87
1 Analog and Mixed-Signal VLSI Design Center IOWA STATE UNIVERSITY Role of Op-Amps widely used building blocks for analog circuits widely used in communication circuits Widely used in analog signal processing – critical block for data-converters Widely Used in High Volume ICs – memory read out – Disk-driver reading-writing

Role of Op-Amps

  • Upload
    haines

  • View
    57

  • Download
    1

Embed Size (px)

DESCRIPTION

Role of Op-Amps. widely used building blocks for analog circuits widely used in communication circuits Widely used in analog signal processing critical block for data-converters Widely Used in High Volume ICs memory read out Disk-driver reading-writing. New challenges in Analog Design. - PowerPoint PPT Presentation

Citation preview

Page 1: Role of Op-Amps

1Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Role of Op-Amps

• widely used building blocks for analog circuits

• widely used in communication circuits• Widely used in analog signal processing

– critical block for data-converters• Widely Used in High Volume ICs

– memory read out– Disk-driver reading-writing

Page 2: Role of Op-Amps

2Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

New challenges in Analog Design

• Decreased Supply Voltage• Increased Digital/Analog Interference• Reduced Testability• Increased Parametric Variations

Page 3: Role of Op-Amps

3Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Critical Specifications for Op-Amps

• High DC Gain• High Speed/Large Gain-Bandwidth • Sufficient Output Swing• High power efficiency

Desirable: digital built-in-self-test and self-calibration

Page 4: Role of Op-Amps

4Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Existing structures & Limitations

Cascode AmplifierDC Gain: Modest

Speed: Excellent

Output Swing: Small

Power Efficiency: Good

Vi2

M4

Mb

M1 M1

M3 M3

Vi1

M2 M2

M4

bias1

bias2

bias3

cmfb

Frequency Response: Good

Page 5: Role of Op-Amps

5Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Existing structures & Limitations

Cascaded AmplifierDC Gain: High

Output Swings: Large

Speed: Poor

CP1

CP2

in outA1 A2 A3

Frequency Response: Poor

Page 6: Role of Op-Amps

6Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Existing structures & Limitations

Positive Feedback AmplifierDC Gain: Large

Output Swing: Good

Speed: High

Low Yield

Frequency Response: Good

Vi1 Vi2

Vbn

Vbp Vbp

Vo1 Vo2

Page 7: Role of Op-Amps

7Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Our Objective

• Low Voltage Compatible• High DC Gain• High Speed• Good Output Swing• High Yield• Standard Digital Process Compatible• Good Power Efficiency

Page 8: Role of Op-Amps

8Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Our Approach

• Find new amplifier architectures• Rely on digital logic to enhance

performance• Use simple digital circuit sensing amplifier

performance• Integrate controllability• Use adaptive feedback control

Page 9: Role of Op-Amps

9Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Positive Feedback Gain-Boosting

• Can operate at very low voltages• Can achieve very high DC gain• No compromise in bandwidth• No appreciable power increase• Conventional wisdom has two concerns

– positive feedback leads to RHP poles– gain boosting is limited if requiring robustness w.r.t.

process variations

Page 10: Role of Op-Amps

10Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Our response to the concerns

• positive feedback causes RHP open-loop poles, but do not necessarily cause RHP closed-loop poles!

• RHP open-loop poles can actually improve performance of closed-loop amplifiers!

• F16/F18 fighter jets have open-loop RHP poles, they play critical role in achieving their superior closed-loop performance

• no need for robustness across process variations• use positive feedback pole control after fabrication

Page 11: Role of Op-Amps

11Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Positive Feedback Operational Amplifiers

A(s)

-

+Vin

-

+Vd VoutA(s)

-

+Vin

-

+Vd Vout

Open loop transfer function ps

GBps

pAA(s)

0

Closed-loop transfer function βGBps

GBβA(s)A(s)(s)Af

1

Open-loop pole: Closed-loop pole: βGBppf p

Page 12: Role of Op-Amps

12Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Positive Feedback Amplifier Architecture Exploration

• Some positive feedback amplifier architectures have a dc gain that is much more sensitive to the feedback control variable than others

• Although architecture optimality may be difficult to determine, synthesis techniques may yield better structures than those already considered

• Comparative study of several structures with existing positive feedback structures

Page 13: Role of Op-Amps

13Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

A)(1gggsCg(s)A

dsnds2ds1L

m1v

Vdd

Vi

Vbias1 Vo

M1

M2

AVxx

CL

Mn

AVo

ADC = gm1

gds1+gds2- (A-1)gdsn

As (A-1)gdsn → gds1+gds2,

ADC → ∞ !

Negative Output Conductance Op Amp

Page 14: Role of Op-Amps

14Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Implementation Block Diagram

Bias Generator

CMFB

Vip

Vin Von

VopBasic Amp

2nd stage

Negative Conductance GeneratorVi-

Vi+

2nd stage

First Stage

Page 15: Role of Op-Amps

15Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Basic Amplifier and the Second Stage

Basic amplifier Second stage

VBP

Vin

VCMVBN

Vip

Von Vop

M1

M5

M4M3

M2

M6Vin

M8M9

M7

Vout

Page 16: Role of Op-Amps

16Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Negative Conductance Generator

Vdd

M1

VopVon

Vctrl

AM5

Mg1Mn1

M4

M3 M2

Mn2

M8

M7M6

Mg2

Vi+ Vi-

Vctrl

VXX VXX

Page 17: Role of Op-Amps

17Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Low Gain Stage A

Vin

VBN

Vip

VopMa1

Ma3

Ma2Von

Ma4

Ma8

Ma5

Ma6

Ma7

Ma9

Page 18: Role of Op-Amps

18Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Positive Feedback Amplifier Architecture Exploration

VOUT

VIN

M1

M2

M3

M4

VA

VB

f1(-θ1VA-θ2VB-θ3VOUT)

f2(-θ4VA-θ5VB-θ6VOUT)

f3(-θ7VA-θ8VB-θ9VOUT)

Overhead for realizing this structure can be very small

Page 19: Role of Op-Amps

19Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY 43212122

433343

2221 )(

omoooombm

oombmoo

ombmm

gkggggggggggggg

ggggA

Mb

M1 M1

M3 M3

k

Vi1 Vi2

M2 M2

M4 M4

bias1

bias2

Example positive feedback amp1:

43

212122

433343

om

oooombm

oombmoo

gg

gggggggggggg

k

Gain = infinity

Page 20: Role of Op-Amps

20Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY 2122

12

2122

21

4333

43

2122

2221

oombm

om

oombm

oo

oombm

oo

oombm

ombmm

i

o

gggggkg

gggggg

gggggg

gggggggg

vv

Example positive feedback amp2:

Mb

M1 M1

M3 M3

k

Vi1 Vi2

M2 M2

M4 M4

bias1

bias2

Vo1 Vo2

2122

12

2122

21

4333

43

oombm

om

oombm

oo

oombm

oo

gggggg

gggggg

gggggg

k

Gain = infinity

Page 21: Role of Op-Amps

21Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

M4

Mb

M1 M1

M3 M3

k

Vi1 Vi2

M2 M2

M4

bias1

bias2

422122

321

2122

433343

2221 )(

oooombm

moo

oombm

oombmoo

ombmm

gggggg

gkgggggggggggg

ggggA

Example positive feedback amp3:

2122

423

212122

433343

oombm

oom

oooombm

oombmoo

ggggggg

gggggggggggg

k

Gain = infinity

Page 22: Role of Op-Amps

22Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

M2

M1

M4

Mb

M1

M3 M3

k

Vi1 Vi2

M2

M4

bias1

bias2

314333

243

4333

212221

2221 )(

oooombm

moo

oombm

oombmoo

ombmm

gggggg

gkgggggggggggg

ggggA

Example positive feedback amp4:

314333

2

434333

212221

oooombm

m

oooombm

oombmoo

gggggg

g

gggggggggg

ggk

Gain = infinity

Page 23: Role of Op-Amps

23Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

DC Sweep of amp1 in 0.1um process

-6 -4 -2 0 2 4 6x 10-3

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

differential input(V)

diffe

rent

ial o

utpu

t(V)

A High Gain Positive Feedback Amplifier in 0.1um Process

Page 24: Role of Op-Amps

24Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Preliminary Results: DBISTSC PFAmp

A Digital Programmable Amplifier

Bifurcation in Positive Feedback Amplifier

Simulation and Measurement Results

Page 25: Role of Op-Amps

25Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

A digital controllable Amplifier•Low-Voltage Compatible

3 transistors from VDD to VSS

•High GainAttenuator provides positive feedbacknegative-conductance compensation

•High SpeedSingle Stage

M2 M2

Vi1

Vi2

Vbn

Vo1 Vo2 CL CL

VDD

VSS

Page 26: Role of Op-Amps

26Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Small Signal Linear Equivalence

21 ii VVx

21 oo VVy gopgongmnx

y

xsCL-gmpy

0A=0

opon

mp

ggg

0mpoponL

mn

gggsCgA

Page 27: Role of Op-Amps

27Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Nonlinear Dynamic

04})](1[)(4{ 232 xgyxVVgggy mnSOCMnnnmponoppp

xCgy

CxVVy

Cy

Cggg

yL

mn

L

SOCMnnn

L

pp

L

mponop

4

)](1[4

23

2

Dynamic equation

Equilibrium manifold (DC Transfer)

Page 28: Role of Op-Amps

28Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Amplifier’s DC Characteristics

x

y

0

0.020.021

0.03

Page 29: Role of Op-Amps

29Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

y

-0.1 -0.05 0 0.05 0.1-1.5

-1

-0.5

0

0.5

1

1.5

x

y

0=0.02=0

=0.021

=0.03

L

Amplifier’s DC Characteristics

Page 30: Role of Op-Amps

30Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

0

>0 Hysteresis

No Hysteresis

Decrease L Gain

Hysteresis

Observations

Page 31: Role of Op-Amps

31Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Phase Diagram in Y- Plane

0.017 0.018 0.019 0.02 0.021 0.022 0.023-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0

unstable

stable

stable

stable

yx=0

Page 32: Role of Op-Amps

32Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Phase Diagram in Y- Plane

0.018 0.019 0.02 0.021 0.022 0.023 0.024-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y

y

*x=-0.001

Page 33: Role of Op-Amps

33Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Phase Diagram in Y- Plane

0.018 0.019 0.02 0.021 0.022 0.023 0.024-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

yy

*x=0.001

Page 34: Role of Op-Amps

34Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Observations

>0 Bifurcation

For some given x, 3 solutions for y2 stable and 1 unstableFor some given x, one unique solution for y

0 No Bifurcation

For a given x, one unique solution for y

Page 35: Role of Op-Amps

35Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Pull up/Pull down Circuit

-0.5 0 0.5-1.5

-1

-0.5

0

0.5

1

1.5

x

yDiscontinouity

Stable

Unstable

Stable

pullup pulldown

Page 36: Role of Op-Amps

36Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

-0.5 0 0.5-1.5

-1

-0.5

0

0.5

1

1.5

x

yDiscontinouity

Stable

Unstable

Stable

x

Pull down, stay low

OHOL=10

y

Pull up/Pull Down

Pull up, stay high

Page 37: Role of Op-Amps

37Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

-0.5 0 0.5-1.5

-1

-0.5

0

0.5

1

1.5

x

yDiscontinouity

Stable

Unstable

Stable

x

Pull down, return high

OHOL=11

y

Pull up/Pull Down

Pull up, stay high

Page 38: Role of Op-Amps

38Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

-0.5 0 0.5-1.5

-1

-0.5

0

0.5

1

1.5

x

yDiscontinouity

Stable

Unstable

Stable

x

Pull down, stay low

OHOL=00

y

Pull up/Pull Down

Pull up, return low

Page 39: Role of Op-Amps

39Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Sensing Processpull up

release

record OH

pull down

release

record OL

OHOL=?

no bifurcation bifurcation detected

11/00 10

Page 40: Role of Op-Amps

40Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Linear MOS Attenuator

111 k1.

3. controlled by Aspect Ratio Vo

M2

M1

Vi

W2/L2

W1/L1

2211

221 //

/LWLW

LW

2.

4. k controlled by Aspect Ratio

5. Infinite input impedance at DC

Page 41: Role of Op-Amps

41Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Adaptively Controllable Attenuator

M2

M1

M4

M3

M6

M5

d6 d0

1.Quiescent-voltage shifting

)11( 132 kk2.

3.Decreased Sensitivity to transistor size change

m4.

: input code <d6…d0>

Page 42: Role of Op-Amps

42Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Programmable Attenuation

0 20 40 60 80 100 120 1400.016

0.017

0.018

0.019

0.02

0.021

0.022

input

atte

nuat

ion

Page 43: Role of Op-Amps

43Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Gain Enhancement Requirement

mpm

mng

gA)]([ 0

||1

A

Gain is related to controllable Attenuator

Required Attenuator Control Code

Achievable Gain Lower Bound

mm or 02

01 ,

Page 44: Role of Op-Amps

44Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Design Specification for Attenuator DAC

1. Sufficient Coverage)2()0( 1

max0min0N

2. Fine Resolution

specAN

1)}()1({max120 1

3. DAC Size

min0max012 N

Page 45: Role of Op-Amps

45Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Effect of Offset on Sensing

-0.1 -0.05 0 0.05 0.1-1.5

-1

-0.5

0

0.5

1

1.5

x

y

offset

O

Page 46: Role of Op-Amps

46Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Offset Compensated Sensing Circuit

pull up pull down

VICM

DACcomparator O

Page 47: Role of Op-Amps

47Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Design Specifications for input DAC

1. Sufficient Coverage)2()0( 2

maxminNOffsetOffset

2. Fine Resolution

specLN

)}()1({max120 2

3. DAC Size

spec

NL

OffsetOffset minmax22

Page 48: Role of Op-Amps

48Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Design Specifications

y

-0.1 -0.05 0 0.05 0.1-1.5

-1

-0.5

0

0.5

1

1.5

x

y

=0.021

Lspec

Aspec:80dB

Lspec:20V

N2 12

:0.0001

offset variation:50mV

0variation:0.006N16

Page 49: Role of Op-Amps

49Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Combined Sensing and Control Logic

• Implement with inexpensive digital logic• Time-efficient processing• Accomplish offset compensation• Realize optimal control code searching• Adaptive feedback control

Page 50: Role of Op-Amps

50Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Functional Block Diagram

pull up pull down

VICM

ComparatorO

branching parameter controland offset cancellation

DAC

cal/un

Page 51: Role of Op-Amps

51Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Nested attenuation/bifurcation control

initialize

=(L+H)/2

bifurcation detection

Bifurcation?

L=H=

no

: Attenuator DAC input

yes no

step=N1?yes

finish searching

inner loop

Page 52: Role of Op-Amps

52Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Bifurcation Detection Algorithm

initialize

=(L+H)/2

Pull-up/Down

OHOL=? bifurcationdetected

H=

: Input of offset compensation DAC

00 10

break L= 11

no2N2+1input codes

step=N2?yes

break withoutbifurcation

Page 53: Role of Op-Amps

53Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Convergence Proof

Conditions on offset-DAC range guarantee initial conditions:

H

()

x

offset

L

at step 01.When =L=0, OHOL=112.When =H=2N2,

OHOL=003. (L)< offset (H)4. H-L=2N2

Page 54: Role of Op-Amps

54Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Convergence Proof (Continue)• at step k+1,

=(L+ H)/2, pull up/down

– if OHOL=10, bifurcation is detected, break

– if OHOL=11, ()<offset, let L=

– if OHOL=00, ()offset, let H= – if bifurcation is not detected, continue.

• then (L)< offset (H) H - L=2N2-(k+1)

– At L, OHOL=11; at H ,OHOL=00• This iteration ends either with ‘bifurcation detected’ or ‘step=N2’

without bifurcation.

Page 55: Role of Op-Amps

55Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Convergence Proof (Continue)• If step=N2, H-L=1 (L)< offset (H)

• when =L, OHOL=11, (L)< lower bound of hysteresis

• when =H, OHOL=00, (H)> up bound of hysteresis

• Lhys>(H)- (L)offset

(L) (H)

potential

hysteresis width

x

lower bound up boundLhys

Page 56: Role of Op-Amps

56Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Convergence Proof (Attenuator)

L

H

0 128

control code

Converge tobifurcation

nobifurcation

0

L L+1

Conditions on -DAC range guarantee initial conditions:at step 01.When = L=0, no bifurcation

2.When = H=2N1, bifurcation

3. (L)0< (H)4. H- L=2N1

Page 57: Role of Op-Amps

57Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Convergence Proof (Attenuator)•step k+1: (L)0< (H), H- L=2N2-k •let =(L+ H)/2, do ‘bifurcation detection’•if bifurcation is detected, ()> 0 ,let H= •else let L= •at both situations, (L)0< (H), H- L=2N1-k-1

Page 58: Role of Op-Amps

58Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Convergence Proof (Attenuator)

• This iteration ends with no bifurcation and finds an optimal control code L

spec

Lachieved

AN

1)}()1({max

)(

120

0

1

• Aachieved Aspec

(L) (H)

0

Page 59: Role of Op-Amps

59Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Simulation Environment• Ami 0.5um CMOS (most)• Cadence

– Spectre (simulator)– Hspice (simulator)– SpectreVerilog (simulator)– Analog Artist– Schematic– Virtuoso (layout tool)– SEDSM (Floor-plan /Route )

• Synopsys

Page 60: Role of Op-Amps

60Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Simulation Results

0 50 100 150 200 2500

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

DAC input (MSB)

Volta

ge

Offset Compensation DAC Characteristics

16-b R-1.8R DAC=5V<Lspe

c

Page 61: Role of Op-Amps

61Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

M2

M1

M4

M3

M6

M5

d6 d0

Page 62: Role of Op-Amps

62Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Digitally controlled PF Amplifier

+ -

cmfb

- +

VDD

VSS

+

-

-

+

A1

+ -

cmfb

- +

VDD

VSS

Vbp

+

-

-

+A2

Page 63: Role of Op-Amps

63Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Two Stage Amplifier

PU PDA1 A2

vi1

vi2

vop

von

vo1

vo2

vi1

vi2

PU

PD

vo1

vo2

vop

von

Amp

Page 64: Role of Op-Amps

64Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

R-2R DAC

DAC

R-2R

ground

reference

2R 2R 2R 2R 2R 1.9R

R R 0.94R

Matched 2R-R

For K LSBDesigned 2R-xR

For N-K MSB

X<1LSB MSB

0 1 N-2 N-1

ground

reference

2R 2R 2R 2R 2R 1.9R

R R 0.94R

Matched 2R-R

For K LSBDesigned 2R-xR

For N-K MSB

X<1

ground

reference

2R 2R 2R 2R 2R 1.9R

R R 0.94R

ground

reference

2R 2R 2R 2R 2R 1.9R

R R 0.94R

Matched 2R-R

For K LSBDesigned 2R-xR

For N-K MSB

X<1

output

LSBLSB MSBMSB

0 1 N-2 N-1

Page 65: Role of Op-Amps

65Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Two way switch

00

VHVL

VoVo

VH

VL

Page 66: Role of Op-Amps

66Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Comparator

Vin+ Vin-

latch

M1 M2Vin+ Vin-

latch

Vin+ Vin-

latch

M1 M2

Vout Comparator

Page 67: Role of Op-Amps

67Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Self-Calibrated High Gain Amplifier

vi1

vi2

PU

PD

vo1

vo2

vop

von

DACcode

calibr

PU

PD

vcm

DS

CLK

RN

controller Amp Comparator

16-bit R-2R

Page 68: Role of Op-Amps

68Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Algorithm for Controller

• Step 1: Initialize • Step 2: Sweep input• Step 3: Use pull-up/down method to detect hysteresis• Step 4: if hysteresis exists, decrease ; else increase • Step 5: if is very close to 0, finish; else goto step 2

Page 69: Role of Op-Amps

69Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Offset Compensation DAC

Attenuator Control DAC

32768 16384 24576 16384 28672 25578 24577

No Bifurcation

64 32 48 52 50 49 48

yesbifurcation: no no yes yes yesMax searching time: 7x16 cycles

Searching Process

Page 70: Role of Op-Amps

70Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Bifurcation Simulation

pull up

OH=1

pull down

OL=0

x=0

Page 71: Role of Op-Amps

71Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Pull-up/Pull Down

pull up

OH=1

pull down

OL=1

x=-0.1mV

Page 72: Role of Op-Amps

72Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

AC Response

50dB gain enhancement

Page 73: Role of Op-Amps

73Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Step Response

1.8 2 2.2 2.4 2.6 2.8x 10-7

-0.1

-0.05

0

0.05

0.1

time

outp

ut(V

)

before calibrationafter calibration

Page 74: Role of Op-Amps

74Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Step Response

2.28 2.3 2.32 2.34 2.36 2.38x 10-7

0.0988

0.099

0.0992

0.0994

0.0996

0.0998

0.1

time

outp

ut(V

)

before calibrationafter calibration

Significant Settling

accuracy Improvement

Page 75: Role of Op-Amps

75Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Robustness Over Temperature

-40 -20 0 20 40 60 80 10050

60

70

80

90

100

110

temperature(C)

DC

Gai

ns (d

B)

No temperature compesation

With Temperature Compensation

Page 76: Role of Op-Amps

76Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Simulated Performance in 90nm CMOS

Easy Migration

Page 77: Role of Op-Amps

77Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

One Fabricated Amplifier’s Performance

Tab. 1 Simulated DC gain over wide temperature range

Gain (dB)

SS SF FS FF NN

0°C 84 85 72 92 103

27°C 82.2

89 84 85 110

80°C 70.4

84.5

83.7

89 88

AMI 0.5um CMOS

Tab. 2 Measured DC gain of fabricated chipsChip #

1#2 #3 #4 #5

Gain (dB)

90 87.6

89.3

84.5

86.5

manual tuning

Page 78: Role of Op-Amps

78Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Two-Stage to enhance linearity

Mb

M1 M1

M3 M3

k

Vi1 Vi2

M2 M2

M4 M4

bias1

bias2

CMFB1

CMFB2

Page 79: Role of Op-Amps

79Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Two stage amp DC Sweep

-2 -1 0 1 2x 10-4

-1

-0.5

0

0.5

1

differential inputs(V)

diffe

rent

ial o

utpu

ts(V

)

Page 80: Role of Op-Amps

80Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Two stage Gain vs Vout

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1110

120

130

140

150

160

170

180

differential outputs(V)

Gai

n(dB

)

Equivalent Gain Plot

>130dBover +- 0.75V

Page 81: Role of Op-Amps

81Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Amplifier performance summary

• Berkeley projected 90nm process• power supply voltage Vdd=1.1 • two stage total current Itot=18ma• Total power consumption Ptot=20mw• Capacitive load CL=4p • Unity gain frequency UGF = 1.35GHz• Phase margin at UGF = 39 deg• Frequency at gain 2: G2F = 804MHz • Phase margin at G2F = 65 deg

Page 82: Role of Op-Amps

82Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Switched-Capacitor Amplifier

Vout

S1C1

C2

S2

S3

S4

S1

C1

S2

S5Vin

S4

S3

pos

neg

Vicm

Vicm

C3

Precision Multiply-by-Two Circuit

Page 83: Role of Op-Amps

83Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

100 MS/s

60% swing:0.3Vdiff

Settlingaccuracy:8.9e-4=10.1 bits

Transient Simulation Results

Page 84: Role of Op-Amps

84Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

100 MS/s

full swing0.5Vdiff

Settlingaccuracy:0.0013=9.6 bits

Transient Simulation Results

Page 85: Role of Op-Amps

85Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

80 MS/s

60% swing0.3Vdiff

Settlingaccuracy:2.1e-4=12.24 bits

Transient Simulation Results

Page 86: Role of Op-Amps

86Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Transient Simulation Results

input=0.25V

output=0.499969V

40 MS/s

Settling accuracy:3.1e-5/0.5=6.2e-5=14.0 bits

Page 87: Role of Op-Amps

87Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY

Transient Simulation Results

input=0.25V

output=0.499994V

10 MS/s

Settling accuracy:6e-6/0.5=1.2e-5=16.3 bits