Slide009 Op-Amps Applications

Embed Size (px)

Citation preview

  • 7/27/2019 Slide009 Op-Amps Applications

    1/45

    Op-Amps Applications

    1. Voltage to current converters,

    2. Current to voltage converters,

    3. Instrument Amplifiers,

    4. Sample-Hold circuits,

    5. Active Low-pass Filter6. Schmitt Trigger Comparator

  • 7/27/2019 Slide009 Op-Amps Applications

    2/45

    x Iv Ri

    xv

    (Trans-resistance amplifier)

  • 7/27/2019 Slide009 Op-Amps Applications

    3/45

    (Trans-conductance amplifier)

  • 7/27/2019 Slide009 Op-Amps Applications

    4/45

    Practical Op Amp Limitations Finite gain

    Finite input impedance

    Out put impedance is not zero

    Input bias current is not zero

    Band width is limited

    Common mode rejection ratio is limited

    1

    1

    o d

    I o o d

    i a R r A

    v R a r R r r

    || 1o d oR R r a r

    0I D L o O Dv v v r i av

    0I D D d Ov v R v r i Eliminating v

    D

    At output loop

    At node x.

    ro

    Load

    rd

    R

    vI avD

    vL

    io

    vD

    x

  • 7/27/2019 Slide009 Op-Amps Applications

    5/45

  • 7/27/2019 Slide009 Op-Amps Applications

    6/45

    R3 R4

    R1

    R2

    RO

    vt

    vt

    vt

    it

    4 3

    0t x tv v vR R

    2 1

    t x tt

    v v vi

    R R

    x

    v

    2

    2 1 4 3

    tO

    t

    v RR

    i R R R R

    Output Resistance

  • 7/27/2019 Slide009 Op-Amps Applications

    7/45

  • 7/27/2019 Slide009 Op-Amps Applications

    8/45

  • 7/27/2019 Slide009 Op-Amps Applications

    9/45

  • 7/27/2019 Slide009 Op-Amps Applications

    10/45

    Difference Amplifier and Common-Mode

    Rejection Ratio (CMRR)

    A(orAdm) = differential-mode gain

    Acm = common-mode gain

    vid= differential-mode input voltage

    vic = common-mode input voltage

    A real amplifier responds to signal

    common to both inputs, called the

    common-mode input voltage (vic).

    In general, v

    o

    Adm

    v

    id

    Acm

    vic

    Adm

    Adm

    v

    id

    vic

    CMRR

    CMRRAdm

    Acm

    and CMRR(dB) 20log10

    (CMRR)

    An ideal amplifier hasAcm = 0, but for a

    real amplifier,

    21 id

    v

    icvv 22 id

    v

    icvv

    voAdm(v

    1v

    2)Acm

    v1

    v2

    2

    voAdm(vid

    )Acm(vic)

  • 7/27/2019 Slide009 Op-Amps Applications

    11/45

    4 1 2 22 1

    1 3 4 1o

    R R R Rv v v

    R R R R

    xv

    4 1 2 4 1 22 2

    1 3 4 1 1 3 4 1

    1

    2o dm cm

    R R R R R RR Rv v v

    R R R R R R R R

  • 7/27/2019 Slide009 Op-Amps Applications

    12/45

  • 7/27/2019 Slide009 Op-Amps Applications

    13/45

    Difference Amplifier: Example

    Problem: Determine vo

    Given Data: R1= 10kW, R2 =100kW, v1=5 V, v2=3 V

    Assumptions: Ideal op amp. Hence, v-= v+ and i-= i+= 0.

    Analysis: Using dc values,

    Adm

    R

    2R

    1

    100kW10kW

    10

    VoAdmV1

    V2

    10(5 3)

    Vo20.0 V

    HereAdmis called the differential mode voltage gain of the difference amplifier.

  • 7/27/2019 Slide009 Op-Amps Applications

    14/45

    Finite Common-Mode Rejection Ratio:

    Example

    Problem: Find output voltage error introduced by finite CMRR.

    Given Data: Adm= 2500, CMRR = 80 dB, v1 = 5.001 V, v2 = 4.999 V

    Assumptions: Op amp is ideal, except for CMRR. Here, a CMRR in dB of80 dB corresponds to a CMRR of 104.

    Analysis:

    The output error introduced by finite CMRR is 25% of the expected idealoutput.

    5.001V 4.999V=0.002V

    5.001V 4.999V 5.000V2

    5.0002500 0.002 V 6.25VCMRR 410

    In the "ideal" case, 5.00 V

    vid

    vic

    vicv A vo dm id

    v A v

    o dm id

    % output error 6.255.005.00

    100%25%

  • 7/27/2019 Slide009 Op-Amps Applications

    15/45

    uA741 CMRR Test: Differential Gain

  • 7/27/2019 Slide009 Op-Amps Applications

    16/45

    Differential Gain Adm = 5 V/5 mV = 1000

  • 7/27/2019 Slide009 Op-Amps Applications

    17/45

    uA741 CMRR Test: Common Mode Gain

  • 7/27/2019 Slide009 Op-Amps Applications

    18/45

    Common Mode Gain Acm = 160 mV/5 V = .032

  • 7/27/2019 Slide009 Op-Amps Applications

    19/45

    CMRR Calculation for uA741

    4

    10

    1000CMRR 3.125 10

    .032

    CMRR(dB) 20log CMRR 89.9 dB

    dm

    cm

    A

    A

  • 7/27/2019 Slide009 Op-Amps Applications

    20/45

    1v

    2v

    xv

    xv

  • 7/27/2019 Slide009 Op-Amps Applications

    21/45

    2 ( )2 1

    1

    Rv v vo o oR

    11 23 2 3

    1 2 1 0

    G

    Rv v voR R R R

    232 1 ( )

    2 1

    1

    G

    RRv v vo RR

    1v

    2v

    xv

    xv2 12

    3 3

    1 10o

    G G

    v vv

    R R R R

    1 21

    3 3

    1 10o

    G G

    v vv

    R R R R

    1( )

    2 1 2

    Rv v vo

    o o R

    1 2 1 2 1 23 3

    1 1 1 10

    o oG G

    v v v v v vR R R R

  • 7/27/2019 Slide009 Op-Amps Applications

    22/45

    Instrumentation Amplifier

    Combines 2 non-inverting amplifiers

    with the difference amplifier to

    provide higher gain and higher input

    resistance.

    )b

    va(v

    3

    4v R

    Ro

    bv

    2i)

    1i(2

    2iav RRR

    12

    2

    v

    1

    v

    iR

    )2

    v1

    (v

    1

    21

    3

    4v

    R

    R

    R

    R

    o

    Ideal input resistance is infinite

    because input current to both op

    amps is zero. The CMRR is

    determined only by Op Amp 3.

    NOTE

  • 7/27/2019 Slide009 Op-Amps Applications

    23/45

    Instrumentation Amplifier: Example

    Problem: Determine Vo

    Given Data: R1 = 15 kW, R2 = 150 kW, R3 = 15 kW,R4 = 30 kWV1 = 2.5 V, V2 =

    2.25 V

    Assumptions: Ideal op amp. Hence, v-= v+ and i-= i+= 0.

    Analysis: Using dc values,

    150k30k24 1 1 22( ) 15k15k1 2 13

    ( ) 22(2.5 2.25) 5.50V1 2

    RRvoAdm v v RR

    V A V V o dm

    WW

    WW

  • 7/27/2019 Slide009 Op-Amps Applications

    24/45

  • 7/27/2019 Slide009 Op-Amps Applications

    25/45

    exercise

    Exercise 1

    Find VO?

  • 7/27/2019 Slide009 Op-Amps Applications

    26/45

    exercise

    Exercise 2

    Find V2 and V3?

  • 7/27/2019 Slide009 Op-Amps Applications

    27/45

    exercise

    Exercise 3

    Find VO?

  • 7/27/2019 Slide009 Op-Amps Applications

    28/45

    exercise

    Exercise 4

    Find VO?

  • 7/27/2019 Slide009 Op-Amps Applications

    29/45

    Cascaded Amplifiers

    Connecting several amplifiers in cascade (output of one stage connected tothe input of the next) can meet design specifications not met by a singleamplifier.

    Each amplifer stage is built using an op amp with parametersA, Rid

    , Ro

    ,called open loop parameters, that describe the op amp with no externalelements.

    Av, Rin, Routare closed loop parameters that can be used to describe eachclosed-loop op amp stage with its feedback network, as well as the overallcomposite (cascaded) amplifier.

  • 7/27/2019 Slide009 Op-Amps Applications

    30/45

  • 7/27/2019 Slide009 Op-Amps Applications

    31/45

    Fig. 2.35

  • 7/27/2019 Slide009 Op-Amps Applications

    32/45

    1

    1

    1

    1ref

    Rv

    R RV

    1 2

    1 1

    1

    1ref ref

    Rv v R

    R R R RV V

    1 2 1

    1 12

    ref ref

    v v RR

    V V R R R R R

    Analysis

    1 2 1

    1

    ||

    ref

    v v R R

    R R RV

    1 2 1

    1 12 2 21

    ref

    v v RR

    V R R RR R R R

    1 2 1 12 11

    Vrefv v

    R R R R R R

    1 2 1 1 12 1 21 1

    o ref ref v A v v A V A V R R R R R R R R R R

    2

    1ref

    v R

    R RV

  • 7/27/2019 Slide009 Op-Amps Applications

    33/45

    Example 2.12

    Let the transducer of fig. 2.35 be the Pt RTD (platinum resistance temperature detector)

    and equal to 100 ohm with temperatur coefficient of 0.00392 per oC and let Vref=15 V.

    (a) specify values of R1 and A suitable for achieving an output sensitivity of 0.1 V/oC near0 oC. to avoid self-heating in the RTD, limit its power dissipation to less than 0.2 mW. (b)

    Compute vo (100 oC) and estimate the equivalent error, in degrees Celsius, in making the

    approximation of Equation.

  • 7/27/2019 Slide009 Op-Amps Applications

    34/45

  • 7/27/2019 Slide009 Op-Amps Applications

    35/45

    The Active Low-pass Filter

    Use a phasor approach to gain analysis of

    this inverting amplifier. Let s = jw.

    Avvo

    (jw)

    v(jw)

    Z2(jw)

    Z1(jw)

    Z1jw R1

    Z2(jw)

    R2

    1

    jwC

    R2

    1jwC

    R2jwCR

    21

    AvR2

    R1

    1

    (1 jwCR2

    )R2

    R1

    ej

    (1

    jw

    wc

    )

    wc2fc1

    R2C

    fc1

    2R2C

    fcis called the high frequency cutoff of

    the low-pass filter.

  • 7/27/2019 Slide009 Op-Amps Applications

    36/45

    Active Low-pass Filter (continued)

    At frequencies belowfc(fH in thefigure),the amplifier is aninverting amplifier with gain setby the ratio of resistors R2 andR

    1

    .

    At frequencies abovefc, theamplifier response rolls off at-20dB/decade.

    Notice that cutoff frequencyand gain can be independently

    set.

    AvR2

    R1

    ej

    (1 jwwc

    )

    R2

    R1

    12 w

    wc

    2

    ej

    ejtan1(w/w

    c)

    R2

    R1

    1 wwc

    2ej[ tan1(w/w

    c)]

    magnitude phase

  • 7/27/2019 Slide009 Op-Amps Applications

    37/45

    Active Low-pass Filter: Example

    Problem: Design an active low-pass filter

    Given Data: Av= 40 dB, Rin= 5 kW,fH = 2 kHz

    Assumptions: Ideal op amp, specified gain represents the desiredlow-frequency gain.

    Analysis:Input resistance is controlled by R1 and voltage gain is set by R2 / R1.

    The cutoff frequency is then set by C.

    The closest standard capacitor value of 160 pF lowers cutofffrequency to 1.99 kHz.

    100dB20/dB4010 vA

    W k51 in

    RR

    Av

    R

    2R

    1

    R2

    100R1

    500kW

    C 12fH

    R2

    12(2kHz)(500kW)159pF

    and

  • 7/27/2019 Slide009 Op-Amps Applications

    38/45

    Low-pass Filter Example PSpice Simulation

  • 7/27/2019 Slide009 Op-Amps Applications

    39/45

    Output Voltage Amplitude in dB

  • 7/27/2019 Slide009 Op-Amps Applications

    40/45

    Output Voltage Amplitude in Volts (V) and Phase in Degrees (d)

  • 7/27/2019 Slide009 Op-Amps Applications

    41/45

    non-linear application:schmitt trigger

    VV

    VtVVandVVstateinitialwith

    VVVandRRassume

    VRR

    RV

    S

    o

    EECCf

    O

    f

    5.7)15(2

    1

    sin1015

    151

    1

    1

    w

    Non-linear application

    Schmitt Trigger (Pemicu Schmitt)

    (a) Transfer Characteristic of Schmitt Trigger

    (c) Output Voltage of Schmitt Trigger

    (b) Input Voltage of Schmitt Trigger

    1R

    2R

    ov

    iv

    ov

    iv

  • 7/27/2019 Slide009 Op-Amps Applications

    42/45

    non-linear application:schmitt trigger

    VV

    VtVVandVVstateinitialwith

    VVVandRRassume

    VRR

    RV

    S

    o

    EECCf

    O

    f

    5.7)15(2

    1

    sin1015

    151

    1

    1

    w

    Non-linear application

    Schmitt Trigger (Pemicu Schmitt)

    Vo(V)

    15

    -15

    t

    VS(V)

    t

    7.5

    -7.5

    Vo(V)

    VS(V)-7.5 7.5-10 10

    15

    -15

    (a) Transfer Characteristic of Schmitt Trigger

    (c) Output Voltage of Schmitt Trigger

    (b) Input Voltage of Schmitt Trigger

  • 7/27/2019 Slide009 Op-Amps Applications

    43/45

    non-linear application:schmitt trigger

    VV

    VtVVandVVstateinitialwith

    VVVandRRassume

    VRR

    RV

    S

    o

    EECCf

    O

    f

    5.7)15(2

    1

    sin1015

    151

    1

    1

    w

    Non-linear application

    Schmitt Trigger (Pemicu Schmitt)

    (a) Transfer Characteristic of Schmitt Trigger

    (c) Output Voltage of Schmitt Trigger

    1R

    2R ov

    iv

    ov

    iv

  • 7/27/2019 Slide009 Op-Amps Applications

    44/45

    Examples and Problems

    Examples: 2.1, 2.2, 2.3, 2.4, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13

    Problems: 2.5, 2.14, 2.28, 2,39, 2,49, 2.50.

  • 7/27/2019 Slide009 Op-Amps Applications

    45/45

    Assignment # 03

    Problems: 1.8, 1.16, 1.31, 1.43, 1.53, 1.60, 2.14, 2.28, 2,39, 2.50.