Principi Tp Antibiotica 2014

Embed Size (px)

Citation preview

  • 8/11/2019 Principi Tp Antibiotica 2014

    1/291

    Principi di Terapia Antibiotica

    Corso integrato di Terapia Medica

    18 Marzo 2014

  • 8/11/2019 Principi Tp Antibiotica 2014

    2/291

    Considerazioni generali1. Tipo di infezione

    agenti eziologici pi frequenti gravit

    2. Particolarit del paziente Precedenti terapie antibiotiche Fattori di rischio x MDR (Pneumococco, MRSA, VRSA, P.

    Aeruginosa, Enterococco, VRE) Presenza di allergie Condizioni particolari: insuff renale, diabete, disfagia

    3. Particolarit locali Pattern di resistenza Disponibilit del farmaco, costi

  • 8/11/2019 Principi Tp Antibiotica 2014

    3/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    4/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    5/291

    Considerazioni generali4. Antibiotico

    Meccanismo dazione Attivit Spettro dazione

    Effetti collaterali Resistenze (comuni o rare) Azione sinergica

    Via di somministrazione

  • 8/11/2019 Principi Tp Antibiotica 2014

    6/291

    Modalit della tp antibiotica

    A. Terapia profilattica

    B. Terapia empirica

    C. Terapia specifica

  • 8/11/2019 Principi Tp Antibiotica 2014

    7/291

    Terapia profilattica In alcune classi particolari di pazienti

    HIV+: profilassi con Bactrim per Pneumocistosi Pz con bronchiectasie in fibrosi cistica

    Dopo esposizione ad agente infettivo Meningite da Neisseria

    Prima di una procedura chirurgica

    Profilassi per endocardite Interventi chirurgici su tratto GE

  • 8/11/2019 Principi Tp Antibiotica 2014

    8/291

    Terapia empirica Nelle infezioni gravi (ad es: polmonite, pielonefrite,

    colecistite) dopo aver prelevato gli esami colturali ed inattesa degli esiti: entro 24 ore dalla diagnosi

    in alcuni casi molto gravi e/o ad evoluzione fulminante(meningite, infezioni necrotizzanti dei tessuti molli, sepsigrave/shock settico, neutropenia febbrile, sepsi nelsoggetto splenectomizzato):

    entro 1-3 ore dalla diagnosi (o dal sospetto diagnostico)

    Nelle infezioni non gravi in cui non si ricerchi unadiagnosi eziologica

  • 8/11/2019 Principi Tp Antibiotica 2014

    9/291

    1. Likely causative organism

    Decide if community or healthcare-acquired infection Identify the most likely source of infection

    Take appropriate specimens for microscopy, culture and

    sensitivity testing. Imaging modalities may be necessary tolocate the source of infection.

    Consider local epidemiological data Empiric antimicrobial choice depends on local susceptibility

    patterns. Knowing the resistance profiles in thecommunity,hospital or unit helps in choosing antimicrobialsappropriately.

    PRINCIPLES OF EMPIRICAL

    ANTIMICROBIAL THERAPY

  • 8/11/2019 Principi Tp Antibiotica 2014

    10/291

    1. Likely causative organism Decide if community or healthcare-acquired infection

    Identify the most likely source of infection Take appropriate specimens for microscopy, culture and sensitivity testing. Imaging modalities may be necessary to locate

    the source of infection. Consider local epidemiological data

    Empiric antimicrobial choice depends on local susceptibilitypatterns. Knowing the resistance profiles in the community,hospitalor unit helps in choosing antimicrobials appropriately.

    Presence of renal or hepatic dysfunction The risk-benefit of the antimicrobial must be determined on a case-

    to-case basis. Maintenance doses are adjusted in line with theseverity of organ dysfunction. Others

    Pregnancy, drug allergy

    PRINCIPLES OF EMPIRICAL

    ANTIMICROBIAL THERAPY

  • 8/11/2019 Principi Tp Antibiotica 2014

    11/291

    3. Antimicrobial profile

    Route of administration The intravenous route should always be used in severe

    sepsis as oral absorption is unpredictable even in drugs withgood oral bioavailability.

    Dose and interval Antibiotics can be categorised into three different classes

    depending on the PK/PD indices associated with theiroptimal killing activity.

    PRINCIPLES OF EMPIRICAL

    ANTIMICROBIAL THERAPY

  • 8/11/2019 Principi Tp Antibiotica 2014

    12/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    13/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    14/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    15/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    16/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    17/291

    PRINCIPLES OF EMPIRICAL

    ANTIMICROBIAL THERAPY

  • 8/11/2019 Principi Tp Antibiotica 2014

    18/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    19/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    20/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    21/291

    1928 1892

    SirAlexander FLEMING(Lochfield 1881 1955 Londra)Premio Nobel per la Medicina nel 1945

    Dott. Vincenzo TIBERIO(Sepino [CB] 1869 1915 Napoli)Ufficiale Medico della Regia Marina Militare Italiana

    Lacqua del pozzo di casa Graniero, in Arzano, era abitualmente potabile, ma, allorquando si provvedeva alla ripulituradelle pareti con asportazione delle muffe verdeggianti, il bere quellacqua provocava negli utilizzatori enterocoliti. Alriformarsi delle muffe sulle pareti della cisterna lacqua diveniva nuovamente potabile Per ricercare per quanto tempo illiquido.avesse esercitato questo suo speciale potere iniettai le cavie sopravvissero tutte, eccetto quelle iniettate dopo10 giorni, che fecero notare un ritardo nella morte, rispetto ai controlli..Come tale questo liquido ha unazione preventivae terapica. Ho studiato il potere microbicida dei liquidi, ottenuti nel modo innanzi detto, per i bacteri patogeni pi

    importanti Risulta chiaro da queste osservazioni che nella sostanza cellulare delle muffe esaminate sono contenuti deiprincipi solubili in acqua, forniti di azione bactericida bactericida..Per queste propriet le muffe sarebbero di forteostacolo alla vita ed alla propagazione dei bacteri patogeni.

  • 8/11/2019 Principi Tp Antibiotica 2014

    22/291

    In the pre-antibiotic era, pneumonia was a dreaded killer of the young and a welcomed friend of the very old. Prior to the specifictherapies and antibiotics of the twentieth century many patients were better off if their disease ran its natural course. Thus doingnothing was often the best therapy. This photograph is common of many similar images of physicians, nurses and the family aboutthe bedside.

    Waiting Out the Pneumonia Crisis,1895

  • 8/11/2019 Principi Tp Antibiotica 2014

    23/291

    ScenarioIn March 1942, a 33-

    year-old woman laydying of streptococcalsepsis in a New

    Haven, Connecticut,hospital.

    NEJM 2009

  • 8/11/2019 Principi Tp Antibiotica 2014

    24/291

    Scenario

    Despite the best efforts of contemporary medicalscience, her doctors could not eradicate herbloodstream infection.

    Then they managed to obtain a small amount ofa newly discovered substance called penicillin,which they cautiously injected into her.

    NEJM 2009

  • 8/11/2019 Principi Tp Antibiotica 2014

    25/291

    ScenarioAfter repeated doses, her bloodstream was

    cleared of streptococci, she made a full recovery,and she went on to live to the age of 90.

    NEJM 2009

  • 8/11/2019 Principi Tp Antibiotica 2014

    26/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    27/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    28/291

    S il d ffi i d ll h i t i ti i biS il d ffi i d ll h i t i ti i bi

  • 8/11/2019 Principi Tp Antibiotica 2014

    29/291

    Sviluppo ed efficacia della chemioterapia antimicrobicaSviluppo ed efficacia della chemioterapia antimicrobica(1935(1935 1993)1993)

  • 8/11/2019 Principi Tp Antibiotica 2014

    30/291

    Sixty-six years after her startling recovery, a

    report described a 70-year-old man in SanFrancisco with endocarditis caused byvancomycin-resistant Enterococcus faecium

    (VRE).

    Scenario

    NEJM 2009

  • 8/11/2019 Principi Tp Antibiotica 2014

    31/291

    Despite the administration, for many days, of the

    best antibiotics available for combating VRE,physicians were unable to sterilize the patientsblood.

    Scenario

    NEJM 2009

  • 8/11/2019 Principi Tp Antibiotica 2014

    32/291

    He died still bacteremic.Scenario

    NEJM 2009

  • 8/11/2019 Principi Tp Antibiotica 2014

    33/291

    Clatworthy. Nature Biochem Biol 2007; 3: 541Clatworthy. Nature Biochem Biol 2007; 3: 541--88

  • 8/11/2019 Principi Tp Antibiotica 2014

    34/291

    Meccanismi di resistenza Produzione di enzimi che

    modificano o distruggonola molecola di antibiotico

    Modificazione del sito dilegame dellantibiotico

    Escrezione attiva dellamolecola (efflux pump)

    Riduzione della

    permeabilit dellamembrana

  • 8/11/2019 Principi Tp Antibiotica 2014

    35/291

    Acquisizione della resistenza

  • 8/11/2019 Principi Tp Antibiotica 2014

    36/291

    Selezione di batteri resistenti

  • 8/11/2019 Principi Tp Antibiotica 2014

    37/291

    R i t i t i

  • 8/11/2019 Principi Tp Antibiotica 2014

    38/291

    Resistenza intrinseca

  • 8/11/2019 Principi Tp Antibiotica 2014

    39/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    40/291

    Meccanismi di resistenza specifici

  • 8/11/2019 Principi Tp Antibiotica 2014

    41/291

    Meccanismi di resistenza specifici

    F tt i h f ilit l di

  • 8/11/2019 Principi Tp Antibiotica 2014

    42/291

    Fattori che facilitano la comparsa di

    resistenza Esposizione a livelli di antibiotico

    subottimali Esposizione ad antibiotici ad ampio spettro Esposizione a microorganismi che

    possiedono geni resistenti trasmissibili Mancata osservazione di regole

    igieniche/protocolli di isolamento Uso indiscriminato nellindustria alimentare

    e nellagricoltura

  • 8/11/2019 Principi Tp Antibiotica 2014

    43/291

    Stime CDC

  • 8/11/2019 Principi Tp Antibiotica 2014

    44/291

    Conseguenze Infezioni di difficile readicazione

    Incremento della mortalit per infezione Comparsa di ceppi multi-resistenti (es:

    MDR-TB)

    Aumento dei costi Costi per singola dose:

    Penicillina $0.24

    Linezolid $86.90 (incremento costo di 360 volte)

    R i IF WHEN

  • 8/11/2019 Principi Tp Antibiotica 2014

    45/291

    Resistance: not IF... WHENMRSA/VRSA example

    1940-1946 first-generation penicillins become widely available for treatmentof staphylococcus and streptococcus infections: strept throat pneumonia scarlet fever skin infections wound infections

    By the 1950s, S. aureus acquired beta-lactamases (penicillinase) leading toresistance to first-generation penicillins. Methicillin (not recognized by

    penicillinases) deployed to counter lactamase-producing strains By 1986, S. aureus with mutated PBP-2 prevalent: for treatment ofmethicillin-resistant S. aureus (MRSA), vancomycin became the front-lineantibiotic

    1996 vancomyin-intermediate S. aureus (VISA) emerged

    2002 vancomycin-resistant S. aureus (VRSA) identified late-1990s quinupristin/dalfopristin (Synercid) combination approved as anew option

    2000 linezolid (Zyvox) approved as a new therapeutic 2003 first cases of resistance to linezolid reported

  • 8/11/2019 Principi Tp Antibiotica 2014

    46/291

    MRSA

  • 8/11/2019 Principi Tp Antibiotica 2014

    47/291

    End of antibioticsEnd of antibiotics -- the ultimate consequencethe ultimate consequence

  • 8/11/2019 Principi Tp Antibiotica 2014

    48/291

    Terapia specifica Basata sullesito di un esame colturale

    Solitamente si dispone anche di un test disensibilit in vitro

    Con esito dellantibiogramma, scegliere ilfarmaco in base a:

    profilo di tossicit / caratteristiche del pz spettro ristretto costi

  • 8/11/2019 Principi Tp Antibiotica 2014

    49/291

    Le classi di antibiotici1. Interferenza con la sintesi della parete cellulare

    Beta-Lattamici (penicilline, cefalosporine, carbapenemi,

    monobattami) Glicopeptidi Polipeptidi Alcuni agenti antimicobatterici

    2. Interferenza con la sintesi proteicaAzione su 30S ribosomiale Aminoglicosidi Tetracicline

    Azione su 50S ribosomiale Cloramfenicolo Macrolidi Clindamicina Streptogramine

    Oxazolidinoni

  • 8/11/2019 Principi Tp Antibiotica 2014

    50/291

    3. Inibizione della sintesi degli acidi nucleiciAzione sulla replicazione del DNA Chinoloni / fluorochinoloni Metronidazolo

    Azione sulla sintesi del RNA Rifampicina Rifabutina

    4. Antimetaboliti

    Sulfonamidi Dapsone Acido paraminosalicilico (PAS) Trimetoprim

    5. Altri Daptomicina Polimixine

    FARMACODINAMICAHow antibiotics kill bacteria: from targets to networks. 2010 Nature Reviews

  • 8/11/2019 Principi Tp Antibiotica 2014

    51/291

    Microbiology 8, 423-435

  • 8/11/2019 Principi Tp Antibiotica 2014

    52/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    53/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    54/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    55/291

    Farmacocinetica di un

  • 8/11/2019 Principi Tp Antibiotica 2014

    56/291

    Farmacocinetica di un

    antibioticoDescrive i processi fondamentali dellorganismo

    sul farmaco:AssorbimentoDistribuzioneMetabolismoEliminazione

    Farmacodinamica di un

  • 8/11/2019 Principi Tp Antibiotica 2014

    57/291

    Farmacodinamica di un

    antibioticoDescrive leffetto fisiologico di una molecola sul

    microorganismo allinterno del corpo, nonche ilsuo meccanismo di azione

    Stretta relazione con la farmacocinetica

    Concentrazione plasmatica di un antibiotico

  • 8/11/2019 Principi Tp Antibiotica 2014

    58/291

    Concentrazione plasmatica di un antibiotico

    dopo una singola somministrazione

    LA PRIMA SOMMINISTRAZIONE DI QUALSIASI ANTIBIOTICO INQUALSIASI PAZIENTE E SEMPRE A DOSE PIENA!

    Plasmatic concentration of an antibiotic after

  • 8/11/2019 Principi Tp Antibiotica 2014

    59/291

    Plasmatic concentration of an antibiotic after

    a single iv dose

    Conc

    entration

    Concentrazione plasmatica di un antibiotico

  • 8/11/2019 Principi Tp Antibiotica 2014

    60/291

    Co ce t a o e p as at ca d u a t b ot co

    dopo una singola somministrazione

    Pharmacokinetic parameters

  • 8/11/2019 Principi Tp Antibiotica 2014

    61/291

    MIC: minimum inhibitory concentration

    AUC: area under the curve

    Cmax: maximum concentration (tissuespecific)

    Pharmacokinetic parameters

    Pharmacokinetic parameters

  • 8/11/2019 Principi Tp Antibiotica 2014

    62/291

    Pharmacokinetic parameters

    CONCETR

    ATION

    (mg/d

    L)

    TIME (hour)

    MIC

    Antibiotic Pharmacokinetics

  • 8/11/2019 Principi Tp Antibiotica 2014

    63/291

    Antibiotic Pharmacokinetics

    CONCETR

    ATION

    (mg/d

    L)

    TIME (hour)

    AUC

    Cmax

    Antibiotic Pharmacokinetics

  • 8/11/2019 Principi Tp Antibiotica 2014

    64/291

    ANTIMICROBIAL KILLING IS DEPENDENT ON BOTH THECONCENTRATION OF DRUG IN RELATION TO THE MIC AND

    THE TIME THAT THIS EXPOSURE IS MAINTAINED

    When the effect of concentration predominates over that of time, theantimicrobial is said to be CONCENTRATIONDEPENDENT andbactericidal effects are associated with an optimal free drug maximumconcentration to MIC ratio

    (ffCmax/MICCmax/MIC).

    When the effect of time is greater, the antibiotic displays TIME

    DEPENDENT antibiotic activity, and bacterial outcomes are associatedwith free drug concentrations above the MIC for a defined portion of thedosing interval, or time above the MIC

    (fT>MICfT>MIC)

    Antibiotic Pharmacokinetics

    Pharmacokinetic composite

  • 8/11/2019 Principi Tp Antibiotica 2014

    65/291

    AUC > MIC

    Cmax/MIC

    Time > MIC

    parameters

    Pharmacokinetic composite

  • 8/11/2019 Principi Tp Antibiotica 2014

    66/291

    parameters

    CONCETR

    ATION

    (mg/d

    L)

    TIME (hour)

    MIC

    Time>MIC

    E.G.: blactams, vancomycin, some macrolides, tigecycline, clindamycin

    Pharmacokinetic composite

  • 8/11/2019 Principi Tp Antibiotica 2014

    67/291

    parameters

    CONCETR

    ATION

    (mg/d

    L)

    TIME (hour)

    MIC

    Cmax/MIC

    E.G.: aminoglycosides, daptomycin, metronidazole, colistin, (fluoroquinolones)

  • 8/11/2019 Principi Tp Antibiotica 2014

    68/291

    Pharmacokinetic composite

  • 8/11/2019 Principi Tp Antibiotica 2014

    69/291

    parameters

    CONCETR

    ATION

    (mg/d

    L)

    TIME (hour)

    MIC

    AUC>MIC

    E.G.: fluoroquinolones

  • 8/11/2019 Principi Tp Antibiotica 2014

    70/291

    Pharmacodynamics and pharmacokineticsPharmacodynamics and pharmacokinetics

  • 8/11/2019 Principi Tp Antibiotica 2014

    71/291

    PENICILLINSPENICILLINSCEPHALOSPORINSCEPHALOSPORINS

    CARBAPENEMSCARBAPENEMS

    GLYCOPEPTIDESGLYCOPEPTIDESERYTHROMYCINERYTHROMYCIN

    TIMETIME--dependentdependent killing +killing +short or no PAEshort or no PAEPDPDPKPK correlationcorrelation: T> MIC: T> MIC

    TIMETIME--dependentdependent killing +killing +

    prolonged PAEprolonged PAEPDPDPKPK correlationcorrelation : T> MIC: T> MIC

    ProlongProlong exposure time:exposure time:maintainmaintain serumserum levelslevels> MIC (short> MIC (short intervalsintervalsoror continuouscontinuous infusion)infusion)

    ProlongProlong exposure time:exposure time:

    serumserum levelslevels mightmight bebe< MIC (short< MIC (short intervals)intervals)

    AMINOGLYCOSIDESAMINOGLYCOSIDES

    FLUOROQUINOLONESFLUOROQUINOLONESCLARITHROMYCINCLARITHROMYCINAZITHROMYCINAZITHROMYCIN

    CONCENTRATIONCONCENTRATION--

    dependentdependent killing +killing +prolonged PAEprolonged PAE

    PDPDPKPK correlationcorrelation::peak/MIC or AUC/MICpeak/MIC or AUC/MIC

    Achieve highAchieve high serumserum andand

    tissuetissue concentrationsconcentrations(high(high doses, longdoses, longintervals)intervals)

    Antibiotic Pharmacodynamics Dosing regAntibiotic Pharmacodynamics Dosing regimenimen

    y py p

    Ccorrelation and clinical significanceCcorrelation and clinical significance

  • 8/11/2019 Principi Tp Antibiotica 2014

    72/291

    Parametri farmacocinetici

  • 8/11/2019 Principi Tp Antibiotica 2014

    73/291

    Parametri farmacocinetici

    Key message:

  • 8/11/2019 Principi Tp Antibiotica 2014

    74/291

    Post-antibiotic effect Persistence of effect (inhibition of growth

    or killing) after drug removed (or levelbelow MIC)

    PAE + pharmacokinetics affects dosingstrategy

    Post-antibiotic effect (PAE)

  • 8/11/2019 Principi Tp Antibiotica 2014

    75/291

    Post antibiotic effect (PAE)

    Nutrient broth

    *

    *Bacteria

    * A

    * AAntibiotics

    Post-antibiotic effect (PAE)

  • 8/11/2019 Principi Tp Antibiotica 2014

    76/291

    ost a t b ot c e ect ( )

    Centrifuge Decant

    *

    *Resuspend

    A A

    * * * *

    Post-antibiotic effect (PAE)

  • 8/11/2019 Principi Tp Antibiotica 2014

    77/291

    ( )

    Exposed

    *

    *

    *

    *No growth

    ****

    ****

    *

    *Unexposed Grows

    PAE (hours) = T - C T = is the time required for the count of cfu to increase 1 log10 (10-fold) above the count immediately

    seen after drug treatment C = is the time required for the count to increase 1 log10 in an untreated control culture

    PAE measures the time to reach normal logarithmic growth

    Post-antibiotic effect (PAE)

  • 8/11/2019 Principi Tp Antibiotica 2014

    78/291

    ( )

    1

    10

    100

    1000

    10000

    0 1 2 3 4 5 6

    Time (hours)

    Removal ofAntibioticRemoval ofAntibiotic

    ViableCo

    unt(cfu/ml)

    Control

    1.6 hours to increase 1 log10

    1 log10 increase

    3.1 hours to increase 1 log10

    AntibioticInduced death

    PAE = 3.1 - 1.6 = 1.5 hoursDue to antibiotic effect onlyPAE = 3.1 - 1.6 = 1.5 hoursDue to antibiotic effect only

    Persistent effect

  • 8/11/2019 Principi Tp Antibiotica 2014

    79/291

    Bacterial killing/persistent effect

    Drugs Therapy Goal PK/PDmeasurement

    Concentrationdependent /prolongedpersistent effect

    Aminoglycosides;daptomycin;ketolides;quinolones; metro

    High peak serumconcentration

    Cmax/MIC(24-hr AUC/MICfor quinolones)

    Time dependent /no persistenteffect

    Beta-lactams andmonobactams

    Long duration ofexposure

    Time above MIC

    Time dependent /moderate to longpersistent effect

    Clindamycin;macrolides;linezolid;tetracyclines;vancomycin;dalfopristin-

    quinpristin

    Enhanced amountof drug

    24-hr AUC/MIC

  • 8/11/2019 Principi Tp Antibiotica 2014

    80/291

    Correlazioni PK/PD: beta-lattamici

    Exp. Opin. Pharmacother. 2000;1: 1203-1217

    Optimizing Antimicrobials in the ICU:Continuous/Prolonged Infusions of Beta Lactams

  • 8/11/2019 Principi Tp Antibiotica 2014

    81/291

    g

    Cefotaxime vs Klebsiella in mouse lung model

    Farmacodinamica degli

  • 8/11/2019 Principi Tp Antibiotica 2014

    82/291

    aminoglicosidi in vivo

    Moore et al, J Infect Dis 155: 93, 1987

    Modelli di attivit battericida

  • 8/11/2019 Principi Tp Antibiotica 2014

    83/291

    Curve di time-killing per P. aeruginosa

    W.A. Craig et al., 1991, modified

    0 2 4 6 80

    2

    4

    6

    8

    10

    0 2 4 6 80

    2

    4

    6

    8

    10

    0 2 4 6 80

    2

    4

    6

    8

    10

    64xMIC

    16xMIC

    4xMIC

    MIC

    1/4xMICControl

    Tobramicina Ciprofloxacina Ticarcillina

    CONCENTRAZIONE-DIPENDENTE TEMPO-DIPENDENTE

    Tempo(hr)

    Once-daily vs. Conventional Three-times

  • 8/11/2019 Principi Tp Antibiotica 2014

    84/291

    Daily AminoglycosideRegimens

    NicolauDP et al. AntimicrobAgents Chemother. 1995;39:650655

    Vancomycin Outcome vs 24h-

  • 8/11/2019 Principi Tp Antibiotica 2014

    85/291

    AUC/MIC ratio

    24h-AUC/MICratio

    Satisfactory Unsatisfactory

    < 125 4 (50%) 4

    > 125 71 (97%) 2

    Hyatt et al, Clin Pharmacokinet 28: 143, 1995

  • 8/11/2019 Principi Tp Antibiotica 2014

    86/291

    Factors which can influence

  • 8/11/2019 Principi Tp Antibiotica 2014

    87/291

    therapeutic outcomeBacterial HumanInhibitory activity

    absorptionSubinhibitory activity distributionConcentration-dependent

    activity

    metabolism

    Time-dependent activity excretionBactericidal/bacteriostatic

    activityprotein-binding

    Post-antibiotic effect

    Resistance

    Oral Absorption of AntibioticsOral Absorption of Antibiotics

    GoodGood:: sulfonamides

  • 8/11/2019 Principi Tp Antibiotica 2014

    88/291

    chloramphenicol

    clindamycin

    trimethoprim

    isoniazid, pyrazinamide

    quinolonesdoxycycline

    cycloserine

    metronidazole

    linezolid

    Bad or variableBad or variable::

    penicillins (some are, many arent)

    cephalosporins (few are, most are not)

    erythromycin (estolate conjugate)(clarithromycin is better)

    UglyUgly:: aminoglycosides:

    gentamicin

    tobramycin

    amikacin

    netilmicinvancomycin

    quinupristin/dalfopristin

    meropenem

    Therapeutic levels in theTherapeutic levels in the

    b i l fl id?b i l fl id?

  • 8/11/2019 Principi Tp Antibiotica 2014

    89/291

    cerebrospinal fluid?cerebrospinal fluid?GoodGood::ciprofloxacin

    sulfonamides, trimethoprim

    chloramphenicol

    some 3rd generation cephalosporins

    (e.g. ceftriaxone, ceftizoxime)

    meropenem

    cycloserine, metronidazole

    pyrazinamide, isoniazidlinezolid

    OKOK::(esp. when meninges inflamed)

    ampicillin, ticarcillin

    vancomycinrifampin

    PoorPoor::

    aminoglycosidesaminoglycosides

    tetracyclinestetracyclinesclindamycinclindamycin

    erythromycinerythromycin

    cefaclorcefaclor

    quinupristin/dalfopristinquinupristin/dalfopristin

    (synercid)(synercid)

    INTERRELATIONSHIP OF HYDROPHILICITY ANDLIPOPHILICTY OF ANTIBIOTICS ON THEIR

    CO C C C S CS

  • 8/11/2019 Principi Tp Antibiotica 2014

    90/291

    PHARMACOKINETIC CHARACTERISTICS

    Condizioni parafisiologiche

  • 8/11/2019 Principi Tp Antibiotica 2014

    91/291

    Sepsi

    Condizioni parafisiologiche

  • 8/11/2019 Principi Tp Antibiotica 2014

    92/291

    Ustionati

    Condizioni parafisiologiche

  • 8/11/2019 Principi Tp Antibiotica 2014

    93/291

    Obesi

    General concept:

    P i bi di

  • 8/11/2019 Principi Tp Antibiotica 2014

    94/291

    Protein bindingx x x

    x x xx x x

    x x x

    x x x

    x x x

    80%80%

    Extensive protein binding

  • 8/11/2019 Principi Tp Antibiotica 2014

    95/291

    Good: Allows slow, steady release of heavilybound drug, e.g. ceftriaxone

    Bad: since less free drug available forbacteria, e.g. ceftriaxone

  • 8/11/2019 Principi Tp Antibiotica 2014

    96/291

    Penicilline

  • 8/11/2019 Principi Tp Antibiotica 2014

    97/291

    Derivate da Penicilliumchrysogenum.

    PNC G e PNC V sonoprodotti non modificatidella fermentazione diPenicillium.

    I derivati semisinteticisono creati aggiungendouna catena R alla

    struttura base dellanellobetalattamico.

    PENICILLINS

  • 8/11/2019 Principi Tp Antibiotica 2014

    98/291

    bactericidal interferes with peptide cross-linking required to

    produce stable cell walls development of resistance due to beta

    lactamase production and changes in PBPs may accumulate in renal failure and cause

    seizures

    good tissue penetration (except prostate anduninflammed meninges)

    Beta Lattamici

  • 8/11/2019 Principi Tp Antibiotica 2014

    99/291

    B-lattamici inibiscono latranspeptidasi (PBP).

    Effetto su batteri in rapida

    crescita che sintetizzanoparete batterica /peptidoglicano

    Le caratteristiche dello spettro

    dazione dipendono: dalle dimensioni e dalla carica della molecola, dalla sua affinit per le PBPs, dalla resistenza di essa alle

    beta-lattamasi. Azione: battericida

    Struttura della parete cellulare

    batterica

  • 8/11/2019 Principi Tp Antibiotica 2014

    100/291

    A.Gram + B. Gram -

    batterica

  • 8/11/2019 Principi Tp Antibiotica 2014

    101/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    102/291

    Penicilline Naturali

  • 8/11/2019 Principi Tp Antibiotica 2014

    103/291

    Penicillina G (benzipenicillina) EV/IM Coniugaz con sali insolubili per preparazioni depot per ala via IM

    PENICILLINA G PROCAINA PENICILLINA G BENZATINA

    Penicillina V (fenossimetilpenicillina) OS

    Attiva nei confronti di: Streptococchi,peptostr., B anthracis, Actinomyces,Corynebacterium, Listeria, Neisseria&Treponema.

    PENICILLINE NATURALI

  • 8/11/2019 Principi Tp Antibiotica 2014

    104/291

    Penicillin G Spectrum: mostly Gram+ Gram+ cocci

    S. pyogenes: minimal resistance observed, does not produce beta-lactamases S. pneumoniae: modified PBP in 30-40% gave rise to PRSP (penicillin resistant S. pneumo), not duenot due

    to betato beta--lactamaselactamase

    most common cause of CAP (community-aquired pneumonia) 50-80% very common cause of otitis media ~35%

    S. viridans: usually still sensitive Endocarditis (heart valve infection)

    Enterococcus faecalis: PenG generally effective (not due to betanot due to beta--lactamase)lactamase) But note, E. faecium: highly resistant to PenG (92%) and vancomycin

    Gram+ rods Clostridium tetani (tetanus), C. perfringens (gangrene, food poisoning) sensitive C. difficile resistant

    Helical and spirochetes: Treponema pallidum (syphilis): sensitive to Pen G

    Relatively little Gram- coverage (scarce penetration of outer membrane!) Use against sensitive Neisseria meningitidis: and PenG can penetrate meninges ONLY IF

    ongoing inflammation

    Neisseria gonorrhoeae however is now resistant due to beta-lactamases Enterobacteriaceae, Pseudomonas, H. influenzae: resistant

  • 8/11/2019 Principi Tp Antibiotica 2014

    105/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    106/291

    Will we ever find a cure for penicillin?

    Clatworthy. Nature Biochem Biol 2007; 3: 541Clatworthy. Nature Biochem Biol 2007; 3: 541--88

    THE ANTIBIOTIC TIMELINE

  • 8/11/2019 Principi Tp Antibiotica 2014

    107/291

    Clatworthy. Nature Biochem Biol 2007; 3: 541C at o t y atu e oc e o 00 ; 3 5 88

  • 8/11/2019 Principi Tp Antibiotica 2014

    108/291

    -lattamasi

  • 8/11/2019 Principi Tp Antibiotica 2014

    109/291

    Insieme molto ampio ed eterogeneo di anzimi Spettro di azione molto ampio

    -lattamasi AmpC

    ESBLs Carbapenemasi

    Ampiamente distriubite in GRAM-POS e GRAM-NEG

    Rappresentano il principale meccanismo di resistenza per

    STAFILOCOCCHI, GRAMSTAFILOCOCCHI, GRAM--NEG e ANAEROBINEG e ANAEROBI

    -lattamasi

  • 8/11/2019 Principi Tp Antibiotica 2014

    110/291

    Penicilline Anti-Stafilococciche Meticillina nafcillina oxacillina cloxacillina e

  • 8/11/2019 Principi Tp Antibiotica 2014

    111/291

    Meticillina, nafcillina, oxacillina, cloxacillina edicloxacillina.

    Resistenti alla degradazione ad opera dellepenicillinasi stafilococciche.

    Mirate nei confronti di S. aureus, non efficaciverso gli streptococchi (Streptococco NONPRODUCE BETA-LATTAMASI!).

    Meticillina non pi usata (tossicit). Oxacillina farmaco di scelta Breve emivita NOT FOR: MRSA, Methicillin-resistant

    Staphylococcus epidermidis (MRSE) orENTEROCOCCI (Enterococchi NONPRODUCONO BETA-LATTAMASI!).

    Attualmente in forte aumento ceppi MRSA!!

  • 8/11/2019 Principi Tp Antibiotica 2014

    112/291

    Anti-staph penicillinase resistant

    penicillins: clinical uses 1) Staphylococcal Infections

  • 8/11/2019 Principi Tp Antibiotica 2014

    113/291

    penicillins: clinical uses 1) Staphylococcal Infections Spectrum similar to Pen G, but includes Staph. aureus & Staph.

    epidermidis.

    Community-acquired Methicillin-resistant forms of Staph aureus(MRSA) are increasing.

    50-80% of S. epidermidis in hospitals is methicillin-resistant (butStaph. epi . is not a invasive or virulent).

    Staphylococci cause skin infections (impetigo), abcesses in many

    organs, pneumonias, prosthetic joint, catheter, and artificial valveinfections, endocarditis, meningitis (rare), bone infections(osteomyelitis: may require months of therapy).

    2) Streptococcal infections, when Staph. is also a

    possibility (although anti-staph penicillins are lesseffective than natura penicillins againsta streptococci)

    Aminopenicilline

    (penicilline a spettro esteso)

  • 8/11/2019 Principi Tp Antibiotica 2014

    114/291

    (penicilline a spettro esteso) Ampicillina EV Amoxicillina (Velamox; OS).

    Facile Spettro antimicrobico pi esteso. Gram negativi: E. coli, Proteus, Salmonella, Shigella,Haemophilus, M. catarrhalis, Klebsiella, Neisseria,Enterobacter, Bactoroides.

    NOT FOR: MRSA, Methicillin-resistant Staphylococcusepidermidis(MRSE) or ENTEROCOCCI

    DO NOT USE if beta-lactamase (penicillinase)producing Gram-neg strains

    NB: Aminopenicillins should not be prescribed for patients suffering from tonsillitisuntil infectious mononucleosis has been excluded. Patients with mononucleosisreadily develop severe maculopapular exanthema even after a few tablets ofaminopenicillin. This effect is caused by production of heterophile antibodies and

    should not be interpreted as true and lasting allergy

    Aminopenicillins Aminopenicillins have spectra similar to natural penicillins with one exception: an

    ddi i l i i h i id h i i h i id h li i d ll h

  • 8/11/2019 Principi Tp Antibiotica 2014

    115/291

    additional aminogroup in their side chain increases their idrophylicity and allow themto pass through the porins in the outer memnbrane of some Gram-negative bacteria(E. Coli, P. mirabilis, S. Enterica, Shigella)

    Even though they can penetrate the outer Gram-negative bacterial membrane, manyGram-neg bugs produce beta-lactamases that can degrade ampicillin.

    For example: E. coli (80-90% of UTIs), 50% resistant to ampicillin due to beta-lactamase production Proteus mirabilis (UTIs), 30% resistant N. meningitidis generally sensitive, but some produce penicillinase N. gonorrhoeae significant penicillinase production now, resistant

    H. influenzae ~30% produce beta-lactamases Most nosocomial pathogens are resistant either due to innate impermeability or

    several resistance mechanisms including beta-lactamase production Sometimes used in combination with aminoglycoside for E. faecalis (synergy) Significant enterohepatic recycling : unmodified amp re-secreted into bile many

    cycles, leading to high intestinal levels of the drug. Potentially useful for Shigella,

    Salmonella, enteric infections. Greater risk of adverse effects such as diarrhea and C.difficile overgrowth.

  • 8/11/2019 Principi Tp Antibiotica 2014

    116/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    117/291

    -lattamasi

  • 8/11/2019 Principi Tp Antibiotica 2014

    118/291

    Bush, Jacoby, Madeiros Classificationof -Lactamases

  • 8/11/2019 Principi Tp Antibiotica 2014

    119/291

    Combinations with beta-

    lactamase inhibitors Two combinations are available, both for oral and parenteral administration:i illi lb

  • 8/11/2019 Principi Tp Antibiotica 2014

    120/291

    ampicillin + sulbactam amoxicillin + clavulanic acid The combinations are effective against many gram-negative and anaerobic bacteria

    expressing beta-lactamase, and also against Staphylococcus aureus. Thus beta-lactamase inhibitors drmatically broaden the antimicrobial spectrum of theaminopenicillins

    NB: These antibiotics are needless and should not be prescribed againststreptococci, enterococci or other bacteria that do not produce beta-lactamase.

    Aminopenicillins with or without beta-lactamase inhibitor are widely used in clinical

    practice. They are given in bacterial sinusitis, mesotitis and lower respiratory tractinfections, urinary and hepatobiliary tract infections, purulent gynecological infections,and other community-acquired infections.

    Remember: 1) Bacteria have developed many beta-lactamases, and only some of them can be destroyed

    with inhibitors. Many bacteria causing community acquired infection use to disposeplasmide-transmitted lactamases that can be inhibited with sulbactam, clavulanic acid or

    tazobactam. However these inhibitors do not work against lactamases produced by majorityof nosocomial pathogens.

    2) Beta-lactamase inhibitors possess weak, if any, natural antibacterial activity. From generalpoint of view, minimal clinically important difference exists between these three drugs.

    Combinations with beta-

    lactamase inhibitors Inclusion of beta-lactamase inhibitor increases

  • 8/11/2019 Principi Tp Antibiotica 2014

    121/291

    c us o o beta acta ase b to c easescoverage of Gram- to also include:

    M. catarrhalis (otitis media, pneumo, sinusitis) H. influenzae (otitis media, pneumo, sinusitis) S. pneumoniae (otitis media, pneumo, sinusitis) MSSA

    Klebsiella Enterobacter E. coli N. gonorrhoeae

    Good activity against anaerobes

  • 8/11/2019 Principi Tp Antibiotica 2014

    122/291

    Aminopenicillins +beta-lactamase inhibitors:

    clinical uses

  • 8/11/2019 Principi Tp Antibiotica 2014

    123/291

    Otitis media, sinusitis, and respiratory tract infections(acute exacerbations of bronchitis or

    chronic obstructive pulmonary disease (COPD) due to b-lactamase producing H. influenzae & Moraxellacatarrhalis.

    High doses recently approved for otitis media due toStrep. pneumoniae Skin and Skin-structure infections caused by b-

    lactamase-producing strains of Staph. aureus, E. coli,and Klebsiella sp.

    UTIs due to b-lactamase-producing strains of E. coli,Enterobacter sp., and Klebsiella sp

    BROAD-SPECTRUM (anti-

    Pseudomonal) PENICILLINS karbenicillin, ticarcillin, azlocillin, mezlocillin, piperacillinP l id h i hi h ll t t ti i t G

  • 8/11/2019 Principi Tp Antibiotica 2014

    124/291

    Polar side chain which allow even greater penetration into Gram-neg bacteria (increased ability to pass through the outer membraneporins)

    More resistant to cleavage by Gram-neg beta-lactamases thanaminopenicillins

    More active against Gram-neg bacilli, including many strains of P.Aeruginosa

    Maintain Gram-pos activity of natural penicillins but (like naturalpenicillins) are susceptible to beta-lactamases of staphylococci Usually, the third generation cephalosporins are preferred to these

    drugs because of lower costs.

    USES OF BROAD-SPECTRUM(ANTIPSEUDOMONAL) PENICILLINS

    1. Pseudomonas aeruginosa infections

  • 8/11/2019 Principi Tp Antibiotica 2014

    125/291

    1. Pseudomonas aeruginosa infections(often with aminoglycosides)

    2. Mixed infections - good gram negativeactivity, covers most B. fragilis

    3. Complicated urinary tract infections &prostatitis - Carbenicillin indanyl OK orally.

    4. Surgical prophylaxis - intra-abdominal,gynecologic surgery

    ANTIPSEUDOMONAL PENICILLINS+ BETA LACTAMSE INHIBITORS

    ticarcillin + clavulanic acid

  • 8/11/2019 Principi Tp Antibiotica 2014

    126/291

    piperacillin + tazobactam The fullest antimicrobial potential of the penicillins has

    been achieved by combining extended-spectrumpenicillins with beta-lactamase ihibitors

    Calvulanate and tazobactam neutralize many beta-lactamases resulted in a marked enhancement of their

    activity Highly active against: Gram- neg:

    Pseudomonas, E. coli, klebsiella, enterobacter, serratia and

    B. fragilis, H. Influenzae Gram-pos (NOT FOR MRSA) Nearly all anaerobic bacteria except for C. Difficile

  • 8/11/2019 Principi Tp Antibiotica 2014

    127/291

    ANTIPSEUDOMONAL PENICILLINS+ BETA LACTAMSE INHIBITORS: Clinical uses

    Extends spectrum towards b-lactamase-producing Enterobacteriaciae &Pseudomonas. For Pseudomonas infections, often combined with aminoglycosides.

  • 8/11/2019 Principi Tp Antibiotica 2014

    128/291

    Indications are as follows: Septicemia due to b-lactamase-producing strains of Klebsiella sp., E. coli, Staph. aureus, &

    Ps. aeruginosa

    Lower respiratory tract infections due to b-lactamase-producing strains of Klebsiellapneumoniae, S. aureus, H. influenzae, & Moraxella catarrhalis

    Bone & joint infections due to b-lactamase-producing Staph. aureus. UTIs (complicated & uncomplicated) due to b-lactamase-producing strains of E. coli,

    Klebsiella, Ps aeruginosa, Citrobacter sp., Enterobacter sp., Serratia marcescens, & Staph. Gynecologic infections: endometritis due to b-lactamase-producing strains of Prevotella

    (formerly Bacteroides) melaninogenica, Enterobacter sp., E. coli, Klebsiella pneumoniae, S.aureus, and Staph. epidermidis.

    Treatment of mixed infections and for presumptive therapy prior to identification of thecausative organisms.

    Appendicitis or peritonitis caused by b-lactamase-producing E. coli or Bacteroides fragilis Uncomplicated & complicated skin and skin structure infections caused by piperacillin-

    resistant b-lactamase-producing Staph. Aureus

    Post-partum endometritis or pelvic inflammatory disease caused by piperacillin-resistant b-lactamase-producing strains of E. coli Community-acquired pneumonia (moderate severity only) caused by piperacillin-resistant b-

    lactamase-producing strains of H. influenzae & Ps. aeruginosa

    Effetti collaterali delle penicilline

    Farmaci molto sicuri con elevatoindice terapeutico

  • 8/11/2019 Principi Tp Antibiotica 2014

    129/291

    indice terapeutico Reazioni da ipersensibilit: 5%

    Rash reazione pi comune. Ampicillina: rash nel 50-100%

    dai pz con mononucleosi. Orticaria, angioedema, schock

    anafilattico (1/10000): evitaretutte le altre penicilline. Raramente crisi comiziali

    accumulo in pz con insuffrenale

    Infusione ev troppo rapida Soggetti predisposti

    Clatworthy. Nature Biochem Biol 2007; 3: 541Clatworthy. Nature Biochem Biol 2007; 3: 541--88

    THE ANTIBIOTIC TIMELINE

  • 8/11/2019 Principi Tp Antibiotica 2014

    130/291

    Cefalosporine

    Derivati B-lattamici semisintetici ottenuti

  • 8/11/2019 Principi Tp Antibiotica 2014

    131/291

    aggiungendo diverse catene laterali allacido

    aminocefalosporanico

    pi resistenti alle beta-lattamasi rispetto apenicilline naturali.

    Cefalosporine

  • 8/11/2019 Principi Tp Antibiotica 2014

    132/291

    Ceftazidime

    La catena laterale conferisceprotezione sterica dallazionedelle beta-lattamasi

    Cefalosporine

    Reazioni avverse

  • 8/11/2019 Principi Tp Antibiotica 2014

    133/291

    5-10% cross-reattivit

    negli allergici allepenicilline 1-2% reazione da

    ipersensibilit neipazienti non allergicialle penicilline(soprattutto per I e II

    generazione). Spettro dazione

    ampio infezioniopportunistiche!

    CEPHALOSPORINS Cephalosporin generations: generally get broader, more Gm- coverage

    with later generationsG ti 1 G ll h d b tt G th G ti it tibl t

  • 8/11/2019 Principi Tp Antibiotica 2014

    134/291

    Generation 1: Generally had better Gram+ than Gram- activity; susceptible tomany Gram- beta-lactamases

    Examples: Cephalexin, Cefazolin Generation 2: Better resilience to Gram- beta-lactamases, Gram- coverage

    (Cefotetan less active against Gram+) Examples: Cefuroxime

    Generation 3: More potent, better Gram- beta-lactamase stability, betterpenetration; pick up some anti-Pseudomonal activity (Ceftazidime), give up someGram+ coverage (Ceftazidime: limited activitv against S. Aureus)

    Examples: Cefpodoxime, Cefdinir, Cefixime, Cefotaxime, Ceftriaxone, Ceftazidime, Generation 4: Very broad spectrum (Gm- and Gm+)

    Example: Cefepime Generation 5: MRSA and PRSP (penicillin-resistant Streptococcus pneumoniae)

    coverage; Gm- activity similar to ceftriaxone (not for Pseudomonas!) Example: Ceftaroline

    DO NOT USE IN: ENTEROCOCCI, LISTERIA MONOCYTOGENES,(MRSA, except 5th generation)

    CefalosporineCefalosporine

    Classificazione per generazioniClassificazione per generazioniGenerazioneGenerazione AttivitAttivit relativa su specierelativa su specie

  • 8/11/2019 Principi Tp Antibiotica 2014

    135/291

    ppbatterichebatteriche

    GramGram--positivepositive GramGram--negativenegative

    PrimaPrima ++++++++ ++

    SecondaSeconda ++++++ ++++

    TerzaTerza ++ +++*+++*

    QuartaQuarta ++++ ++++**++++**

    * In parte attive anche su* In parte attive anche su P. aeruginosa;P. aeruginosa; ** molto attive su** molto attive su P. aeruginosaP. aeruginosa

    Cefalosporine

  • 8/11/2019 Principi Tp Antibiotica 2014

    136/291

    IIIa Generazione

    Spettro: gram negativi > grampositivi

  • 8/11/2019 Principi Tp Antibiotica 2014

    137/291

    positivi.

    Ceftriaxone (Rocefin; IM/EV) Molto efficace sia contropneumococchi (penicillino-sensibili) che contro gram-neg

    respiratori. Ottimo profilo farmacocinetico.

    Ceftazidime (Glazidim) attivit

    specifica contro Pseudomonas(ma ridotta verso Gram +!!).

    CEPH: 1st Gen used predominantly against gram-positive cocci (streptococci and

    staphylococci).Th i t f th i l d b t i i i d

  • 8/11/2019 Principi Tp Antibiotica 2014

    138/291

    Their spectrum further includes corynabacteria, meningococci, andsome community-acquired stems of gram-negative rods likeEscherichia coli or Proteus mirabilis.

    The drugs are active against anaerobes in the extent similar topenicillin. cefalotin, cefazolin (for parenteral administration) cefalexin, cefadroxil, cefaclor (for oral administration) (cefaclor has moderate effect against Haemophilus, so it belongs to

    one-and-half generation) The drugs are predominantly used for treatment skin and soft tissue

    infections, and for prophylaxis in surgical procedures (exceptcolorectal surgery and situations when methicillin-resistant

    staphylococci are spread in the surgery department).

    CEPH: 2nd Gen contain antibacterial activities of the 1st generation and extend to further

    community-acquired gram-negative bacteria like Haemophilus influenzae,Moraxella catarrhalis, or less susceptible strains of E.coli or similarpatogens

  • 8/11/2019 Principi Tp Antibiotica 2014

    139/291

    patogens. cefuroxime, cefamandol (for parenteral administration)

    cefuroxim-axetil (for oral administration) prescribed for treatment respiratory tract infections (bacterial sinusitis or

    mesotitis, pneumonia), and urinary and hepatobiliary tract infections. They can be used for prophylaxis in surgery as well. cefoxitin (only parenteral administration)

    It is a representative of cefamycines. These antibiotics are closely related totrue cephalosporins differing in one substituent on cephem nucleus. Their common feature is a very good activity against relatively resistant anaerobe

    Bacteroides fragilis. With its antibacterial activity against other gram-neg bacteria, cefoxitin has been

    joined to the 2nd generation cephalosporins but shows limited activity against

    Gram-pos cocci. Its typical disposal is intra-abdominal, pelvic, and gynecological infections, footinfections in diabetics, infected decubitus ulcers and other mixed aerobic-anaerobic infections. Unfortunately, resistance to cefoxitin raises quickly indepartments where this drug used to be given frequently.

    CEPH: 3rd Gen can be divided in two subgroups according to their activity against Ps.aeruginosa: The subgroup A consists of antibiotics of similar spectrum as 2nd generation but with enhanced

    activity against gram-negative bacteria and weaker effect against staphylococci.cefotaxim ceftriaxone (for parenteral administration)

  • 8/11/2019 Principi Tp Antibiotica 2014

    140/291

    cefotaxim, ceftriaxone (for parenteral administration) These drugs are used for treatment of severe and life-threatening infections caused by community

    gram-negative patogens like E.coli, H.influenzae, meningococci, salmonellae etc. The relevantclinical diagnoses are purulent meningitis, epiglotitis, sepsis of urinary or hepatobiliary tract originetc.

    Ceftriaxone is an antibiotic of extreme long half-time (8 hrs) in addition that allows once-dailyadministration. This feature makes the treatment easier but is of particular importance in treatmentof outpatients or in home treatment. cefetamet-pivoxil, cefpodoxim-proxetil, cefixim, ceftibuten (for oral administration)

    The position of these antibiotics is rather problematic. They can be used for treatment of mild ormoderate community acquired infections but cephalosporines of 2nd generation suffice in thesesituations usually. The only rational indication remains infection caused by pathogens ofmicrobiologically verified intermediate sensitivity where 2nd generation cephalosporins performonly a weak effect.

    The subgroup B included antibiotics effective against Ps. aeruginosa and other problematic gram-negative pathogens. However, the stronger is the anti-pseudomonadal effect, the weaker is theactivity against staphylococci and other gram-positive microbes.

    ceftazidime, cefoperazon (for parenteral administration) These antibiotics are used in nosocomial infections/sepsis caused by gram-negative bacteria.Ceftazidime is strongest anti-pseudomonal cephalosporin. Cefoperazons unique feature ispredominant excretion via the bile: this advocates for its usage in hepatobiliary tract infections andin renal insufficiency. Cefaperazon is available in a mixture with beta-lactamase inhibitor as well:cefoperazon/sulbactam that can be worthy against Acinetobacter sp. and some problematicpathogens owing beta-lactamase activity.

    CEPH: 4th Gen

    Antibiotics of this group have a broad spectrumsummarizing the 1st, 2nd and 3rd generation.

  • 8/11/2019 Principi Tp Antibiotica 2014

    141/291

    They can resist some potent beta-lactamases.Nevertheless, their activity against staphylococci is notbetter than with cephalotin and activity againstPs.aeruginosa is not better than with 1Gen agents .

    cefpirome, cefepime (only parenteral administration) used in nosocomial infections of special resistance

    pattern (stable induction of ampC gene) or in nosocomialsepsis of unknown origin where covering the broad

    spectrum of pathogens is necessary (i.e. febrileneutropenia).

  • 8/11/2019 Principi Tp Antibiotica 2014

    142/291

    Ceftobiprole

  • 8/11/2019 Principi Tp Antibiotica 2014

    143/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    144/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    145/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    146/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    147/291

    Carbapenemi Imipenem-Cilastina (Imipem EV), meropenem (Merrem EV) Cilastina: inibitore della deidropeptidasi previene la formazione

    di un metabolita nefrotossico. Antibiotici betalattamici con spettro pi ampio

  • 8/11/2019 Principi Tp Antibiotica 2014

    148/291

    Antibiotici betalattamici con spettro pi ampio. Staph(no MRSA), Strep (highly resistant), Neisseria, Haemophilus, Proteus,

    Pseudomonas, Klebsiella, Bacteroides, anaerobes (escluso C. difficile) Nelle infezioni da Pseudomonasraccomandata associazione(AMINOGLICOSIDE, CHINOLONICO).

    NO ACTIVITY AGAINST: MRSA, MRSE,Stenotrophomonas maltophilia, Pseudomonas cepacia

    Tossicit:

    Allergia crociata con penicillina: < 5 %. Imipenem epilettogeno

    Imipenem Slightly more activity versus gram positive and a little less

    activity with gram negative compared to meropenem Risk of seizures more common in renal failure

    Meropenem Similar spectrum of activity as imipenem Little or no risk of seizures

    Carbapenems Molecular properties:

    Quite small molecules and have charge characterustics that allow them to utilizespecial porins in the outer membrane of Gm-neg bacteria

    Structure resistant to cleavage by most beta-lactamases

  • 8/11/2019 Principi Tp Antibiotica 2014

    149/291

    Structure resistant to cleavage by most beta-lactamases

    Affinity for a broad range of PBPs from many different species of bacteria. very potent antibiotics of extremely broad spectrum including majority ofgram-positive and gram-negative patogenes and anaerobes.

    The group of resistant bacteria microbes includes: methicillin-resistant staphylococci, Clostridium difficile,

    Stenotrophomonas maltophilia, Pseudomonas cepacia Enterococcus faecium Some exceptionally resistant strains of Acinetobacter or Pseudomonas.

    imipenem, meropenem (only parenteral administration)

    These antibiotics are reserved for extreme resistant nosocomialinfections/sepsis.

  • 8/11/2019 Principi Tp Antibiotica 2014

    150/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    151/291

    Monobattamici

    Aztreonam (Azactam; IM/EV;) Resistente alle beta-lattamasi.

  • 8/11/2019 Principi Tp Antibiotica 2014

    152/291

    Spettro antibatterico ristretto. H. influenzae, N. gonorrhea(produttori di penicillinasi), E.coli, Klebsiella, Proteus,

    Pseudomonas. Inattivo verso I Gram + e gliInattivo verso I Gram + e glianaerobi.anaerobi.

    Non cross-reazione nei pz

    allergici alle penicilline!

  • 8/11/2019 Principi Tp Antibiotica 2014

    153/291

    Vancomicina

    Glicopeptide triciclico Streptomycesorientalis.

  • 8/11/2019 Principi Tp Antibiotica 2014

    154/291

    Inibisce la sintesi della parete battericalegandosi alle catene di peptidoglicanoin allungamento e prevenendo il cross-linking.

    Attivo verso i Gram +, compresiMRSA, MDRSP, enterococchi, Staph.epidermidise clostridi.

    Sinergico con AG. Azione: battericida

    Vancomicina

  • 8/11/2019 Principi Tp Antibiotica 2014

    155/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    156/291

    Vancomicina

    Resistenza: Ridotta permeabilit. Cambiamento negli aminoacidi del peptidoglicano

  • 8/11/2019 Principi Tp Antibiotica 2014

    157/291

    (da ala-ala a ala-lattato). Enterococchi vanA Reazioni avverse Febbre e brivido, ipotensione, red man syndrome.

    Somministrazione lenta!

    Ototossicit. Nefrotossicit (exp se usata con AG) Eliminazione renale (90-100%). Emivita normale 6-10 h. Emivita fino > 200 h in pz con IR grave.

    Possibilit di misurazione dei livelliplasmatici

    Teicoplanin penetrates better in tissues except brain. very long half-time (33-70 hours) and can accumulate in organism. The first three doses should be given in 12-hour period for

    saturation then the drug can be given once daily or in every-other-

  • 8/11/2019 Principi Tp Antibiotica 2014

    158/291

    saturation, then the drug can be given once daily or in every-other-

    day regime. well tolerated and can be administered in a rapid infusion, slow

    intravenous injection, or intramuscular injection. adverse effects are much less frequent.

    allergy (and also resistance) is only partially crossed betweenvancomycin and teicoplanin. the main limiting factor of teicoplanin prescription is its relatively high

    cost. teicoplanin is usually administered when vancomycin treatment can

    not be continued because of allergy, renal failure, impossibility offurther intravenous administration etc. Because of its long half-time, teicoplanin is useful for the outpatient

    therapy.

    Effetti collaterali dei glicopeptidiEffetti collaterali dei glicopeptidi

    FrequenzaFrequenzaTipoTipo VancomicinaVancomicina TeicoplaninaTeicoplanina

    TromboflebiteTromboflebite ++++++ ++++

  • 8/11/2019 Principi Tp Antibiotica 2014

    159/291

    NefrotossicitNefrotossicit ++++++ --Rash cutaneoRash cutaneo ++++ ++++

    NeutropeniaNeutropenia ++++ ++++

    OtotossicitOtotossicit ++ --SindromeSindrome red manred man ++++++ --

    Disturbi gastrointestinaliDisturbi gastrointestinali -- ++++

    EpatotossicitEpatotossicit -- +++++++ = 5+++ = 5 -- 10%; ++ = 210%; ++ = 2 -- 4,9%; + = < 2;4,9%; + = < 2; -- = assente= assente

    Vancomicina

  • 8/11/2019 Principi Tp Antibiotica 2014

    160/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    161/291

    Aminoglicosidi

  • 8/11/2019 Principi Tp Antibiotica 2014

    162/291

    Aminoglicosidi Streptomycin

    Isolated in 1943 by Selman Waksman from Streptomyces griseus Breakthrough drug for treatment of tuberculosis (Mycobacterium

    tuberculosis)

  • 8/11/2019 Principi Tp Antibiotica 2014

    163/291

    Gentamicin Isolated in 1963 from Micromonospora purpurea (mycin only if fromStrep.)

    Significant use in treatment of Gram- infections includingPseudomonas

    Kanamycin isolated in 1957 and was the Drug of choice until Gentamicin in 1963.

    Amikacin Semi-synthetic, derived from Kanamycin

    Designed to overcome resistance due to modifying enzymes

    Aminoglicosidi Binds to 30s ribosomal subunit and:

    Interferes with initiation, ribosome locked at AUG start codon of mRNA (at higherconcentrations)

    Premature termination of translation Incorporation of incorrect amino acid leading to nonsense proteins.

  • 8/11/2019 Principi Tp Antibiotica 2014

    164/291

    Highly positively charged Interacts with Gram- outer membrane and makes it leaky increased penetration of the drug. role in increasing penetration of other drugs. Scarce penetration into Gram+ envelope (do not bind Gram+ membrane)

    Bactericidal unlike most protein synthesis inhibitors This is probably due to the activity against the membrane.

    Access from periplasmic space to cytosol accomplished by energy-dependentactivebacterial ytransport mechanism requiring oxygen Non activity against anaerobic bacteria Work poorly un anaerobic and acidic environments (such as abscesses)

    Widely used for for treatment of Gram+ infection ???

    Combined with cell-wall inhibitor (synergy)

    Cell-wall disruptors increase permeability ofaminoglycoside into Gram+ cell But beta-lactams and aminoglycosides in vitro at high concentrations can interact, undergo

    chemical reaction, and inactivate each other Do not mix in the same solution This effect varies based on pairing of beta-lactam and aminoglycoside

    Aminoglicosidi Spectrum and usage:

    Gram- aerobes: Pseudomonas aeruginosa Tobramycin is more potent against Pseudomonas than gentamicin Acinetobacter spp. Enterobacteriaceae: Klebsiella, Proteus, Enterobacter, Serratia, Providencia... Haemophilus influenzae Etc.

  • 8/11/2019 Principi Tp Antibiotica 2014

    165/291

    Gram+ aerobes: used in combination with a beta-lactam or vancomycin (synergy) Streptococcus Staphylococcus

    Mycobacteria M. tuberculosis MAC

    No activity against anaerobes anaerobes lack the ability to actively take up AG into their cytosol synergism is expressed against

    BOTH some gram-positive (streptococci, enterococci) AND gram-negative (E.coli, Pseudomonas) bacteria Examples:

    Often Pseudomonas (Gram-): high intrinsic resistance to mono-therapies Infective endocarditis (Gram+): Staph, Strep viridans, Enterococci

    Aminoglicosidi Aminoglycosides are associated with significant nephrotoxicity or ototoxicity. Excreted primarily by glomerular filtration

    serum half-life will be prolonged and significant accumulation will occur in patients with impaired renalfunction.

    Toxicity may develop even with conventional doses, particularly in patients with prerenal azotemiaor impaired renal function.

    Nephrotoxicity

  • 8/11/2019 Principi Tp Antibiotica 2014

    166/291

    Usually reversible More common than ototoxicity, 5-20% of patients Aminoglycoside accumulates in proximal tubules of renal cortex, kills the cells Tubular cell degeneration can lead to sloughing of cells and fine sediment in urine

    Ototoxicity Irreversible Less common than nephrotoxicity; toxicities do not appear to be correlated

    Aminoglycoside accumulates in inner ear and leads to destruction of cochlear hair cells Produces reactive radicals that kill the hair cells Vestibular toxicity: imbalance, vertigo, tinnitus, nystagmus (involuntary eye movement)

    More frequently seen with gentamicin Auditory toxicity: high frequency hearing loss

    More common with amikacin, kanamycin (particularly damaging) Emergence unpredictable, could be after a single dose; can appear weeks after therapy is completed (continue monitoring) AG accumulate in inner ear fluids and are cleared slowly, hence latency

    Possibly a genetic factor: mutation on ribosomal RNA in mitochondria that enables AG to bind to human ribosomes; leadingto disruption of mitochondrial protein synthesis

    Neuromuscular blockage Rare Myasthenia gravis Drug induces auto-immune response that leads to blockage of neuromuscularcommunication Antibodies block acetylcholine receptors at neuromuscular junctions Fatigue, weakness

    Aminoglicosidi

  • 8/11/2019 Principi Tp Antibiotica 2014

    167/291

    PEAK LEVEL (see optimal values above) efficacy measured one hour after an infusion begins; TROUGH LEVEL (optimal:

  • 8/11/2019 Principi Tp Antibiotica 2014

    168/291

    to respect a maximal treating period of2-3 weeks, than a pause should followof minimum 4-6 weeks

    to prefer once-daily administration(except infective endocarditis wheremultiple daily doses are preferred)

    while intravenous infusion, the time of

    administration should be 30-45 minutes(the period more then 1 hour enhancesnephotoxicity, the period less then 20minutes enhances the risk ofneuromuscular blocade)

    to monitor renal (CREATININE) andauditive functions three times weekly

    to measure serum levels ofaminoglykosides (especially theTHROUG serum level)

    *advanced age, persistently high trough serumlevels, duration of therapy, hypotension, concomitantliver disease, use of other nephrotoxins (e.g.vancomycin, furosemide)

    Aminoglicosidi Gentamycin (IV/IM, opthalmic, topical)

    The go-to aminoglycoside for Gram- aerobic infections Associated with ototoxicity, especially affecting vestibular system

    Tobramycin (IV/IM, opthalmic, topical)

  • 8/11/2019 Principi Tp Antibiotica 2014

    169/291

    Greater potency compared to Gentamycin against Pseudomonas Less ototoxicity than Gentamycin, but auditory loss possible Kanamycin (IV/IM, PO)

    Can be used for intestinal infections or as sterilizing prophylaxis of the gut, oftencombined with cell-wall disruptor (beta-lactam, vanco)

    Can be profoundly ototoxic, less impact on vestibular system

    Amikacin (IV/IM) Less susceptible to enzymatic inactivation by resistance factors (side chain

    modification made Amikacin more resistant to enzyme modification) Powerful agent, reserved for cases that are resistant to Gentamycin/Tobramycin,

    so as not to foster resistance Somewhat less toxic to vestibular system than gentamycin If a bacteria is resistant to Amikacin, it is likely to be resistant to all the other

    aminoglycosides as well Potency against P. Aeruginosa:

    AMIKA > TOBRA > GENTA

    Aminoglicosidi Reserved for serious infections onlyReserved for serious infections only

    Elimination is renal (excreted unchanged by glomerular filtration): REQUIRE DOSE ADJUSTEMENT IN RENAL FAILURE!

    Does not cross blood-brain barrier into CNS Aminoglycosides work excellent in blood, in extracellular fluid, and in urine. Their effect in the

    inner area of inflammation may be poor due to limited penetrance and acidic condition. Due to serious toxicity concerns: ototoxicity, nephrotoxicity

  • 8/11/2019 Principi Tp Antibiotica 2014

    170/291

    Concentrations require monitoring IV only for severe systemic infections; majority passed unmodified in urine If the patient is predisposed to renal dysfunction, important to monitor closely

    Active against broad spectrum of Gram- aerobes and facultative anaerobes Weak coverage of Gram+ if used alone, but active if combined with another inhibitor of wall-

    syntesis such as beta-lactams or glycopeptides. Poor coverage of obligate anaerobes

    Aminoglycosides are preferably used in combination with other antibiotics. Typical indications for usage aminoglycosides include: a) severe infections or sepsis caused by gram-negative microbes and staphylococci:

    Amonoglycosides are given especially at the onset of therapy, for rapid lowering of themassive bacterial load.

    b) severe infections caused by semi-resistant microbes when monotherapy is notbactericidal: In these situations, synergistic effect of aminoglycosides and wall-affecting

    antibiotics is often utilized. Examples: nosocomial infections caused by resistant gram-negative bacteria infective endocarditis caused by streptococci or enterococci infections in immunocompromised patients in whom bactericidal activity of antibiotics is

    necessary.

  • 8/11/2019 Principi Tp Antibiotica 2014

    171/291

    Aminoglicosidi Compared to other antibiotics, resistance to aminoglycosides is rare Primarily mediated by enzymatic modification of the OH and NH2

    groups Phosphorylation Acetylation

  • 8/11/2019 Principi Tp Antibiotica 2014

    172/291

    Adenylation Encoded on plasmids, transposons Amikacyn is the most resistant AG to enzyme modification

    Pseudomonas Efflux pump removal of drug from cytosol Modified ribosomal binding site

    Methylation of 16s ribosomal RNA Single mod can knock out streptomycin binding since it has a single

    binding site; other AG have more than one, harder to evolve resistance

  • 8/11/2019 Principi Tp Antibiotica 2014

    173/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    174/291

    Tetracicline

  • 8/11/2019 Principi Tp Antibiotica 2014

    175/291

    Tetracicline First tetracycline isolated 1945 from Streptomyces aureofaciens, chlortetracycline

    (though apparently the Egyptians 1600 years ago may have benefitted fromtetracyclines in their beer and bread).

    Tetracycline is derived from Streptomyces Minocycline and doxycycline are newer sintetic molecules (longer half-life, better oral

    absorption)Ri b i i i i d h h ki i i b

  • 8/11/2019 Principi Tp Antibiotica 2014

    176/291

    absorption) Ring substitutions to positions 5, 6, and 7 change pharmacokinetic properties, but notspectra complete cross resistance

    Originally, their antimicrobial spectrum was broad: Gm+ and Gm-, plus many unusual pathogens. But significant resistance developing (except tigecycline new related molecule with

    extremely broad spectrum) Dramatic overuse in animals Chelates, forms an insoluble complex with, calcium

    Tooth discoloration of child if administered to pregnant mother, or to children < 8 y.o. Incorporates into bone, may affect bone growth in fetus

    Possibly antagonistic with amino-penicillins; they diminish each others activities.

  • 8/11/2019 Principi Tp Antibiotica 2014

    177/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    178/291

    Bacteriostatic: shuts down protein synthesis, but doesnt lead to nonsense proteins(like aminoglycosides). As a result damage to cells is less severe BACTERIOSTATIC

    TETRACYCLINES:SPECTRUM OF ACTIVITY

    Mostly the same for all tetracyclines (except tigecycline) Aerobic Gram+:

    S. pyogenes S. pneumoniae S. aureus: MSSA, CA-MRSA

    Aerobic Gram-: many are becoming resistant N. gonorrheae (significant resistance)

  • 8/11/2019 Principi Tp Antibiotica 2014

    179/291

    g (significant resistance) H. influenzae Enterobacteriacea: Klebsiella, Shigella, E. coli, Salmonella

    Atypicals: Chlamydia trachomatis (STD) and Chlamydia (aka Chlamydophilia) pneumoniae (but

    now azithromycin is preferred)

    Rickettsia rickettsii: Rocky Mountain spotted fever Borellia burgdoferi: Lyme disease Pasturella multocida: from animal bites Mycoplasma pneumoniae: walking pneumonia Brucella spp. Vibrio cholerae

    Bacillus anthracis: anthrax; 2 months treatment (spores) Treponema pallidum: syphilis (but Penicillin is the drug of choice) Plasmodia spp.: malaria prophylaxis Entamoeba histolytica

    1) Respiratory, genitourinary or ocular infections caused by chlamydiae, mycoplasmata, andureaplasmata. These infections include walking pneumonia cause dy M Pneumoniae, COPD , acute and chronic urethritis

    and/or urethral syndrome, epididymitis, cervicitis, some of pelvic inflammatory diseases, inclusionconjuctivitis and trachoma. (Alternative drugs are macrolides.)

    2) Mild COPD exacerbation (some activity against: Gram+, H. Influenzae, Serratia) 3) Rickettsial infections: Q fever, ehrlichiosis, typhus fever etc. (Alternative drug is

    TETRACYCLINES:CLINICAL USE

  • 8/11/2019 Principi Tp Antibiotica 2014

    180/291

    3) Rickettsial infections: Q fever, ehrlichiosis, typhus fever etc. (Alternative drug ischloramphenicol)

    4) Spirochetal infections: Lyme borreliosis, relapsing fever (Borrelia recurrentis), leptospirosis,syphilis and other treponemal infections. (Alternative drugs are penicillins, cephalosporines,macrolodes.)

    5) Some other anthropozoonoses caused by non-pyogenic bacteria: brucellosis,campylobacteriosis, malleus, pasteurellosis, plague, rat-bite fever, or tularemia. (Alternative drugsare fluoroquinolones.)

    6) Mild to moderate infections caused by anaerobes: acne, actinomycosis, some pelvicinflammatory diseases. (Alternative drugs are lincosamides and other antibiotics effective againstanaerobes.)

    7) Mild specific skin infections (Acne) Remember: In majority of above-mentioned pathogens, no systematic monitoring of resistance

    exists due to problems with cultivation. The percentage of resistance (and probability ofsuccessful treatment with various antibiotics) is not known.

    DUE TO RELATIVELY FREQUENT RESISTANT ISOLATES (G+ and G-),THEY ARE NOT INDICATED FOR EMPIRIC TREATMENT OF SEVEREINFECTIONS

    TETRACYCLINES:ADVERSE EFFECTS

    Do not use outdated products due to higher chance of renal toxicity(tetracycline) Drug breaks down into antimicrobially inactive compounds that may

    increase renal toxicity; use full course and do not store

    Fanconi syndrome: numerous small molecule nutrients are notreabsorbed

  • 8/11/2019 Principi Tp Antibiotica 2014

    181/291

    Fanconi syndrome: numerous small molecule nutrients are notreabsorbed Less of a problem with newer formulations (doxycycline,

    minocycline) wich are genearrly safe even in renal failure Clearance is mostly hepatic/fecal

    Accumulates in growing bone and teeth in fetuses and children.Permanently discolors the teeth and can affect bone growth. Not recommended for children < 12 y.o. or pregnant women

    (Pregnancy category D) Chelates cations: avoid dairy, iron, antacid products for 2 hours

    Esophagitis: drink a lot of water and remain upright for 30 minutes Photosensitivity

  • 8/11/2019 Principi Tp Antibiotica 2014

    182/291

    MACROLIDES Originally, exhibited a broad-spectrum antibacterial activity involving gram-positive and gram-

    negative bacteria, anaerobes, spirochetes, and obligatory intracellular pathogens (chlamydiae,mycoplasmata).

    most important drug of that time was erythromycine, isolated 1952 from a soil microbeStreptomyces erythreus.

    Its usage was limited because of frequent disagreeable side effects like diarrhea, nausea and

    vomiting. In 80ties, modern macrolides were introduced widely. Later drugs (azithro-, clarithro-, telithro-)

  • 8/11/2019 Principi Tp Antibiotica 2014

    183/291

    g, y g ( , , )have broader spectra, especially Gm-. better acid stability and oral bioavailability

    They became very popular because of low frequency of side effects and comfortable usage. Frequent resistance has been developed mainly in gram-positive cocci (staphylococci,

    streptococci, and pneumococci) and in gram-negative (enterobacteria, H.influenzae) as aconsequence of their massive prescription. The number of resistant isolates exceeds 50% in many countries and their further destiny become

    problematic. Frequently used for community-acquired respiratory infections; also for skin, otitis media (ear) Alternative drug for Strep., Staph., H. flu infections for pen-allergic Excellent tissue penetration, especially azithromycin and clarithromycin, but not to CNS

    Target the 50s large ribosomal subunit in bacteria, inhibit protein synthesis Similar MOA to clindamycin and chloramphenicol (shared binding site) Bacteriostatic, except at very high concentration can be bactericidal

    Macrolides Excellent tissue penetration But low serum levels

    Tissue:blood ratio 10-100:1 highly concentrated in tissue, especially in the lung and in tonsils Extremely high penetration into host cells (good for intracellular

    parasites such as Chlamydia) penetrates poorly into CNS synovial fluid and fetal tissues

  • 8/11/2019 Principi Tp Antibiotica 2014

    184/291

    pa as tes suc as C a yd a) penetrates poorly into CNS, synovial fluid and fetal tissues Oral bioavailability: variable

    Erythromycin (not acid stable) ~25%, should be taken on emptystomach

    Clarithromycin and azithromycin ~50% (not influeced by food) T Erythro: ~1.5-2h (administered x3 in die) Clarithro: ~3-7h (administered x2 in die) Azithro: 2-4 days (administered once in die, short courses: 5-7 days)

    a 3-day administration can make therapeutical levels in tissues for 7-14 days transported to a locus of inflammation in leukocytes. Consequently, drug

    concentration in the site of inflammation is high, whereas serumconcentration is extremely low.

    Macrolides: spectrumand clinical use

    Good Gm+ and reasonable Gm- activity Clarithromycin and azithromycin more potent than erythromycin for Gram-neg coverage

    Staph. Aureus (some isolates), but not MRSA S. pneumoniae resistance is rapidly on the rise (telitro is active against clarithro and azitro- resistant isolates) S. pyogenes M. cattarhalis

    N. menengitidis Mycoplasma (walking pneumonia)

  • 8/11/2019 Principi Tp Antibiotica 2014

    185/291

    Chlamydia Not Enterobacteriacae, cannot penetrate outer cell membrane (except for Campylobacter and some Shigella) Not Pseudomonas H. influenzae (not erythromycin), Atypicals (not easily categorized by Gram stain technique) Mycoplasma pneumoniae (walking pneumonia) Legionella pneumophilia (Legionares disease) Helicobacter pylori Chlamydia trachomatis (STD) and Chlamydia (aka Chlamydophila) pneumoniae Mycobacterium avian complex (MAC): Clarithro- and azithro-

    Uses: respiratory infections (bronchitis and mild community-acquired pneumonia), mainly in atypical pneumonia and in legionellosis. urogenital infections caused by chlamydiae, mycoplasmata, and ureaplasmata.

    may be used for treatment tonsillitis or lyme borreliosis (erythema migrans) in patients with allergy to beta-lactam antibiotics. special indications include campylobacteriosis (travelers diarrhea), tularemia in children, mycobacteriosis (in association with otherantibiotics) etc.

    NB: Except legionellosis, macrolides should not be used for treatment severe infections. Their prescriptionmust be correlated to the frequency of resistance in pathogenic microbes in every country or district.

    Generally, macrolides are not appropriate for treatment staphylococcal infections as well.

    Macrolides Clarithromycin 2-4x more potent than erythromycin

    Broader spectrum of coverage compared to erythromycin, more Gram- Somewhat more potent against Gram+ than azithro Macrolide of choice for treatment of:

    Mycobacterium avium complex (MAC); common opportunist in AIDS H. pylori

    A ith i

  • 8/11/2019 Principi Tp Antibiotica 2014

    186/291

    Azithromycin More potent than erythromycin; higher tissue conc (e.g. lungs) than clarithro- Better Gm- coverage than clarithromycin, but less Gm+ than clarithromycin Macrolide of choice for: Chlamydia trachomatis, M. catarrhalis, H. influenzae, N.

    gonorrhea (if patient is beta-lactam allergic), Legionella Used for some tougher infections: COPD exacernations, pneumonia (CAP),Legionella, mild skin infections

    Telithromycin Binds more tightly to bacterial ribosome, and in more than one site Bugs that are erythromycin resistant (and clarith-, azith- too) may be still

    susceptible to telithromycin Does not induce expression of erm (erythromycin ribosome methylase) that

    methylate parts of ribosomal RNA to reduce binding of other macrolides Similar spectrum to azithromycin, also covers Penicillin-resistant S. Pneumo (but

    not MRSA)

    Macrolides Resistance is on the rise for S. pneumo (and much more rarely, for

    S. pyogenes) Often associated with resistance to penicillin (and clindamycin)

    Common mechanisms:Methylation of ribosome binding site via erm (erythromycin ribosomal

  • 8/11/2019 Principi Tp Antibiotica 2014

    187/291

    Methylation of ribosome binding site via erm (erythromycin ribosomalmethylation) enzymes

    S pneumo Affects erythro-, clarithro-, azithro-, but NOT telithromycin

    Erm expression is inducible Active macrolide efflux pumps mef gene (macrolide efflux) S pneumo, S aureus, S epidermidis

    Rare: esterases cleave the lactone ring

    Intrinsic Enterobacteriacea resistance due to outer membrane permeability

  • 8/11/2019 Principi Tp Antibiotica 2014

    188/291

    http://www.ecdc.europa.eu/en/publications/Publications/antimicrohttp://www.ecdc.europa.eu/en/publications/Publications/antimicro bialbial--resistanceresistance--surveillancesurveillance--europeeurope--2012.pdf2012.pdf

  • 8/11/2019 Principi Tp Antibiotica 2014

    189/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    190/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    191/291

    Resistenza dello pneumococco

  • 8/11/2019 Principi Tp Antibiotica 2014

    192/291

    Macrolides: adverse effects Erythromycin

    GI discomfort, diarrhea (13-32%) sometimes used as a prokinetic QT prolongation risk of ventricular arrhythmias. Careful with other drugs that can have QT prolongation Drug interactions:

    P-glycoprotein inhibitor: e.g. interacts with digoxin CPY3A4 inhibitor: e.g. interacts with carbamazepine, cyclosporin CYP1A2 inhibitor: e.g. interacts with theophyline and caffeine

    Clarithromycin Drug interactions. E g many anti-retroviral drugs interact (not to be used with HIV patients)

  • 8/11/2019 Principi Tp Antibiotica 2014

    193/291

    E.g. many anti-retroviral drugs interact (not to be used with HIV patients) Colchicine

    QT prolongation risk of ventricular arrhythmias. Careful with other drugs that can have QT prolongation Teratogenic effects observed in animal models (Pregnancy category C) Dizziness

    Azithromycin Few drug interactions Do not take with antacids, impairs absorption Rare hepatotoxicity QT prolongation risk of ventricular arrhythmias. Careful with other drugs that can have QT prolongation Pregnancy category B

    Telithromycin Potentially fatal liver toxicity found after it was on the market (FDA Boxed warning) Aggravates myasthenia gravis Due to potentially severe adverse effects, telithromycin not to be used for mild cases or to treat bronchitis,

    sinusitis. Removed indications for those. NOW, only indicated use is CAP (and as an alternative option)

  • 8/11/2019 Principi Tp Antibiotica 2014

    194/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    195/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    196/291

    SULFA DRUGSFolic Acid Pathway Inhibitors

  • 8/11/2019 Principi Tp Antibiotica 2014

    197/291

    SULFA DRUGSFolic Acid Pathway Inhibitors

    SULFONAMIDES, TRIMETHOPRIMSULFONAMIDES, TRIMETHOPRIM

    selective toxicity:selective toxicity:

    sulfonamides: animal cells do not make folate, wesulfonamides: animal cells do not make folate, weabsorb it from the environmentabsorb it from the environment

  • 8/11/2019 Principi Tp Antibiotica 2014

    198/291

    trimethoprim: has much higher affinity for thetrimethoprim: has much higher affinity for thebacterial DHFR than the mammalian DHFRbacterial DHFR than the mammalian DHFR

    (1:50.000(1:50.000100.000)100.000)

    co-trimoxazole = trimethoprim + sulfamethoxazole TMP/SMX (ratio 1:5)

    TMP-SMX

    SMX is a PABA analog thatbinds to dihydropteroatesynthase (synthatase) andprevents it from using PABA

    TMP binds to and inhibitsdihydrofolate reductase

  • 8/11/2019 Principi Tp Antibiotica 2014

    199/291

    Depleting folic acid hinders theeventual production of DNA sobacteria are unable toreproduce

    SMX given with TMP synergistic effect Alone, each is bacteriostatic,

    together bactericidal

    85% bioavailable, not affected by food Broad distribution in tissues (penetrate

    excellently into tissues and cells).

    TMP is more lipophilic, so it gets concentrated tohigher levels in tissue than SMX, so 1:5

  • 8/11/2019 Principi Tp Antibiotica 2014

    200/291

    higher levels in tissue than SMX, so 1:5(SMX:TMP) ends up ~1:20, which is optimal forsynergy

    Both penetrate to CSF and across and placentalbarrier

    SMX gets acetylated in the liver, TMP is

    excreted in urine unchanged

    Synergistic combinations ofTrimethoprim & Sulfamethoxazole

    (Bactrim) Staph sensitivity Sulfamethoxazole MIC = 3 ug/ml Trimethoprim MIC = 1 ug/ml combo MIC = 0.3 Sulf & 0.015 Trim

  • 8/11/2019 Principi Tp Antibiotica 2014

    201/291

    20:1 ratio most effective20:1 ratio most effective

    Advantages more likely to be cidal broader spectrum decreased resistance lower doses = lower toxicity

  • 8/11/2019 Principi Tp Antibiotica 2014

    202/291

    TMP-SMX: clinical uses

    severe diarrheal diseases with fever (especially ifsalmonella is expected to be the cause) urinary tract infections (if local E. Coli resistant rates

  • 8/11/2019 Principi Tp Antibiotica 2014

    203/291

    However, co trimoxazol is rather a drug of second choice formost of these infections because safer and/or more effectivealternatives do exist.

    Special indications include therapy or prophylaxis in HIV/AIDS patients (pneumocystosis,

    toxoplasmosis) Nocardiosis

    Brucellosis long-term treatment of staphylococcal osteomyelitis etc.

    TMP-SMX adverse reactions

    Crystallurea Metabolized sulfonamides are insoluble and form crystals in urea Maintain hydration

    Sulfonamides compete for bilirubin-binding sites on plasma albumin andmay increase blood levels of unconjugated bilirubin Kernicterus (can notbe given to pregnant women or to newborns and sucklings up to the age of

    2 months) In G6PD-deficient patients, risk of hemolytic anemia Clearance is throug hepatic acetylation Slow acetylators have a higher

  • 8/11/2019 Principi Tp Antibiotica 2014

    204/291

    Clearance is throug hepatic acetylation Slow acetylators have a higherrisk of developing toxicity

    Many drug-interactions, for example: warfarin, cyclosporin, rifampin,

    dapsone, phenytoin, etc Hypersensitivity allergic reaction (6-8%): Rash Urticaria Erythema multiforme Steven-Johnson Syndrome Toxic epidermal necrolysis

    HIV-patients show more frequent and more severe hypersensivity reactions(25-50%)

  • 8/11/2019 Principi Tp Antibiotica 2014

    205/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    206/291

    Fluorochinoloni

    Ciprofloxacina (Ciproxin; OS/EV) Levofloxacina (Tavanic; OS/EV) Moxifloxacina (Avalox; OS).

    Derivati sintetici dellacido nalidixico

  • 8/11/2019 Principi Tp Antibiotica 2014

    207/291

    Derivati sintetici dell acido nalidixico.

    Azione: battericida. Agiscono sia su microorganismi in fase di

    crescita che in fase stazionaria

    Alta concentrazione nelle urine e ottimapenetrazione nei tessuti

  • 8/11/2019 Principi Tp Antibiotica 2014

    208/291

    Inibiscono le DNA girasi etopoisomerasi IV: blocco del processodi duplicazione e trascrizione del DNA

    Resistenza ai fluoroquinoloni

    Mutazione della DNA Girasi (comune) Efflux-pump

    Riduzione del numero di porine ridottoingresso intracellulare.

  • 8/11/2019 Principi Tp Antibiotica 2014

    209/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    210/291

    Spettro antibiotico

    Efficace vs. gram +, gram (incl Pseudomonas), atipici.

    Fluorochinoloni respiratori (levofloxacina e moxifloxacina). Attivi verso Strep(incluse forme penicillino resistenti), S.

    aureus(not MRSA), H. influ, M. cat(including penicillin-resistant strains), e atipici. Utilizzati in AOM, sinusite, faringite

  • 8/11/2019 Principi Tp Antibiotica 2014

    211/291

    a , s s , a g

    Fluorochinoloni antipseudomonas (ciprofloxacin/ofloxacin)

    Attivi contro Pseudomonas, H. flu, M. cat. Strep pyogenes, Strep pneumoniae, eMRSA sono resistenti. In profilassi nei pz con fibrosi cistica. Formulazione topica.

    Levofloxacina e Moxifloxacina hanno attivit anche

    verso ceppi di Staphcipro-resistenti. Ottimi farmaci anti TB (oflo, levo, moxi)

    Fluorochinoloni

    Ciprofloxacin Osteomyelitis, peritonitis, pneumonia, sepsis, UTI,

    infectious diarrhea, gonorrhea, otitis, soft tissue

    infections (good penetration into lungs, tissue, bone,and peritoneum) Active against gram negative organisms no anaerobe

  • 8/11/2019 Principi Tp Antibiotica 2014

    212/291

    Active against gram negative organisms, no anaerobecoverage, little to no strep coverage

    Pseudomonas activity notable (better than other FQ) Levofloxacin

    Better gram positive activity including staph, strep and

    Enterococcus faecalis

  • 8/11/2019 Principi Tp Antibiotica 2014

    213/291

    Fluorochinoloni

    Effetti collaterali. Cefalea, nausea/vomito, vertigini. Tendinopatie e rotture tendinee, artralgie. Abbassano la soglia epilettogena (CIPRO>LEVO) Ipoglicemia (gatifloxacina ritirata dal mercato) Allungamento QT

  • 8/11/2019 Principi Tp Antibiotica 2014

    214/291

    (Sparfloxacin, Grepafloxacin) > Moxifloxacin, Levofloxacin >Ciprofloxacin

    Riacutizzazione di miastenia gravis Da evitare nei bambini (possibile accumulo nelle

    cartilagini in accrescimento)

    Ottimo assorbimento enterico, ma non assumere concationi.

    Linezolid

    Unico rappresentante della classe oxazolinidoni Meccanismo di azione: legame con la subunita

    23S del ribosoma batterico batteriostatico Zyvoxid (OS/EV) 300mg die fino a 600mg BID

    Otti bi t OS (bi di ibilit

  • 8/11/2019 Principi Tp Antibiotica 2014

    215/291

    Ottimo assorbimento per OS (biodisponibilita

    circa 100%). Spettro dazione: batteri G+ inclusi MRSA,

    VISA, VRSA, VRE. Mycobacterium

    tuberculosis Non attivo contro batteri G-!

    Linezolid

    Precauzioni: uso concomitante di MAOi, SSRIs,amitriptilina

    Effetti collaterali: Neuropatia ottica Mielosoppressione

  • 8/11/2019 Principi Tp Antibiotica 2014

    216/291

    Mielosoppressione Acidosi lattica Neuropatia periferica

    Ottima diffusione nei tessuti

  • 8/11/2019 Principi Tp Antibiotica 2014

    217/291

  • 8/11/2019 Principi Tp Antibiotica 2014

    218/291

    Metronidazole

    Bactericidal, cytotoxic to obligate anaerobes and somefacultative anaerobes

    Concentration-dependent killing Diffuses across bacterial membranes Essentially 100% bioavailable after oral administration Reaches very high serum concentrations

    E ll t ti t ti

  • 8/11/2019 Principi Tp Antibiotica 2014

    219/291

    Excellent tissue penetration

    Penetrates blood-brain barrier to CSF (~45%/100% for -/+ meningitis) Good penetration into brain abscesses Metabolized in the liver

    If there is liver impairment, serum