Pushover Example Large

Embed Size (px)

Citation preview

  • 8/13/2019 Pushover Example Large

    1/39

    CE 58A - PUSHOVER ANALYSIS HANDOUT #11

    1

     

    INCREMENTAL PUSHOVER ANALYSIS FOR SEISMIC

    PERFORMANCE ASSESSMENT

    EXAMPLE OF INCREMENTAL PUSHOVER ANALYSIS TO ASSESS

    THE PERFORMANCE OF AN EXISTING REINFORCED CONCRETE

    FRAME: (TDY–2007 APPROACH)

    7 m

    3.5 m

    P1 

    P2 

    7 m

    3.5 m

    B101 B102

    B201 B202

       C   1   0   1

       C   1   0   2

       C   1   0   3

       C   2   0   1

       C   2   0   2

       C   2   0   3

  • 8/13/2019 Pushover Example Large

    2/39

     

    2

     •  COLUMNS : 450 mm x 450 mm WITH 8-φ22

    φ8 STIRRUPS AT A SPACING OF 200 mm PROVIDED ALONGTHE ENTIRE LENGTH OF THE COLUMNS.

    •  BEAMS : 450 mm x 600 mm WITH 3-φ22 AT THE TOP

    3-φ22 AT THE BOTTOM

    φ8 STIRRUPS AT A SPACING OF 150 mm PROVIDED ALONG

    THE ENTIRE LENGTH OF THE BEAMS.

    •  CONCRETE COVER : CLEAR COVER = 20 MM

    COVER TO THE CENTER OF LONGITUDINAL

    REINFORCEMENT = 20 MM + φ8 + (φ22)/2 = 39 MM

    TAKE COVER TO THE CENTER OF

    LONGITUDINAL REINFORCEMENT AS 40 mm FOR

    BOTH THE BEAMS AND THE COLUMNS

    (NOTE: TOP AND BOTTOM REINFORCEMENT IN THE BEAMS IS ASSUMED

    EQUAL IN ORDER TO SIMPLIFY THE ANALYSIS (Mult+ = Mult

    -). TYPICALLY,

    THE AMOUNT OF TOP REINFORCEMENT WOULD BE LARGER SINCE

    NEGATIVE MOMENTS RESULTING FROM BOTH GRAVITY AND

    EARTHQUAKE LOADS NEED TO BE RESISTED AT THE BEAM/COLUMN

    JOINTS)

    •  MATERIALS : C20 CONCRETE

    S420 STEEL (FOR BOTH LONGITUDINAL AND

    TRANSVERSE REINFORCEMENT)

  • 8/13/2019 Pushover Example Large

    3/39

     

    3

    •  BUILDING : OFFICE BUILDING LOCATED IN SEISMIC ZONE 1

    LOCAL SOIL CLASS: Z2

    •  LOADS : DEAD LOAD (SELF WEIGHT) : G = 20 kN/m

    LIVE LOAD : Q = 10 kN/m

    (DISTRIBUTED LOAD ON THE BEAMS)

    (NOTE: IF GIVEN THE PLAN VIEW OF THE BUILDING, NEED TO CALCULATE

    THE DISTRIBUTED DEAD AND LIVE LOAD PER UNIT LENGTH ON THE

    BEAMS, BASED ON THE TRIBUTARY WIDTH OF EACH BEAM AND THE DEAD

     AND LIVE LOAD VALUES DISTRIBUTED OVER THE FLOOR AREA)

    •  RESPONSE SPECTRUM VARIABLES (TDY-2007):

    EQ Zone

    Soil Type

    Spectral Acceleration Coefficient

    Spectral Acceleration

  • 8/13/2019 Pushover Example Large

    4/39

     

    4

    •  SEISMIC ZONE 1 : A0 = 0.40

    LOCAL SOIL TYPE Z2 : T A = 0.15 sec TB = 0.40 sec

    BUILDING IMPORTANCE COEFFICIENT: ALWAYS TAKE BUILDING IMPORTANCE COEFFICIENT AS

    I = 1.0 FOR ASSESSMENT OF EXISTING BUILDINGS USING

    PUSHOVER ANALYSIS METHOD (SECTION 7.4.2 IN TDY-2007)

    •  STORY MASSES (TDY-2007):

    SHALL BE DEFINED IN ACCORDANCE WITH STORY WEIGHTS DEFINED

    IN SECTION 2.7.1.2:

    THEREFORE, wi = (20 kN/m)(14 m) + (0.30)(10 kN/m)(14 m)

    = (20 kN/m)(14 m) + (3 kN/m)(14 m)

    = (23 kN/m)(14 m)

    = 322 kN

    STORY WEIGHTS :  wi = 322 kN (ON SINGLE FRAME)

    STORY MASSES : mi = wi / g  = (322 x 103 N) / (9.81 m/s2)

    mi = 32,823 kg = 33 tons (ON SINGLE FRAME)

    Live load participation factors (n)

    Storage facilities

    Schools, dorms, sports facilities, theatres, concert halls, garages, restaurants,

    stores, etc.

    Building Type and Function

    Residental buildings, office buildings, hotels, hospitals, etc.

  • 8/13/2019 Pushover Example Large

    5/39

     

    5

    •  SECTION STIFFNESS (TDY-2007):

    FOR C20 : Ec 28 = 28,000 MPA

    FOR ALL BEAMS :  I 0 = (1/12)(0.450 m)(0.600 mm)3 = 0.0081 m4 

     EI 0 = 226800 kN.m2

     EI  = 0.40( EI 0)

    FOR COLUMNS : Acf cm = (0.45 m)(0.45 m)(20x103 kN/m2)

    = 4050 kN

     ASSUME INTERIOR COLUMNS RESIST 50% OF THE

    TOTAL VERTICAL LOAD, WHEREAS EACH EXTERIOR

    COLUMN RESISTS 25% OF THE TOTAL VERTICAL

    LOAD AT EACH STORY.

    (SINCE THE TRIBUTARY AREA OF THE INTERIOR

    COLUMNS ARE TWICE OF THE EXTERIOR COLUMNS)

    Use cracked section stiffness when modeling the structure ND : axial load under vertical loads only (service loads)

    Interpolation between 0.40EI 0  – 0.80EI 0  for intermediate valuesof axial load

    f cm : existing concrete compressive strength (no material

    factor)

    (Beams)

    (Columns,

    Shear Walls)

  • 8/13/2019 Pushover Example Large

    6/39

     

    6

     

    STORY WEIGHT = 322 kN ( FROM g + 0.30q )

    THEREFORE:C201 AND C203 : (ND/ Acf cm) = [(0.25)(322 kN)]/(4050 kN)] = 0.02

    C202 : (ND/ Acf cm) = [(0.50)(322 kN)]/(4050 kN)] = 0.04

    C101 AND C103 : (ND/ Acf cm) = [(0.25)(2 x 322 kN)]/(4050 kN)] = 0.04

    C102 : (ND/ Acf cm) = [(0.50)(2 x 322 kN)]/(4050 kN)] = 0.08

    SECTION STIFFNESS COEFFICIENTS:

    USE EI  = 0.40( EI 0) FOR ALL COLUMNS

    Ec 28 = 28,000 MPA

     I 0 = (1/12)(0.450 m)(0.450 mm)3 = 0.00342 m4 

     EI 0 = 95800 kN.m2

    7 m

    3.5 m

    P1 

    P2 

    7 m

    3.5 m

    B101 B102

    B201 B202

       C   1   0   1

       C   1   0   2

       C

       1   0   3

       C   2   0   1

       C   2   0   2

       C   2   0   3

  • 8/13/2019 Pushover Example Large

    7/39

  • 8/13/2019 Pushover Example Large

    8/39

     

    8

    • PLASTIC MOMENT CAPACITIES FOR COMPUTER MODELING: 

    CAN USE THE PROGRAM BETONARME TO DERIVE THE MOMENT-

    CURVATURE RELATIONSHIPS FOR THE BEAMS AND THE P-M

    INTERACTION DIAGRAMS FOR THE COLUMNS:

    (http://www.ce.metu.edu.tr/betonarme)

    •  BEAMS : 450 mm x 600 mm WITH 3-φ22 AT THE TOP

    3-φ22 AT THE BOTTOM

    φ8 STIRRUPS AT A SPACING OF 150 mm PROVIDED ALONGTHE ENTIRE LENGTH OF THE BEAMS.

    COVER TO THE CENTER OF LONGITUDINAL

    REINFORCEMENT = 40 mm

    Eksenel    b h d   C c

    Yük    f ck   γmc   f yk   f u   γms   E s   εsh   εsu   (mm) (mm) (mm) (mm)

    (Basınç +) 450 600 560 20

    (kN)   (MPa) (MPa) (MPa) (MPa)

    0,00 20,00 1,00 420 600 1 200.000 0,01 0,1

    No.   φ   Adet Alan

    (mm)   (mm2)

    1 22 3 1140

    2 22 3 1140

    3

    4

    5

    6

    7

    8

    9

    10

    f yw   (MPa) 420

    φe   (mm) 8

    s   (mm) 150

    bk   (mm) 4 02

    hk   (mm) 5 52

    b'k   (mm) 402

    h'k   (mm) 552

    ess   1

    ETR İ YE Bİ LG İ LER İ 

    M om

    ent  E ğ r i l i k  P r 

    og r amı 

    (mm)

    MALZEME ÖZELLİ KLER İ Beton

    -260

    260

    Uzaklık

    BETON KES İ T 

    BOYUNA DONATI DÜZENLEMES İ Kesit Merkezine

    Boyuna Donatı

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0,0000 0,0500 0,1000 0,1500 0,2000 0,2500

    E ğ rilik (rad/m)

         M    o    m    e    n     t

          (      k      N .    m

          )

    HESAPLA

     

     YIELD MOMENT My = 250 kN.m

     YIELD CURVATURE y = 0.008 rad/m

  • 8/13/2019 Pushover Example Large

    9/39

     

    9

    •  COLUMNS : 450 mm x 450 mm WITH 8-φ22

    φ8 STIRRUPS AT A SPACING OF 200 mm PROVIDED

     ALONG THE ENTIRE LENGTH OF THE COLUMNS.COVER TO THE CENTER OF LONGITUDINAL

    REINFORCEMENT = 40 mm

     f ck    γ mc  f  yk    γ ms  E  s

    (MPa) (MPa) (MPa)

    20 1,00 420 1,00 200.000

    Geni şlik

    (b)

    Yükseklik

    (h)

    (mm) (mm)

    450 450

     No. Donat ı Alanı

     Kesit

     Merkezinden

    Uzakl ık (x i )

     (mm2 ) (mm)

    1 1140 -185

    2 760 0 N (kN):   0,03 1140 185 M (kN.m):   240,34

    5

     BETON ve ÇEL İ  K MODELLER İ 

     DONATI DÜZENLEMES  İ 

    Dİ K DÖ R T G E N  K E S İ T  

     AN 

     A

    Lİ Z İ 

     KES  İ T GEOMETR İ  S  İ 

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    0 50 100 150 200 250 300 350 400

     Moment, M (kN.m)

       E   k  s  e  n  e   l   Y   ü   k ,

       P   (   k   N   )

    BU PROGRAMDA:

    1) Betonun çekme dayanı ihmal edilmektedir.

    2) Beton basınç dağılımı dikdörtgen alınmaktadır.

    3) Çelik modelinde pekleşme ihmal edilmektedir.

    4) Sargı etkisi göz önüne alınmamaktadır.

    (+) xi

    (-) xi

     

    NOTE THAT WE NEED THE P-M INTERACTION CURVES FOR THE

    COLUMNS SINCE THE AXIAL LOAD ON EACH COLUMN IS NOT THE

    SAME AND ALSO SINCE THE AXIAL LOAD WILL CHANGE WHEN

    LATERAL LOADS ARE APPLIED.

    CAN ALSO RUN MOMENT-CURVATURE ANALYSES FOR THE COLUMNS

    TO CHECK (TO COMPARE THE RESULTS OF THE P-M INTERACTION

     ANALYSES WITH THE RESULTS OF THE MOMENT-CURVATURE

     ANALYSES)

  • 8/13/2019 Pushover Example Large

    10/39

     

    10

      FOR EXAMPLE, FOR COLUMN C102, THE AXIAL LOAD DUE TO

    VERTICAL LOADS ONLY IS ND  = [(0.50)(2x322 kN)] = 322 kN.

     f ck    γ mc  f  yk    γ ms  E  s

    (MPa) (MPa) (MPa)

    20 1,00 420 1,00 200.000

    Geni şlik

    (b)

    Yükseklik

    (h)

    (mm) (mm)

    450 450

     No. Donat ı Alanı

     Kesit

     Merkezinden

    Uzakl ık (x i ) (mm

    2 ) (mm)

    1 1140 -185

    2 760 0 N (kN):   322,03 1140 185 M (kN.m):   292,14

    5

     BETON ve ÇEL İ  K MODELLER

     İ 

     DONATI DÜZENLEMES  İ 

    Dİ 

    K DÖ R T G E N  K E S İ 

    T  

     AN 

     ALİ 

    Z İ 

     KES  İ T GEOMETR İ  S  İ 

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    0 50 100 150 200 250 300 350 400

     Moment, M (kN.m)

       E   k  s  e

      n  e   l   Y   ü   k ,

       P   (   k   N   )

    BU PROGRAMDA:

    1) Betonun çekme dayanı ihmal edilmektedir.

    2) Beton basınç dağılımı dikdörtgen alınmaktadır.

    3) Çelik modelinde pekleşme ihmal edilmektedir.

    4) Sargı etkisi göz önüne alınmamaktadır.

    (+) xi

    (-) xi

     

    FROM P-M INTERACTION ANALYSIS: Mult = 292 kN.m FOR N = 322 kN.

    Eksenel    b h d   C c

    Yük    f ck   γmc   f yk   f u   γms   E s   εsh   εsu   (mm) (mm) (mm) (mm)

    (Basınç +) 450 450 410 20

    (kN)   (MPa) (MPa) (MPa) (MPa)

    322,00 20,00 1,00 420 420 1 200.000 0,01 0,1

    No.   φ   Adet Alan

    (mm)   (mm2)

    1 22 3 1140

    2 22 2 760

    3 22 3 1140

    4

    5

    6

    7

    8

    9

    10

    f yw   (MPa) 420

    φe   (mm) 8

    s   (mm) 200

    bk   (mm) 402

    hk   (mm) 402

    b'k   (mm) 402

    h'k   (mm) 402

    ess   1

    ETR İ YE Bİ LG İ LER İ 

    185

    M o

    ment  E ğ r i l i k  P 

    r og r amı 

    (mm)

    MALZEME ÖZELLİ KLER İ Beton

    -185

    0

    Uzaklık

    BETON KES İ T 

    BOYUNA DONATI DÜZENLEMES İ Kesit Merkezine

    Boyuna Donatı

    0

    50

    100

    150

    200

    250

    300

    350

    0,0000 0,0500 0,1000 0,1500

    E ğ rilik (rad/m)

         M    o    m    e    n     t

          (      k      N .    m

          )

    HESAPLA

     

    FROM MOMENT-CURVATURE ANALYSIS: My = 291 Kn.m for N=322 kN

    (CHECK OK)

  • 8/13/2019 Pushover Example Large

    11/39

     

    11

      NOTE:  DO NOT USE MATERIAL FACTORS IN THE MOMENT-

    CURVATURE OF P-M INTERACTION ANALYSES FOR

     ASSESSMENT OF EXISTING BUILDINGS.

    (ALWAYS TAKE γmc =1 AND γms = 1 IN THE PROGRAMS)

    CAN LINEARIZE THE P-M INTERACTION DIAGRAM FOR THE COLUMNS

    (FOR EASY INPUT INTO THE STRUCTURAL ANALYSIS PROGRAM):

    N = 4650 kN (COMPRESSION): M = 0 kN.m (PURE COMPRESSION)

    N = 1500 kN (COMPRESSION): M = 370 kN.m (BALANCED POINT)

    N = 0 kN : M = 240 kN.m (PURE BENDING)

    N = 1275 kN (TENSION) : M = 0 kN.m (PURE TENSION)

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    0 50 100 150 200 250 300 350 400

     Moment, M (kN.m)

       E   k  s  e  n  e   l   Y   ü   k ,

       P   (   k   N   )

  • 8/13/2019 Pushover Example Large

    12/39

     

    12

    • COMPUTER MODELING USING SAP2000: 

    •  NEED TO DETERMINE THE PERIODS OF VIBRATION, THE MODE

    SHAPES OF VIBRATION, AND THE PUSHOVER CURVE TO PROCEED

    WITH THE PUSHOVER ANALYSIS.

    •  SET UP THE MODEL FOR THE FRAME USING CENTER-TO-CENTER

    DIMENSIONS BETWEEN THE BEAMS AND COLUMNS.

    •  ASSIGN FIXED ENDS AT THE BOTTOM (RESTRAINTS)

    •  DEFINE MATERIALS:

    o  CONC:

    MASS AND WEIGHT PER UNIT VOLUME = 0

    MODULUS OF ELASTICITY = 28000000 kN/m2 

    POISSON’S RATION = 0.2

    •  DEFINE FRAME SECTIONS:

    o  ADD RECTANGULAR: BEAM  (FOR ALL BEAMS)0.45 m x 0.60 m

    MATERIAL: CONC

    SET MODIFIERS:

    0.40 FOR MOMENT OF INERTIA ABOUT 2 AND 3 AXES

    0 FOR MASS AND WEIGHT

    LARGE VALUE (E.G., 1000000) FOR CROSS-SECTIONAL AREA,SHEAR AREAS, AND TORSIONAL CONSTANT

    o  ADD RECTANGULAR: COLUMN (FOR ALL COLUMNS)

    0.45 m x 0.45 m

    MATERIAL: CONC

    SET MODIFIERS:

    0.40 FOR MOMENT OF INERTIA ABOUT 2 AND 3 AXES

  • 8/13/2019 Pushover Example Large

    13/39

     

    13

      0 FOR MASS AND WEIGHT

    LARGE VALUE (E.G., 1000000) FOR CROSS-SECTIONAL AREA,

    SHEAR AREAS, AND TORSIONAL CONSTANT• ASSIGN FRAME SECTIONS

    • ASSIGN END (LENGTH) OFFSETS TO THE BEAMS AND COLUMNS:

    (FOR RIGID BEAM-COLUMN JOINTS)

    o  FIRST STORY COLUMNS: 

    END I : 0

    END J : 0.3 m

    RIGID ZONE FACTOR : 1 

    o  SECOND STORY COLUMNS: 

    END I : 0.3 m

    END J : 0.3 m

    RIGID ZONE FACTOR : 1

    o  ALL BEAMS: 

    END I : 0.225 m

    END J : 0.225 m

    RIGID ZONE FACTOR : 1

    •  ASSIGN JOINT MASSES:

    MASSES WILL BE DEFINED ONLY IN LATERAL DIRECTIONS.

    SINCE THE BEAMS ARE AXIALLY RIGID (INFINITE CROSS-SECTIONAL

     AREA, IT DOES NOT MATTER WHICH JOINT YOU ASSIGN THE MASSIN A PARTICULAR STORY.

    THEREFORE, CAN ASSIGN THE MASSES AT THE INTERIOR BEAM-

    COLUMN JOINTS AT EACH STORY.

    o  ASSIGN MASSES IN DIRECTION 2: (322 kN) / (9.81 m/sec2)

    = 33 kN.sec2/m (33 tons)

  • 8/13/2019 Pushover Example Large

    14/39

     

    14

    •  AT THIS POINT, CAN RUN A MODAL ANALYSIS TO DETERMINE THE

    NATURAL PERIODS OF VIBRATION AND MODE SHAPES OF

    VIBRATION

    o  DEFINE ANALYSIS CASE: MODAL 

    o  ANALYSIS CASE TYPE: MODAL 

    o  TYPES OF MODES: EIGEN VECTORS 

    o  START FROM UNSTRESSED STATE 

    •  ANALYZE: RUN ANALYSISo  CASE NAME: MODAL 

    o  RESULTS: 

      MODE 1: 

    T1 = 0.373 sec

    MODE SHAPE VECTOR: φ1 = {0.0841, 0.1524}T 

    (CAN OBTAIN FROM DEFORMED SHAPE)

      MODE 2: 

    T2 = 0.113 sec

    MODE SHAPE VECTOR: φ2 = {-0.1524, 0.0841}T 

    o  NOTE THAT THE MODE SHAPES GIVEN ARE MASS NORMAL: 

    [ ]1 2

    1

    2

    0.0841 0.1524

    0.1524 0.0841

    0 33 0

    0 0 33

    1 0

    0 1

    mm

    m

    m

    φ φ −⎡ ⎤

    Φ = =⎢ ⎥⎣ ⎦

    ⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥

    ⎣ ⎦⎣ ⎦

    ⎡ ⎤Φ Φ = ⎢ ⎥

    ⎣ ⎦

     

  • 8/13/2019 Pushover Example Large

    15/39

     

    15

    •  RECALL (TDY-2007):

    BACK TO THE SAP2000 MODEL

    •  DEFINE LOAD CASES:

    o  LOAD NAME: GRAVITY TYPE: DEAD, SELF WEIGHT

    MULTIPLIER = 1

    o  LOAD NAME: LATERAL TYPE: QUAKE, SELF WEIGHT

    MULTIPLIER = 1, AUTO LATERAL LOAD: NONE

    •  ASSIGN FRAME LOADS ON ALL BEAMS:

    o  DISTRIBUTED

    o  LOAD CASE NAME: GRAVITY

    o  COORD SYS: GLOBAL

    o  DIRECTION: Zo  UNIFORM LOAD = g + nq = -[(20 kN/m)+(0.3)(10 kN/m)]= -23 kN/m

    •  ASSIGN LATERAL LOADS AT STORY LEVELS 

    o  SINCE THE BEAMS ARE AXIALLY RIGID (INFINITE CROSS-

    SECTIONALAREA, IT DOES NOT MATTER WHICH JOINT YOU

     ASSIGN THE LATERAL LOADS AT A PARTICULAR STORY.

    During the pushover analysis, the distribution (pattern) of

    lateral story forces acting on the building can be assumed to

    be constant

    The distribution of the lateral story forces shall be proportional

    to the product of the mass of each story and the amplitude ofthe first mode shape of vibration of that story.

  • 8/13/2019 Pushover Example Large

    16/39

     

    16

    THEREFORE, CAN ASSIGN THE LATERAL LOADS AT THE

    EXTERIOR BEAM-COLUMN JOINTS AT EACH STORY.

    o  ASSIGN JOINT LOADS: FORCESo  LOAD CASE NAME: LATERAL

    o  COORDINATE SYSTEM: GLOBAL

    o  LATERAL LOADS SHOULD BE PROPORTIONAL TO THE

    PRODUCT OF THE STORY MASS AND THE AMPLITUDE OF

    THE FIRST MODE SHAPE AT THAT STORY (TDY-2007).

    o  STORY MASSES ARE EQUAL IN THE PRESENT EXAMPLE,

    THEREFORE, THE LATERAL LOADS WILL BE PROPORTIONAL

    TO THE FIRST MODE SHAPE.

    o  FIRST MODE SHAPE: φ1 = {0.0841, 0.1524}T 

    o  0.1524 / 0.0841 = 1.81

    o  THEREFORE, ASSIGN A FORCE GLOBAL Z OF 1 kN AT THE

    FIRST STORY EXTERIOR JOINT AND A FORCE FLOBAL Z OF

    1.81 kN AT THE SECOND STORY EXTERIOR JOINT.

    •  DEFINE PLASTIC HINGES: 

    o  DEFINE: HINGE PROPERTIES

    FOR BEAMS:

    o  ADD NEW PROPERTY

    o  HINGE PROPERTY NAME: BEAMHINGE

    o  DEFORMATION CONTROLLED

    o  MOMENT M3

    o  MODIFY/SHOW PROPERTY

    o  MOMENT SF = My = 250 kN.m

  • 8/13/2019 Pushover Example Large

    17/39

     

    17

    o  CURVATURE = φy = 0.008 rad/m

    o  TYPE: MOMENT-CURVATURE

    o  HINGE LENGTH = 0.3 m (h/2 FOR THE BEAM)

    o  DO NOT CHECK RELATIVE LENGTH

    o  DISPLACEMENT CONTROL PARAMETERS:

      CHECK SYMMETRIC

      MOMENT/SF CURVATURE/SF

    1 0

    1 50 (ANY LARGE VALUE)0.2 50 (SUDDEN DROP)

    0.2 60 (RESIDUAL)

      LOAD CARRYING CAPACITY BEYOND POINT E DROPS

    TO ZERO

    FOR COLUMNS:

    o  ADD NEW PROPERTY

    o  HINGE PROPERTY NAME: COLUMNHINGE

    o  DEFORMATION CONTROLLED

    o  INTERACTING P-M3

    o  MODIFY/SHOW HINGE PROPERTY

    o  MOMENT-CURVATURE TYPE

    o  HINGE LENGTH = 0.225 m (h/2 FOR THE COLUMN)o  DO NOT CHECK RELATIVE LENGTH

    o  SCALE FACTOR FOR CURVATURE: USER SF=1

    o  LOAD CARRYING CAPACITY BEYOND POINT E DROPS TO

    ZERO

    o  MOMENT-CURVATURE DEPENDENCE IS SYMMETRIC

    o

      MODIFY/SHOW P-M3 INTERACTION SURFACE DATA

  • 8/13/2019 Pushover Example Large

    18/39

     

    18

    o  INTERACTION SURFACE: USER DEFINITION

    o  AXIAL LOAD – DISPLACEMENT: ELASTIC-PERFECTLY PLASTIC

    o  DEFINE/SHOW USER INTERACTION SURFACE  INTERACTION CURVE IS SYMMETRIC

      NUMBER OF POINTS ON EACH CURVE = 4

      SCALE FACTORS: kN.m C

      P = 1500 kN (Pbalanced) (REFERENCE POINT)

      M3 = 370 kN (Mbalanced) (REFERENCE POINT)

      FIRST AND LAST POINTS: (FACTORS TO BE MULTIPLIED

    BY THE REFERENCE POINT)

    POINT 1: P = -3.1 M3 = 0 (PURE COMPRESSION)

    POINT 4: P = 0.85 M3 = 0 (PURE TENSION)

      INTERACTION CURVE DATA: (FACTORS TO BE

    MULTIPLIED BY THE REFERENCE POINT)

    POINT 2: P = -1 M3 = 1 (BALANCED POINT)

    POINT 3: P= 0 M3 = 0.65 (PURE BENDING)

      NOTE THAT IN SAP, TENSION IS POSITIVE WHEN

    DEFINING THE P-M INTERACTION CURVE.

    o  MODIFY/SHOW MOMENT-CURVATURE CURVE DATA

      MOMENT/YIELD MOM  CURVATURE/SF

    0 0

    1 01 50 (ANY LARGE VALUE)

    0.2 50 (SUDDEN DROP)

    0.2 60 (RESIDUAL)

  • 8/13/2019 Pushover Example Large

    19/39

     

    19

     

    •  ASSIGN PLASTIC HINGES: 

    FOR BEAMS:

    o  SELECT ALL BEAMS

    o  ASSIGN/FRAME/HINGES

    o  HINGE PROPERTY: BEAMHINGE

    o  RELATIVE DISTANCE = 0 ADD

    o  RELATIVE DISTANCE = 1 ADD

    o  NOTE THAT SAP WILL ASSIGN THE HINGES OUTSIDE THE

    RIGID END OFFSETS

    FOR COLUMNS:

    o  SELECT ALL COLUMNS

    o  ASSIGN/FRAME/HINGES

    o  HINGE PROPERTY: COLUMNHINGE

    o  RELATIVE DISTANCE = 0 ADD

    o  RELATIVE DISTANCE = 1 ADD

    o  NOTE THAT SAP WILL ASSIGN THE HINGES OUTSIDE THE

    RIGID END OFFSETS

    •  DEFINE ANALYSIS CASES: 

    NONLINEAR ANALYSIS UNDER GRAVITY LOADS:

    o  ADD NEW CASEo  ANALYSIS CASE NAME: PUSHOVER-GRAVITY

    o  ANALYSIS CASE TYPE: STATIC

    o  ANALYSIS TYPE: NONLINEAR

    o  ZERO INITIAL CONDITIONS

    o  MODAL ANALYSIS CASE: MODAL (IRRELEVANT)

    o  LOAD TYPE: LOAD, LOAD NAME: GRAVITY, SCALE FACTOR: 1

  • 8/13/2019 Pushover Example Large

    20/39

     

    20

    o  LOAD APPLICATION: FULL LOAD

    o  RESULTS SAVED: FINAL STATE ONLY

    o  NONLINEAR PARAMETERS: DEFAULTNONLINEAR ANALYSIS UNDER LATERAL LOADS:

    o  ADD NEW CASE

    o  ANALYSIS CASE NAME: PUSHOVER-LATERAL

    o  ANALYSIS CASE TYPE: STATIC

    o  ANALYSIS TYPE: NONLINEAR

    o  CONTINUE FROM STATE AT END OF NONLINEAR CASE:

    PUSHOVER GRAVITY (REQUIRED BY TDY-2007)

    o  MODAL ANALYSIS CASE: MODAL (IRRELEVANT)

    o  LOAD TYPE: LOAD, LOAD NAME: LATERAL, SCALE FACTOR: 1

    o  LOAD APPLICATION: DISPLACEMENT CONTROL

      USE MONITORED DISPLACEMENT

      LOAD TO A MONITORED DISPLACEMENT MAGNITUDE

    OF 0.25 m (ARBITRARY – TAKE REASONABLY LARGE)

    o  MONITORED DISPLACEMENT:

      DOF1 (HORIZONTAL) AT JOINT 3 (SECOND STORY

    EXTERIOR COLUMN JOINT)

    o  RESULTS SAVED: MULTIPLE STATES

      MINIMUM NUMBER OF SAVED STEPS = 50

      MAXIMUM NUMBER OF SAVED STEPS = 50  CHECK SAVE POSITIVE DISPLACEMENT INCREMENTS

    ONLY

    o  NOTE THAT SAP WILL ASSIGN THE HINGES OUTSIDE THE

    RIGID END OFFSETS

    o  NONLINEAR PARAMETERS: DEFAULT

  • 8/13/2019 Pushover Example Large

    21/39

     

    21

    •  AT THIS POINT, CAN RUN THE PUSHOVER ANALYSIS

    •  ANALYZE: RUN ANALYSIS

    o  RUN THE PUSHOVER-GRAVITY AND THE PUSHOVER-LATERAL CASES TOGETHER (PUSHOVER-GRAVITY SHOULD

    COME FIRST 

    •  RESULTS:

    o  DISPLAY: SHOW STATIC PUSHOVER CURVE: TOTAL BASE

    SHEAR VERSUS MONITORED DISPLACEMENT (LATERALDISPLACEMENT AT THE TOP – DOF 1 AT JOINT 3) 

  • 8/13/2019 Pushover Example Large

    22/39

     

    22

     

    o  DISPLAY: SHOWHINGE RESULTS 

      A BEAM HINGE IS SHOWN BELOW

      NOTE THAT THE PLASTIC ROTATION OF THE HINGE AT

     ANY POINT DURING THE ANALYSIS IS PROVIDED BY THE

    PROGRAM

  • 8/13/2019 Pushover Example Large

    23/39

     

    23

     

      A COLUMN HINGE IS SHOWN BELOW

      NOTE THAT THE PLASTIC ROTATION OF THE HINGE AT ANY POINT DURING THE ANALYSIS IS PROVIDED BY THE

    PROGRAM

  • 8/13/2019 Pushover Example Large

    24/39

     

    24

    • CONVERSION OF THE PUSHOVER CURVE INTO THE MODAL CAPACITYCURVE (TDY-2007): 

    Pushover Curve

    Modal CapacityCurve

    Modal Hysteresis

    Skeleton

    curve

    Modal spectral displacement   M  o   d  a   l  s  p  e  c   t  r  a   l  a  c  c .

    (Modal mass defined for the

    first mode of vibration)

    Effective mass defined for the first mode of vibration in the x-direction

    Amplitude of the first mode shape at the top of the building (N’th story)

    defined for the first mode of vibration in the x-direction

    Participation factor defined for the first mode of vibration in the x-direction

    21

    1

    1

    1 11

    21 1

    1

    11

    1

     x x

     N 

     x i xii

     N 

    i xii

     x x

     L M 

     M 

     L m

     M m

     L

     M 

    =

    =

    =

    = Φ

    = Φ

    Γ =

  • 8/13/2019 Pushover Example Large

    25/39

     

    25

     

    11

    21

    1

    2

    0.0841

    0.1524

    33

    33

     x

     x

    m

    m

    Φ =

    Φ =

    ==

     

    2

    1 11

    (33)(0.0841) (33)(0.1524) 7.8045 x i xii

     L m=

    = Φ = + =∑  

    22 2 2

    1 11

    (33)(0.0841) (33)(0.1524) 1.0i xii

     M m=

    = Φ = + =∑ 

    11

    1

    7.8045 x x L

     M Γ = =  

    21

    1

    1

    60.91 x x L

     M  M 

    = =  

    •  CAN GENERATE THE FOLLOWING TABLE:

    uxN1 (m) Vx1 (kN) Mx1   x21   x1 d1 (m) a1 (m/s2)0,000 0 60,91 0,1524 7,805 0,000 0,00

    0,005 73 60,91 0,1524 7,805 0,004 1,20

    0,010 146 60,91 0,1524 7,805 0,008 2,40

    0,015 219 60,91 0,1524 7,805 0,013 3,60

    0,025 328 60,91 0,1524 7,805 0,021 5,38

    0,030 371 60,91 0,1524 7,805 0,025 6,09

    0,038 409 60,91 0,1524 7,805 0,032 6,71

    0,045 426 60,91 0,1524 7,805 0,038 6,99

    0,050 434 60,91 0,1524 7,805 0,042 7,13

    0,080 454 60,91 0,1524 7,805 0,067 7,45

    0,100 462 60,91 0,1524 7,805 0,084 7,58

    0,170 464 60,91 0,1524 7,805 0,143 7,62

    0,210 464 60,91 0,1524 7,805 0,177 7,62

    0,250 464 60,91 0,1524 7,805 0,210 7,62

     

  • 8/13/2019 Pushover Example Large

    26/39

     

    26

    PUSHOVER CURVE

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    0,000 0,050 0,100 0,150 0,200 0,250 0,300

    Top Displacement, uxN1 (m)

       T  o   t  a   l   B  a  s  e   S   h  e  a  r ,   V  x   1   (   k   N   )

     

    MODAL CAPACITY CURVE

    0,00

    1,00

    2,00

    3,00

    4,00

    5,00

    6,00

    7,00

    8,00

    0,000 0,050 0,100 0,150 0,200 0,250

    Modal Spectral Displacement, d1 (m)

       M  o   d  a   l   S  p  e

      c   t  r  a   l   A  c  c . ,  a   1

       (  m   /  s   2   )

     

  • 8/13/2019 Pushover Example Large

    27/39

     

    27

    • RECALL (TDY-2007): 

    (OK – CHECKS)

    Pushover analysis method can be used only if:

    Number of stories (not including basement) < 8

    Torsional irregularity constant for the building < 1.4

    The ratio of the effective mass corresponding to the first modeof vibration to the total mass of the building > 0.70

    1

    1

    0.70 x N 

    ii

     M 

    m=

    >∑

    1

    2

    1

    12

    1

    60.91

    33 33 66

    0.92 0.70

     x

    ii

     x

    ii

     M tons

    m tons

     M 

    m

    =

    =

    =

    = + =

    = >

  • 8/13/2019 Pushover Example Large

    28/39

     

    28

     

    • DETERMINATION OF THE MODAL DISPLACEMENT DEMAND: 

    For flexible structures (high period of vibration) (TFor flexible structures (high period of vibration) (T11>T>TBB):):

    (TB)(TA) (TB)(TA)

    (Equal Disp. Rule)(Equal Disp. Rule)

    SSdi1di1 = S= Sde1 (linear elastic)de1 (linear elastic)

    SSdi1di1 > S> Sde1 (linear elastic)de1 (linear elastic)

    (TA) (TB)

    For rigid structures (low period of vibration) (TFor rigid structures (low period of vibration) (T11

  • 8/13/2019 Pushover Example Large

    29/39

     

    29

     

    •  FOR THE FRAME IN THIS EXAMPLE:

    T1 = 0.373 sec.

    LOCAL SOIL TYPE Z2: TB = 0.40 sec. T1 < TB 

    FROM THE MODAL CAPACITY CURVE: a y1 = 7.62 m/s2 

    Spectral Acceleration Coefficient

    Spectral Acceleration

    1 1

    1

    1

    11

    1

    1 ( 1) /1

     y B

     R

     y

    ae y

     y

     R T T C 

     R

    S  R

    a

    + −= ≥

    =

    [ ] 21 0 ( ) (0.40)(1.0) 2.5 (9.81) 9.81 /aeS A IS T g m s= = =

    11

    1

    9.811.2874

    7.62ae

     y

     y

    S  R

    a= = =

    1 1

    1

    1

    1 ( 1) / 1 (1.2874 1)(0.4/ 0.373)1.016

    1.2874

     y B

     R

     y

     R T T C 

     R

    + − + −= = =

  • 8/13/2019 Pushover Example Large

    30/39

     

    30

     

    S di1 = C  R1S de1

    S di1 = C  R1S de1 = (1.016)(0.035) = 0.036 m

    ( IS THE MODAL DISPLACEMENT DEMAND)

    • CONVERSION OF THE MODAL DISPLACEMENT DEMAND INTODISPLACEMENT DEMAND (TARGET DISPLACEMENT): 

    IS THE DISPLACEMENT DEMAND (TARGET DISPLACEMENT

    AT THE TOP OF THE BUILDING) 

    11 2 2

    1

    9.810.035

    (2 / ) (2 / 0.373)

    aede

    S S m

    T π π = = =

    ( )1 1 0.036 p

    did S m= =

    ( )1 pd 

    (Ötelenme İstemi)

    Modal Capacity Curve Pushover Curve

    Back-conversion:

    Modal displacement demand for the first modeDisplacement demand (target displacement) at the top of the building

    (N’th story) in the x-direction

    ( ) ( )21 21 1 1 (0.1524)(7.8045)(0.036) 0.043 p p

     x x xu d m= Φ Γ = =

    ( )21 p

     xu

  • 8/13/2019 Pushover Example Large

    31/39

     

    31

    • THE COMPUTER MODEL OF THE FRAME (ALREADY DEVELOPED)NEEDS TO BE PUSHED UP TO THE DISPLACEMENT DEMAND: 

    o  DEFINE: ANALYSIS CASES

    o  MODIFY/SHOW CASE: PUSHOVER LATERAL

    o  LOAD APPLICATION: MODIFY/SHOW

    o  LOAD TO A MONITORED DISPLACEMENT MAGNITUDE OF

    0.043 m

  • 8/13/2019 Pushover Example Large

    32/39

     

    32

    • DETERMINATION OF TOTAL CURVATURE AND STRAIN DEMANDS: 

    o  AT THE TARGET DISPLACEMENT (DISPLACEMENT DEMAND),

    PLASTIC HINGES HAVE FORMED ON: C101, C102, C103,

    B101, B102

    o  NEED TO CALCULATE THE TOTAL CURVATURE DEMANDS AT

    THE SECTIONS WHERE THE PLASTIC HINGES HAVE

    DEVELOPED.

    B101 B102

    B201 B202

       C   1   0   1

       C   1   0   2

       C   1   0   3

       C   2

       0   1

       C   2   0   2

       C   2   0   3

  • 8/13/2019 Pushover Example Large

    33/39

     

    33

    •  FOR EXAMPLE, FOR THE PLASTIC HINGE ON BEAM B102, THE

    PLASTIC ROTATION DEMAND (AT THE TARGET DISPLACEMENT) IS

    θP = 6.20x10-3

     rad

    o  CONVERT THE PLASTIC ROTATION DEMAND TO PLASTICCURVATURE DEMAND :

    φP = θP / LP  = (6.20x10-3 rad)/(0.6m / 2) = 0.021 rad/m

    o  CONVERT THE PLASTIC CURVATURE DEMAND TO TOTAL

    CURVATURE DEMAND:

    φT  = φY + φP

  • 8/13/2019 Pushover Example Large

    34/39

     

    34

     

    o  OBTAIN THE YIELD CURVATURE (φY) FROM THE RESULTS OF

    THE MOMENT-CURVATURE ANALYSIS (ALREADY PERFORMED)

    RECALL FOR ALL BEAMS: YIELD MOMENT MY = 250 kN.m

    YIELD CURVATURE φY  = 0.008 rad/m

    Eksenel    b h d   C c

    Yük    f ck   γmc   f yk   f u   γms   E s   εsh   εsu  (mm) (mm) (mm) (mm)

    (Basınç +) 450 600 560 20

    (kN)   (MPa) (MPa) (MPa) (MPa)

    0,00 20,00 1,00 420 600 1 200.000 0,01 0,1

    No.   φ   Adet Alan

    (mm)   (mm2)

    1 22 3 1140

    2 22 3 1140

    3

    4

    5

    6

    7

    8

    9

    10

    f yw   (MPa) 420

    φe   (mm) 8

    s   (mm) 150

    bk   (mm) 4 02

    hk   (mm) 5 52

    b'k   (mm) 402

    h'k   (mm) 552

    ess   1

    ETR İ YE Bİ LG İ LER İ 

    M o

    ment  E ğ r i l i k  P 

    r og r amı 

    (mm)

    MALZEME ÖZELLİ KLER İ Beton

    -260

    260

    Uzaklık

    BETON KES İ T 

    BOYUNA DONATI DÜZENLEMES İ Kesit Merkezine

    Boyuna Donatı

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0,0000 0,0500 0,1000 0,1500 0,2000 0,2500

    E ğ rilik (rad/m)

         M    o    m    e    n     t

          (      k      N .    m

          )

    HESAPLA

     

    o  THEREFORE, THE TOTAL CURVATURE DEMAND ON BEAM 102 IS

    CALCULATED AS:

    φT  = φY + φP = 0.008 + 0.021 = 0.029 rad/m 

  • 8/13/2019 Pushover Example Large

    35/39

     

    35

    o  FROM THE RESULTS OF THE MOMENT-CURVATURE ANALYSIS,

    FOR φ = 0.029 rad/m,

    ci  = 0.00183  (AT THE EXTREME FIBER IN COMPRESSION)

    c = 6.33 cm,

    εs  = (εc)[(d-c)/c]

    = (0.00183)[(56 cm - 6.33 cm)/ 6.33 cm] = 0.0143

    s = 0.0143 (AT THE OUTER LAYER OF TENSION STEEL)

    •  SIMILARLY, FOR THE PLASTIC HINGE ON COLUMN C102, THE

    PLASTIC ROTATION DEMAND (AT THE TARGET DISPLACEMENT) IS

    θP = 3.25x10-3 rad

  • 8/13/2019 Pushover Example Large

    36/39

     

    36

    o  CONVERT THE PLASTIC ROTATION DEMAND TO PLASTIC

    CURVATURE DEMAND :

    φP = θP / LP  = (3.25x10-3 rad)/(0.45m / 2) = 0.014 rad/mo  CONVERT THE PLASTIC CURVATURE DEMAND TO TOTAL

    CURVATURE DEMAND:

    φT  = φY + φP

    o  OBTAIN THE YIELD CURVATURE (φY) FROM THE RESULTS OF A

    MOMENT-CURVATURE ANALYSIS ON COLUMN C102 UNDER THE

    AXIAL LOAD THAT THE COLUMN EXPERIENCES AT THE

    TARGET DISPLACEMENT.

    o  AT THE TARGET DISPLACEMENT, THE AXIAL LOAD ON COLUMN

    C102 IS 351 kN (FROM SAP2000 – AXIAL FORCE DIAGRAM)

    Eksenel    b h d   C c

    Yük    f ck   γmc   f yk   f u   γms   E s   εsh   εsu   (mm) (mm) (mm) (mm)

    (Basınç +) 450 450 410 20(kN)   (MPa) (MPa) (MPa) (MPa)

    351,00 20,00 1,00 420 420 1 200.000 0,01 0,1

    No.   φ   Adet Alan

    (mm)   (mm2)

    1 22 3 1140

    2 22 2 760

    3 22 3 1140

    4

    5

    6

    7

    8

    9

    10

    f yw   (MPa) 420

    φe   (mm) 8

    s   (mm) 200

    bk   (mm) 4 02

    hk   (mm) 4 02

    b'k   (mm) 402

    h'k   (mm) 402

    ess   1

    ETR İ YE Bİ LG İ LER İ 

    185

    M oment  E ğ r i l i k  P 

    r og r amı 

    (mm)

    MALZEME ÖZELLİ KLER İ Beton

    -185

    0

    Uzaklık

    BETON KES İ T 

    BOYUNA DONATI DÜZENLEMES İ Kesit Merkezine

    Boyuna Donatı

    0

    50

    100

    150

    200

    250

    300

    350

    0,0000 0,0500 0,1000 0,1500

    E ğ rilik (rad/m)

         M    o    m    e    n     t

          (      k      N .    m

          )

    HESAPLA

     

    o  APPROXIMATELY: φY  = 0.01 rad/m

  • 8/13/2019 Pushover Example Large

    37/39

     

    37

    o  THEREFORE, THE TOTAL CURVATURE DEMAND ON COUMN

    C102 IS CALCULATED AS:

    φT  = φY + φP = 0.01 + 0.014 = 0.024 rad/m

    o  FROM THE RESULTS OF THE MOMENT-CURVATURE ANALYSIS

    FOR COLUMN C102 ABOVE, FOR φ = 0.024 rad/m,

    ci  = 0.0027  (AT THE EXTREME FIBER IN COMPRESSION)

    c = 11.34 cm,

    εs  = (εc)[(d-c)/c]

    = (0.0027)[(41 cm - 11.34 cm) / 11.34 cm] = 0.0071

    s = 0.0071 (AT THE OUTER LAYER OF TENSION STEEL)

    •  (NEED TO REPEAT THESE CALCULATIONS FOR COLUMNS C101 AND

    C103, AND FOR BEAM B101 (AT EVERY SECTION WHERE A PLASTIC

    HINGE HAS FORMED) 

    •   AT EACH SECTION WHERE A PLASTIC HINGE HAS FORMED, NEED TO

    CALCULATE THE STRAIN DEMANDS ON CONCRETE IN COMPRESSION

     AND STEEL IN TENSION (εci  AND εs) 

  • 8/13/2019 Pushover Example Large

    38/39

     

    38

    •  STRAIN CAPACITIES GIVEN IN TDY-2007 FOR CONCRETE AND STEEL: 

    o  THE CALCULATED STRAIN DEMANDS ON CONCRETE ANDSTEEL (εci  AND εs) NEED TO BE COMPARED WITH THE CODE

    DAMAGE LIMITS TO ASSESS THE LEVEL OF DAMAGE IN EACH

    MEMBER WHERE A PLASTIC HINGE HAS FORMED. 

    o  FOR EXAMPLE, FOR BEAM B102: 

      εci  = 0.00183 < (εcg)MN  = 0.004

      εs  = 0.0143 < (εsg)MN  = 0.010

      THEREFORE, BEAM B102 IS IN THE “BELİRGİN HASAR

    BÖLGESİ” (VISIBLE DAMAGE ZONE)

    For confined concrete:

    (Volumetric ratio of existing confinement steel)

    (Volumetric ratio of confinement steel

    that is required for design of a new building)

    (Unconfinedconcrete)

    (Confinedconcrete)

  • 8/13/2019 Pushover Example Large

    39/39

     

    o  FOR COLUMN C102: 

      εci  = 0.0027 < (εcg)MN  = 0.004

      εs  = 0.0071 < (εsg)MN  = 0.010

      THEREFORE, BEAM B102 IS IN THE “MINIMUM HASAR

    BÖLGESİ” (MINIMUM DAMAGE ZONE)

    •  BASED ON THE DISTRIBUTION OF DAMAGE IN THE BEAMS

    AND COLUMNS AT EACH STORY, DETERMINE THE

    PERFORMANCE LEVEL OF THE STRUCTURE AND MAKE

    APPROPRIATE DECISIONS TOWARD REHABILITATION.

    (PER SPECIFICATIONS OF TDY-2007).