 0 +1

4 Design-IVMagnesium, g.l-1 -1 0 +1

Zinc, mg.l-1 -1 0 +1

Vitamins, mg.l-1 -1 0 +1

5 Design-VAmino Acids, g.l-1 -1 0 +1

Phosphorous, g.l-1 -1 0 +1

Metal chelater, g.l-1 -1 0 +1

6 Design-VIPotassium, g.l-1 -1 0 +1

Calcium, g.l-1 -1 0 +1

Cobalt, mg.l-1 -1 0 +1

7 Design-VIIFerrous, g.l-1 -1 0 +1

Oxygen, mg.l-1 -1 0 +1

Sodium Chloride, g.l-1 -1 0 +1

8Design-VIII

Peptone, g.l-1 -1 0 +1

Urea , g.l-1 -1 0 +1

Yeast Extract, g.l-1 -1 0 +1

Page 47: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

S.No Central Composite Design(CCD)

Independent Variables Coded ValuesLow Value

(-1) Center Value

(0)High Value

(+1)

1 Design-ISubstrate Concentration, g.l-1 360 400 440

Temperature, 0C 20 30 40

pH 4 5 6

2 Design-IIInoculum Volume, v/v 4 8 12

Agitation, RPM 90 120 150

Inoculum age, Hours 24 48 72

3 Design-IIIAmmonium Sulphate, g.l-1 0.5 0.6 0.7

Copper, g.l-1 0.4 0.5 0.6

Manganese, g.l-1 0.05 0.06 0.07

4 Design-IVMagnesium, g.l-1 0.3 0.4 0.5

Zinc, mg.l-1 40 50 60

Biotin, mg.l-1 18 24 30

5 Design-VProline, g.l-1 0.120 0.150 0.180

Phosphorous, g.l-1 4.0 5.0 6.0

EDTA, g.l-1 4.0 5.0 6.0

6 Design-VIPotassium, g.l-1 1.5 2.0 2.5

Calcium, g.l-1 0.50 0.60 0.70

Cobalt, mg.l-1 60 80 100

7 Design-VIIFerrous, g.l-1 0.4 0.5 0.6

Oxygen, mg.l-1 0.2 0.3 0.4

Sodium Chloride, g.l-1 0.8 1.0 1.2

8Design-VIII

Peptone, g.l-1 2.5 3.0 3.5

Urea , g.l-1 2.0 2.5 3.0

Yeast Extract, g.l-1 1.0 1.5 2.0

Page 48: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

CCD of Fermentation Medium-II For Bioethanol ProductionS.No Design Factors

X1 X2 X3

1 Design-I Substrate concentration

Temperature , (0C) pH

2 Design-II Inoculum Volume , (v/v)

Agitation, (RPM) Inoculum Age, Hours

3 Design-III Ammonium Sulphate (NH4)2SO4)

Copper chloride (CuCl2)

Manganese Chloride, (MnCl2.4H2O)

4 Design-IV Magnesium Chloride(MgCl2.6H2O)

Zinc Sulphate(ZnSO4.7H2 O)

Biotin

5 Design-V Proline Sodium Di Hydrogen Phosphorous (NaH2PO4)

EDTA

6 Design-VI Potassium phosphate(K2HPO4)

Calcium Chloride(CaCl2)

Cobalt Chloride(CoCl2)

7 Design-VII Ferrous Sulphate(Fe2(SO4)3.H2O)

Oxygen (O2) Sodium Chloride (NaCl)

8 Design-VIII Peptone Urea Yeast Extract

Page 49: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Optimizations Substrate concentration, Temperature and pH of Design-I on Bioethanol production Using Response Surface Methodology

Variables Optimum Concentration

Bioethanol Yieldg.l-1

% of Bioethanol

Yield

Productivityg.l.h.-1

P-Value

Substrate concentration (X1)

409.916 g.l-1

129.4 55.563 2.3660 0.000428Temperature

(X2)31.45 0C

pH (X3) 4.975

Page 50: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse surface plot of temperature vs substrate concentration (pH was kept constant at 5) on bioethanol production

Page 51: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse counter plot of substrate concentration vs pH (temperature was kept constant at 30 0C) on bioethanol production

Page 52: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Optimizations of Inoculum volume, Agitation and Inoculum Age Design-II on Bioethanol production Using Response Surface Methodology

Variables Optimum Concentration

Bioethanol Yieldg.l-1

% of Bioethanol

Yield

Productivityg.l.h.-1

P-Value

Inoculum Volume 9.0003 v/v

121.878 58.185 2.5391 0.440950Agitation 117.28 RPM

Inoculum Age 53.66 Hours

Page 53: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse surface plot of inoculum age vs inoculum volume (agitation was kept constant at 120 RPM) on bioethanol production.

Page 54: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse counter plot of inoculum age vs inoculum volume (agitation was kept constant at 120 RPM) on bioethanol production.

Page 55: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Optimizations of Ammonium sulphate, Copper and Manganese of Design-III on Bioethanol production Using

Response Surface Methodology

Variables Optimum Concentration

Bioethanol Yieldg.l-1

% of Bioethanol

Yield

Productivityg.l.h.-1

P-Value

Ammoniumsulphate

0.629 g.l-1

128.763 61.472 2.6825 0.000155Copper 0.522 g.l-1

Manganese 0.061 g.l-1

Page 56: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse surface plot of copper chloride vs ammonium sulphate (manganese was kept constant at 0.06 g.l-1) on bioethanol production.

Page 57: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse counter plot of ammonium sulphate vs manganese (copper chloride was kept constant at 0.5 g.l-1) on bioethanol production.

Page 58: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Optimizations of Magnesium, Zinc and Biotin Design-IV on Bioethanol production Using Response Surface Methodology (RSM)

Variables Optimum Concentration

Bioethanol Yieldg.l-1

% of Bioethanol

Yield

Productivityg.l.h.-1

Magnesium 0.430

131.281 62.674 2.7350 0.000061Zinc 54.02

Biotin 22.453

Variables Optimum Concentration

Bioethanol Yieldg.l-1

% of Bioethanol

Yield

Productivityg.l.h.-1

P-Value

Magnesium 0.430 g.l-1

131.281 62.674 2.7350 0.000061Zinc 54.02 mg.l-1

Biotin 22.453 mg.l-1

Page 59: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse surface plot of zinc sulphate vs magnesium chloride (biotin was kept constant at 24 mg.l-1) on bioethanol production.

Page 60: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse counter plot of magnesium chloride vs zinc sulphate (biotin was kept constant at 24 mg.l-1) on bioethanol production.

Page 61: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Optimizations of Proline, Phosphorous and EDTA Design-V on Bioethanol production using Response Surface Methodology

Variables Optimum Concentration

Bioethanol Yieldg.l-1

% of Bioethanol

Yield

Productivityg.l.h.-1

P-Value

Proline 0.163 g.l-1

129.936 62.032 2.7070 0.000597Sodium Di-Hydrogen Phosphorous

5.385 g.l-1

EDTA 5.197 g.l-1

Page 62: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse surface plot of ethylene di-amine tetraacetic acid vs phosphorus (proline was kept constant at 0.150 g.l-1) on bioethanol production.

Page 63: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse counter plot of phosphorus vs proline (ethylene di-amine tetraacetic acid was kept constant at 5.0 g.l-1) on bioethanol production.

Page 64: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Optimizations of Potassium phosphate, Calcium chloride and Cobalt chloride of Design-VI on Bioethanol production Using

Response Surface MethodologyVariables Optimum

ConcentrationBioethanol

Yieldg.l-1

% of Bioethanol

Yield

Productivityg.l.h.-1

P-Value

Potassium phosphate

2.170 g.L-1

132.515 63.263 2.7607 0.000914CalciumChloride

0.647g.L-1

Cobalt Chloride 99.486 mg.L-1

Page 65: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse surface plot of potassium vs calcium chloride (cobalt chloride was kept constant at 80 mg.l-1) on bioethanol production.

Page 66: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse counter plot of calcium chloride vs potassium phosphate (cobalt chloride was kept constant at 80 mg.l-1) on bioethanol production.

Page 67: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Optimizations of Ferrous sulphate, Oxygen and Sodium Chloride of Design-VII on Bioethanol production Using

Response Surface MethodologyVariables Optimum

ConcentrationBioethanol

Yieldg.l-1

% of Bioethanol

Yield

Productivityg.l.h.-1

P-Value

FerrousSulphate

0.533 g.l-1

125.929 60.119 2.623 0.003863Oxygen 0.330 mg.l-1

Sodium Chloride

1.105 g.l-1

Page 68: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse surface plot of oxygen vs ferrous sulphate (sodium chloride was kept constant at 1.0 g.l-1) on bioethanol production.

Page 69: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse counter plot of sodium chloride vs ferrous sulphate (oxygen was kept constant at 0.3 mg.l-1) on bioethanol production.

Page 70: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Optimizations of Design-VIII on Bioethanol production Using Response Surface Methodology

Variables Optimum Concentration

Bioethanol Yieldg.l-1

% of Bioethanol

Yield

Productivityg.l.h.-1

P-Value

Peptone 3.038 g.l-1

135.164 64.528 2.8159 0.0665Urea 2.566 g.l-1

Yeast Extract 0.572 g.l-1

Page 71: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse surface plot of yeast extract vs peptone (urea was kept constant at 2.5 g.l-1) on bioethanol production.

Page 72: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Isoresponse counter plot of peptone vs yeast extract (urea was kept constant at 2.5 g.l-1) on bioethanol production.

Page 73: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Bioethanol productions using Fermentative Medium-II Designs by Response Surface Methodology

MediumDesign

Bioethanol Yield g.L-1

% of Bioethanol

Productivityg.l.h-1

P-Value

Design-I 129.4 55.563 2.3660 0.000428

Design-II 121.878 58.185 2.5391 0.440950

Design-III 128.763 61.472 2.6825 0.000155

Design-IV 131.281 62.674 2.7350 0.000061

Design-V 129.936 62.032 2.7070 0.000597

Design-VI 132.515 63.263 2.7607 0.000914

Design-VII 125.929 60.119 2.623 0.003863

Design-VIII 135.164 64.528 2.8159 0.0665

Page 74: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Statistical optimum fermentative conditions of Medium-IIS.No CCD Factors Unit Statistical optimum fermentative conditions

1 Design-I Substrate conc’nTemperaturepH

g/l0CpH

409.9314.9

2 Design-II Inoculum volumeAgitationInoculum age

v/vRPMHours

9.00311753.6

3 Design-III Ammonium sulphateCopperManganese

g/lg/lg/l

0.6290.5220.061

4 Design-IV MagnesiumZincBiotin

g/lmg/lmg/l

0.43054.02122.453

5 Design-V ProlinePhosphorusEDTA

g/lg/lg/l

0.1635.3855.197

6 Design-VI PotassiumCalciumCobalt

g/lg/lmg/l

2.3400.06499.43

7 Design-VII

FerrousOxygenNaCl

g/lmg/lg/l

0.5330.3301.105

8 Design-VII

PeptoneUreaYeast Extract

g/lg/lg/l

3.0382.5660.572

Page 75: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Chromatogram of Bioethanol with medium-II

Page 76: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Bioethanol production with Medium-II

24 hours 48hours 72 hours 96 hours0

50

100

150

200

250

300

350

400

450

260

408

350

320

89.875

195.284

173.561

150.863

75

9786 81

total fermentable sugars uti-lized,g/l

bioethanol concentration,g/l

total yeast viability,%

Fermentation time (hours)

Bio

etha

nol p

rodu

ctio

n, g

/l

Page 77: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Bioethanol Production Using Medium-II

Peak Area of Bioethanol = 9123399 Peak Area of n-Butanol = 11135140 Wt of standard = 1.3732 mgStandard Volume = 100 mlWt. of Sample = 1.2008 mgSample Volume = 100 mlStandard Potency = 99.5 %Therefore,Percentage of bioethanol production of Medium-II = 93.229 %

Page 78: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY

Economic importance of bioethanol

Bioethanol:3,48,303 tonns/1 million tonns of Madhuca indica.

When bioethanol used as blend, thus replaces 3,48,303 tonns of petrol.

Gasohol can reduce Green House Gases.

Page 79: Ph.D  THESIS-2014 ACHARYA NAGARJUNA UNIVERSITY