61
Chapter 14: Operational Amplifiers 1. Ideal op-amps 2. Negative feedback 3. Applications 4. Useful designs 5. Integrators, differentiators and filters Operational Amplifiers

Lecture14 OP Amps

  • Upload
    misa

  • View
    241

  • Download
    1

Embed Size (px)

DESCRIPTION

op amp

Citation preview

Page 1: Lecture14 OP Amps

Chapter 14: OperationalAmplifiers

1. Ideal op-amps2. Negative feedback3. Applications4. Useful designs5. Integrators, differentiators and filters

Operational Amplifiers

Page 2: Lecture14 OP Amps

Introduction: Ideal Operational Amplifier

Operational amplifier (Op-amp) is made of many transistors, diodes, resistors and capacitors in integrated circuit technology.Ideal op-amp is characterized by:Infinite input impedanceInfinite gain for differential inputZero output impedanceInfinite frequency bandwidth

Page 3: Lecture14 OP Amps

Equivalent circuit of the ideal op-amp can be modeled by:Voltage controlled source with very large gain AOL

known as open loop gainFeedback reduces the gain of op-ampIdeal op-amp has no nonlinear distortions

Ideal Operational Amplifier

Page 4: Lecture14 OP Amps

Ideal Operational Amplifier

A real op-amp must have a DC supply voltage which is often not shown on the schematics

Page 5: Lecture14 OP Amps

Op-amp are almost always used with a negative feedback:Part of the output signal is returned to the input with negative signFeedback reduces the gain of op-ampSince op-amp has large gain even small input produces large output, thus for the limited output voltage (lest than VCC) the input voltage vx must be very small. Practically we set vx to zero when analyzing the op-amp circuits.

Inverting Amplifier

with vx =0 i1 = vin /R1

i2 = i1 and

vo = -i2 R2 = -vin R2 /R1

soAv=vo /vin =-R2 /R1

i1

i2

Page 6: Lecture14 OP Amps

Inverting Amplifier

Since vo = -i2 R2 = -vin R2 /R1

Then we see that the output voltage does not depend on the load resistance and behaves as voltage source.Thus the output impedance of the inverting amplifier is zero.The input impedance is R1 as Zin=vin/i1=R1

Page 7: Lecture14 OP Amps

Inverting Amplifier with higher gain

Inverting amplifier gain vo = -i2 R2 = -vin R2 /R1

Is limited due to fact that it is hard to obtain large resistance ratio.

Higher gains can be obtained in the circuit below where we have:i1=vin/R1=i2 from KCL at N2 we have: i2 + i3= i4

N2

Page 8: Lecture14 OP Amps

Inverting Amplifier with higher gain

Higher gains can be obtained in the circuit below where we have:i1=vin/R1=i2 from KCL at N2 we have: i2 + i3= i4

Also from KVL1: –vo=i2R2+i4R4 => i4=(-vo-i2R2)/R4

and from KVL2: i2R2=i3R3 => i3=i2R2/R3

KVL1

KVL2

Page 9: Lecture14 OP Amps

Inverting Amplifier with higher gain

Finally using: i2 + i3= i4 andi4=(-vo-i2R2)/R4

i3=i2R2/R3 we havei2+i2R2/R3 =(-vo-i2R2)/R4 => i2(1+R2/R3 +R2/R4)= -vo/R4

Page 10: Lecture14 OP Amps

Inverting Amplifier with higher gain

i2(1+R2/R3 +R2/R4)= -vo/R4

Substitutei2=vin/R1 => vin/R1 *(1+R2/R3 +R2/R4)= -vo/R4

to get the voltage gain

vo/vin=-R4/R1 *(1+R2/R3 +R2/R4)

Page 11: Lecture14 OP Amps

Inverting Amplifier with higher gain

So if we chose R1=R3=1kandR2=R4=10 kthen the voltage gain is

Av=vo/vin==-R4/R1 *(1+R2/R3 +R2/R4)==-10*(1+10+1)==-120

Page 12: Lecture14 OP Amps

Summing Amplifier

The output voltage in summing amplifier is

vo=-if*Rf since vi=0

+vi

-

iA

iB

if

Page 13: Lecture14 OP Amps

Summing Amplifier

The output voltage in summing amplifier is

vo=-if*Rf since vi=0

+vi

-

iA

iB

if

Page 14: Lecture14 OP Amps

Summing Amplifier

The output voltage in summing amplifier is

vo=-if*Rf since vi=0

if=iA+iB=vA/RA+vB/RB => vo=-(vA/RA+vB/RB)*Rf

+vi

-

iA

iB

if

Page 15: Lecture14 OP Amps

Summing Amplifier

The output voltage in summing amplifier is

vo=-if*Rf since vi=0

if=iA+iB=vA/RA+vB/RB => vo=-(vA/RA+vB/RB)*Rf

For n inputs we will havevo=- Rf i(vi/Ri)

+vi

-

iA

iB

if

Page 16: Lecture14 OP Amps

Exercise 14.2

Find the currents and voltages in these two circuits:

a) i1=vin/R1=1V/1k=1mA

i2=i1=1mA from KCLvo=-i2*R2=-10V from KVLio=vo/RL=-10mA from Ohms law

ix=io-i2=-10mA-1mA=-11mA

Page 17: Lecture14 OP Amps

Exercise 14.2

Find the currents and voltages in these two circuits:

b) i1=vin/R1=5mA

i2=i1=5mAi2*1k= i3*1k=> i3=5mAi4=i2+i3=10mA

vo=- i2*1k- i4*1k=-10 V

Page 18: Lecture14 OP Amps

Exercise 14.2

Find expression for the output voltage in the amplifier circuit:

i1

i2

i4

i3

i5

iL

i1=v1/R1=v1/10k

i2=i1=v1/10mA

v3 =- i2*R2=- v1/10k *20k =-2v1

+V3

-

Page 19: Lecture14 OP Amps

Exercise 14.2

Find expression for the output voltage in the amplifier circuit:

i1

i2

i4

i3

i5

iL

v3 =- i2*R2=- v1/10k *20k =-2v1

i5=i3+i4=v3/10k +v2/10k

vo =- i5*R5=-(v3/10k +v2/10k )*20k =-2v3 -2v2 =4v1 -2v2

+V3

-

Page 20: Lecture14 OP Amps

Positive Feedback

When we flip the polarization of the op-amp as shown on the figure we will get a positive feedback that saturates the amplifier output.This is not a good idea.

Page 21: Lecture14 OP Amps

Noninverting amplifier

v1=vin

i1=v1/R1

i2=-i1

vo = v1 - i2*R2= v1 + i1*R2 =

= v1 + R2 *v1/R1 =v1(1+ R2 /R1)

Thus the voltage gain of noninverting amplifier is:

Av= vo / vin = 1+ R2 /R1

iL

i2-i1

Page 22: Lecture14 OP Amps

Voltage Follower

=>

vo = v1(1+ R2 /R1)

vo = v1

Special case of noninverting amplifier is a voltage follower

so when R2=0

Since in the noninverting amplifier

Page 23: Lecture14 OP Amps

Exercise 14.4

Find voltage gain Av=vo/vin and input impedancea.With the switch openb.With the switch closeda.From KVL: vin=i1*R+i1*R+vo

i2=0 and i1*R=i2*R => i1=0so vin=vo and Av=vo/vin =1

i1

i1

i2

Page 24: Lecture14 OP Amps

Exercise 14.4

Find voltage gain Av=vo/vin and input impedancea.With the switch openb.With the switch closeda.Input impedance: Zin=vin/iin =vin/0 =inf

i1

i1

i2

iin

Page 25: Lecture14 OP Amps

Exercise 14.4

Find voltage gain Av=vo/vin and input impedancea.With the switch openb.With the switch closed

b. for closed switch: i2=vin/Rand i1*R=i2*R => i1=i2 => vin=i1*R+i1*R+vo so vin=vin/R*R+vin/R*R+vo => -vin=vo

and Av=vo/vin =-1

i1

i1

i2

Page 26: Lecture14 OP Amps

Exercise 14.4

Find voltage gain Av=vo/vin and input impedancea.With the switch openb.With the switch closed

b. i2=vin/R Input impedance: Zin=vin/iin =vin/(i1+i2)and i1=i2 => Zin=vin/iin =vin/(2*vin/R)=R/2

i1

i1

i2

Page 27: Lecture14 OP Amps

Voltage to Current Converter

Find the output current io as a function of vin

Page 28: Lecture14 OP Amps

Voltage to Current Converter

Find the output current io as a function of vin

vin =io*Rf

soio=vin/Rf

io

Page 29: Lecture14 OP Amps

Exercise 14.6

a) Find the voltage gain vo/vin

b) Calculate the voltage gain vo/vin for R1=10 k, R2 = 100 k

c) Find the input resistance

Page 30: Lecture14 OP Amps

Exercise 14.6

a) Find the voltage gain vo/vin

b) Calculate the voltage gain vo/vin for R1=10 k, R2 = 100 k

c) Find the input resistanceFrom KCL1: vin/R1 =(v2-vin)/R2 => v2/R2= vin(1/R2+1/R1)From KCL2: (v2-vin)/R2+v2/R1+(v2-v0)/R2 =0 =>

v2

Page 31: Lecture14 OP Amps

Exercise 14.6

a) Find the voltage gain vo/vin

b) Calculate the voltage gain vo/vin for R1=10 k, R2 = 100 kc) Find the input resistanceFrom KCL1: vin/R1=(v2-vin)/R2 => v2/R2= vin(1/R2+1/R1) (*)From KCL2: (v2-vin)/R2+v2/R1+(v2-v0)/R2 =0 => v2(2/R2+1/R1)= (vin+v0)/R2

(*) v2= vin(1+R2/R1) => vin(1+R2/R1)(2/R2+1/R1)= (vin+v0)/R2

vin (R2 (1+R2/R1)(2/R2+1/R1)-1)=v0

v2v0 / vin =131

Page 32: Lecture14 OP Amps

Exercise 14.6

a) Find the voltage gain vo/vin

b) Calculate the voltage gain vo/vin for R1=10 k, R2 = 100 kc) Find the input resistanceFrom KCL1: vin/R1=(v2-vin)/R2 => v2/R2= vin(1/R2+1/R1) (*)From KCL2: (v2-vin)/R2+v2/R1+(v2-v0)/R2 =0 => v2(2/R2+1/R1)= (vin+v0)/R2

(*) v2= vin(1+R2/R1) => vin(1+R2/R1)(2/R2+1/R1)= (vin+v0)/R2

vin (R2 (1+R2/R1)(2/R2+1/R1)-1)=v0 => v0 / vin =100(1+10)0.12-1

v2v0 / vin =131

Page 33: Lecture14 OP Amps

Example

Matrix equations for op-amp circuits

Page 34: Lecture14 OP Amps

EE 616

Example

Page 35: Lecture14 OP Amps

Design of Simple Amplifiers

Practical amplifiers can be designed using op-amp with feedback.

We know that for noninverting amplifierAv= vo / vin = 1+ R2 /R1

so to obtain Av=10 we could use R1=1and R2=9But such low output resistance will draw too much current from the power supply

Page 36: Lecture14 OP Amps

Design of Simple Amplifiers

The same gain can be obtained with large resistance values.

But for high output resistance are sensitive to bias current and we must use a filtering output capacitor to remove the noise.

Av= vo / vin = 1+ R2 /R1

Page 37: Lecture14 OP Amps

We consider the following op-amp imperfections:1)Nonideal linear operation,2)Nonlinear characteristics3)Dc offset values.

Op-Amp Imperfections in a Linear Mode

Input and output impedances:1)Ideal opamp have Rin=0,

2)Real op-amp has

0; outin RR

1001

;101 12

out

in

R

MR

Page 38: Lecture14 OP Amps

We consider the following op-amp imperfections:1)Nonideal linear operation,2)Nonlinear characteristics3)Dc offset values.

Op-Amp Imperfections in a Linear Mode

Voltage gain:1)Ideal op-amp has infinite gain and bandwidth, 2)Real op-amp has the gain that changes with frequency.3)Open loop gain:

BOL

OLOL

ff

j

AfA

1

0

Open loop bandwidth

Terminal frequency ft – gain drops to 1

Page 39: Lecture14 OP Amps

Op-Amp Imperfections in a Linear Mode

Negative feedback is used to lower the gain and extend the bandwidth.

Open loop gain

From KVL

id

oOL V

VfA

oidin VVV oOL

oin V

A

VV

OL

OL

OL

in

oCL A

A

AV

VA

111

21

1

RR

R

where

So the closed loop gain

Page 40: Lecture14 OP Amps

Op-Amp Imperfections in a Linear Mode

Using open loop gain

We get

OLBOL

OL

OL

OLBOL

OL

OL

OL

in

oCL

Aff

j

AA

Af

fj

A

A

A

V

VA

0

0

0

0

0

11

1

11

So we will get closed loop dc gain

BOL

OL

id

oCL

ff

j

A

V

VfA

1

0

OL

OL

in

oCL A

A

V

VA

0

00 1

closed loop bandwidth

OLBOLBCL Aff 01

closed loop voltage gain

BCL

CLCL

ff

j

AfA

1

0

Page 41: Lecture14 OP Amps

Op-Amp Imperfections in a Linear Mode

Comparing to open loop, the closed loop gain is reducedAnd closed loop bandwidth is larger

The gain*bandwidth product stays the same

BOLOL

OLBOLOL

OL

BCLCL

fA

AfA

A

fA

0

00

0

0

11

Page 42: Lecture14 OP Amps

Nonlinear Limitations

Nonlinear limitations:1)Output voltage swing is limited and depend on power supply voltage

for

2)Maximum output current is limited

VVtvVVV oDD 12,12,15,15

mAmAtiamplifierAfor o 40,40741

Page 43: Lecture14 OP Amps

Nonlinear Limitations

When voltage or current limits are exceeded, clipping of the output signal occurs causing large nonlinear distortions

Page 44: Lecture14 OP Amps

Nonlinear Limitations

Another nonlinear limitation is limited rate of change of the output signal known as the slew-rate limit SR

SRdt

dvo Using slew rate we can find maximum frequency known as full-power bandwidth.Assuming

tVtv omo sin

SRVf

tVdt

dv

om

omo

2

cos

omFP V

SRf

2

So the full-power bandwidth

Page 45: Lecture14 OP Amps

There are three dc offset values related to op-amp design:1)Bias currents IB+, IB- – related to differential inputs2)Offset current – ideally zero value3)Offset voltage – results in nonzero output for zero inputThey can be represented as additional dc sources in the op-amp model

Dc offset values

2

BBB

III

BBoff III

Page 46: Lecture14 OP Amps

Industrial op-amp

741 Amplifier is the most popular amplifier it hasAOL=100000

Page 47: Lecture14 OP Amps

741 Amplifier BJT transistor level schematic

Industrial op-amp

Page 48: Lecture14 OP Amps
Page 49: Lecture14 OP Amps
Page 50: Lecture14 OP Amps
Page 51: Lecture14 OP Amps
Page 52: Lecture14 OP Amps
Page 53: Lecture14 OP Amps
Page 54: Lecture14 OP Amps
Page 55: Lecture14 OP Amps
Page 56: Lecture14 OP Amps
Page 57: Lecture14 OP Amps
Page 58: Lecture14 OP Amps
Page 59: Lecture14 OP Amps
Page 60: Lecture14 OP Amps
Page 61: Lecture14 OP Amps