75
Neurons II CA6 – Theoretical Neuroscience Romain Brette ([email protected]

Neurons II CA6 – Theoretical Neuroscience Romain Brette ([email protected])

Embed Size (px)

Citation preview

Page 1: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Neurons II

CA6 – Theoretical Neuroscience

Romain Brette ([email protected])

Page 2: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Today1. The integrate-and-fire model2. Simulation of neural networks3. Dendrites

Page 3: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Books Principles of Computational Modelling in Neuroscience,

by Steratt, Graham, Gillies, Willshaw, Cambridge University Press

Theoretical neuroscience, by Dayan & Abbott, MIT Press

Spiking neuron models, by Gerstner & Kistler, Cambridge Univerity Press

Dynamical systems in neuroscience, by Izhikevich, MIT Press

Biophysics of computation, by Koch, Oxford University Press

Introduction to Theoretical Neurobiology, by Tuckwell, Cambridge University Press

Page 4: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The integrate-and-fire model

Page 5: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The Hodgkin-Huxley model

Model of the squid giant axon

Nobel Prize 1963

nVndt

dnV

hVhdt

dhV

mVmdt

dmV

VEngVEhmgVEgdt

dVC

n

h

m

KKNall

)()(

)()(

)()(

)()()( 43

Page 6: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The Hodgkin-Huxley model

Page 7: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The spike threshold

spike threshold

action potential or « spike »

postsynaptic potential (PSP)

temporal integration

Page 8: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The sodium current

mVmdt

dmVm )()(

)( VEmgI Na

max. conductance (= all channels open)

reversal potential(= 50 mV)

mVmdt

dmV

VEmgVEgdt

dVC

m

Nall

)()(

)()(

Page 9: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Triggering of an action potential

mVmdt

dmV

VEmgVEgdt

dVC

m

Nall

)()(

)()(

The time constant of the sodium channel is very short (fraction of ms):we approximate )(Vmm

)())(()( VfVEVmgVEgdt

dVC Nall

Page 10: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Triggering of an action potential

)())(()( VfVEVmgVEgdt

dVC Nall

V

f(V)

0V1 ≈ El V2 V3 ≈ ENa

fixed points

stable stable

unstable

What happens when the neuron receives a presynaptic spike? V -> V+w

Below V2, we go back to rest,above V2, the potential grows (to V3 ≈ ENa)

V2 is the threshold

Page 11: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The integrate-and-fire model

spike threshold

action potential

PSP

« Integrate-and-fire »: RIVEdt

dVmL

m

If V = Vt (threshold)then: neuron spikes and V→Vr (reset)

(phenomenological description of action potentials)

« postsynaptic potential »

Page 12: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Is this a sensible description of neurons?

Page 13: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

A phenomenological approach

Injected current

Recording

Model

(IF with adaptive threshold fitted with Brian + GPU)

Fitting spiking models to electrophysiological recordings

Rossant et al. (Front. Neuroinform. 2010)

Page 14: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Results: regular spiking cell

Winner of INCF competition: 76%(variation of adaptive threshold IF)

Rossant et al. (2010). Automatic fitting of spiking neuron models to electrophysiological recordings(Frontiers in Neuroinformatics)

Page 15: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Good news

Adaptive integrate-and-fire models are good phenomenological models!(response to somatic injection)

Page 16: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The firing rateT = interspike interval (ISI)

Firing rateF= 10 spikes/ 100 ms = 100 Hz

nTF

1

(Tn = tn+1-tn)

Page 17: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Constant current

Firing condition:

Time to threshold:

RIVEdt

dVmL

m

tL VRIE

R

EVI Lt

threshold Vt

reset Vr

tL

mL

VRIE

VRIET

)0(

log

tL

rL

VRIE

VRIET

log from reset

« Rheobase current »

Page 18: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Current-frequency relationship1

log1

tL

rL

VRIE

VRIE

TF

Page 19: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Refractory period

Δ = refractory period

tL

rL

VRIE

VRIET

log from reset

1

log1

tL

rL

VRIE

VRIE

TF max 1/Δ

Page 20: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Simulating neural networks with Brian

Page 21: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Who is Brian?

briansimulator.org

Page 22: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)
Page 23: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)
Page 24: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Example: current-frequency curvefrom brian import *

N = 1000tau = 10 * mseqs = '''dv/dt=(v0-v)/tau : voltv0 : volt'''group = NeuronGroup(N, model=eqs, threshold=10 * mV, reset=0 * mV, refractory=5 * ms)group.v = 0 * mVgroup.v0 = linspace(0 * mV, 20 * mV, N)

counter = SpikeCounter(group)

duration = 5 * secondrun(duration)plot(group.v0 / mV, counter.count / duration)show()

Page 25: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Simulating neural networks with Brian

Page 26: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Synaptic currents

synaptic current

postsynaptic neuron

synapse

Is(t)

smLm RIVE

dt

dV

Page 27: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Idealized synapse Total charge Opens for a short duration Is(t)=Qδ(t)

sIQ

Dirac function

)(tRQVEdt

dVmL

m EL

t

Lm eRQ

EtV

)(

RQVV

VEdt

dV

mm

mLm

Spike-based notation:

at t=0

Page 28: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Example: a fully connected networkfrom brian import *

tau = 10 * msv0 = 11 * mVN = 20w = .1 * mV

group = NeuronGroup(N, model='dv/dt=(v0-v)/tau : volt', threshold=10 * mV, reset=0 * mV)

W = Connection(group, group, 'v', weight=w)

group.v = rand(N) * 10 * mV

S = SpikeMonitor(group)

run(300 * ms)

raster_plot(S)show()

Page 29: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Example: a fully connected networkfrom brian import *

tau = 10 * msv0 = 11 * mVN = 20w = .1 * mV

group = NeuronGroup(N, model='dv/dt=(v0-v)/tau : volt', threshold=10 * mV, reset=0 * mV)

W = Connection(group, group, 'v', weight=w)

group.v = rand(N) * 10 * mV

S = SpikeMonitor(group)

run(300 * ms)

raster_plot(S)show()

R.E. Mirollo and S.H. Strogatz. Synchronization of pulse-coupled biological oscillators. SIAM Journal on Applied Mathematics 50, 1645-1662 (1990).

Page 30: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Example 2: a ring of IF neuronsfrom brian import *

tau = 10 * msv0 = 11 * mVN = 20w = 1 * mV

ring = NeuronGroup(N, model='dv/dt=(v0-v)/tau : volt', threshold=10 * mV, reset=0 * mV)

W = Connection(ring, ring, 'v')for i in range(N): W[i, (i + 1) % N] = w

ring.v = rand(N) * 10 * mV

S = SpikeMonitor(ring)

run(300 * ms)

raster_plot(S)show()

Page 31: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Example 2: a ring of IF neuronsfrom brian import *

tau = 10 * msv0 = 11 * mVN = 20w = 1 * mV

ring = NeuronGroup(N, model='dv/dt=(v0-v)/tau : volt', threshold=10 * mV, reset=0 * mV)

W = Connection(ring, ring, 'v')for i in range(N): W[i, (i + 1) % N] = w

ring.v = rand(N) * 10 * mV

S = SpikeMonitor(ring)

run(300 * ms)

raster_plot(S)show()

Page 32: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Example 3: a noisy ringfrom brian import *

tau = 10 * mssigma = .5N = 100mu = 2

eqs = """dv/dt=mu/tau+sigma/tau**.5*xi : 1"""

group = NeuronGroup(N, model=eqs, threshold=1, reset=0)

C = Connection(group, group, 'v')for i in range(N): C[i, (i + 1) % N] = -1

S = SpikeMonitor(group)trace = StateMonitor(group, 'v', record=True)

run(500 * ms)subplot(211)raster_plot(S)subplot(212)plot(trace.times / ms, trace[0])show()

Page 33: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Example 3: a noisy ringfrom brian import *

tau = 10 * mssigma = .5N = 100mu = 2

eqs = """dv/dt=mu/tau+sigma/tau**.5*xi : 1"""

group = NeuronGroup(N, model=eqs, threshold=1, reset=0)

C = Connection(group, group, 'v')for i in range(N): C[i, (i + 1) % N] = -1

S = SpikeMonitor(group)trace = StateMonitor(group, 'v', record=True)

run(500 * ms)subplot(211)raster_plot(S)subplot(212)plot(trace.times / ms, trace[0])show()

Page 34: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Example 4: topographic connectionsfrom brian import *

tau = 10 * msN = 100v0 = 5 * mVsigma = 4 * mVgroup = NeuronGroup(N, model='dv/dt=(v0-v)/tau + sigma*xi/tau**.5 : volt', threshold=10 * mV, reset=0 * mV)C = Connection(group, group, 'v', weight=lambda i, j:.4 * mV * cos(2. * pi * (i - j) * 1. / N))S = SpikeMonitor(group)R = PopulationRateMonitor(group)group.v = rand(N) * 10 * mV

run(5000 * ms)subplot(211)raster_plot(S)subplot(223)imshow(C.W.todense(), interpolation='nearest')title('Synaptic connections')subplot(224)plot(R.times / ms, R.smooth_rate(2 * ms, filter='flat'))title('Firing rate')show()

Page 35: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Example 4: topographic connectionsfrom brian import *

tau = 10 * msN = 100v0 = 5 * mVsigma = 4 * mVgroup = NeuronGroup(N, model='dv/dt=(v0-v)/tau + sigma*xi/tau**.5 : volt', threshold=10 * mV, reset=0 * mV)C = Connection(group, group, 'v', weight=lambda i, j:.4 * mV * cos(2. * pi * (i - j) * 1. / N))S = SpikeMonitor(group)R = PopulationRateMonitor(group)group.v = rand(N) * 10 * mV

run(5000 * ms)subplot(211)raster_plot(S)subplot(223)imshow(C.W.todense(), interpolation='nearest')title('Synaptic connections')subplot(224)plot(R.times / ms, R.smooth_rate(2 * ms, filter='flat'))title('Firing rate')show()

Page 36: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

A more realistic synapse model Electrodiffusion: )( msss VEgI

ionic channel conductance

synaptic reversal potential

gs(t)

presynaptic spike

open closed

))(( mssmLm VEtRgVE

dt

dV

« conductance-based integrate-and-fire model »

Page 37: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Example: random networkfrom brian import *

taum = 20 * msecondtaue = 5 * msecondtaui = 10 * msecondEe = 60 * mvoltEi = -80 * mvolt

eqs = '''dv/dt = (-v+ge*(Ee-v)+gi*(Ei-v))*(1./taum) : voltdge/dt = -ge/taue : 1dgi/dt = -gi/taui : 1'''

P = NeuronGroup(4000, model=eqs, threshold=10 * mvolt, reset=0 * mvolt, refractory=5 * msecond)Pe = P.subgroup(3200)Pi = P.subgroup(800)we = 0.6wi = 6.7Ce = Connection(Pe, P, 'ge', weight=we, sparseness=0.02)Ci = Connection(Pi, P, 'gi', weight=wi, sparseness=0.02)P.v = (randn(len(P)) * 5 - 5) * mvoltP.ge = randn(len(P)) * 1.5 + 4P.gi = randn(len(P)) * 12 + 20

S = SpikeMonitor(P)

run(1 * second)raster_plot(S)show()

Page 38: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Example: random networkfrom brian import *

taum = 20 * msecondtaue = 5 * msecondtaui = 10 * msecondEe = 60 * mvoltEi = -80 * mvolt

eqs = '''dv/dt = (-v+ge*(Ee-v)+gi*(Ei-v))*(1./taum) : voltdge/dt = -ge/taue : 1dgi/dt = -gi/taui : 1'''

P = NeuronGroup(4000, model=eqs, threshold=10 * mvolt, reset=0 * mvolt, refractory=5 * msecond)Pe = P.subgroup(3200)Pi = P.subgroup(800)we = 0.6wi = 6.7Ce = Connection(Pe, P, 'ge', weight=we, sparseness=0.02)Ci = Connection(Pi, P, 'gi', weight=wi, sparseness=0.02)P.v = (randn(len(P)) * 5 - 5) * mvoltP.ge = randn(len(P)) * 1.5 + 4P.gi = randn(len(P)) * 12 + 20

S = SpikeMonitor(P)

run(1 * second)raster_plot(S)show()

Page 39: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Temporal coding

Page 40: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Reliability of spike timing

Mainen & Sejnowski (1995)

The same constant current is injected 25 times.

The timing of the first spike is reproducible

The timing of the 10th spike is not

Page 41: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Reliability of spike timing Time of spike n:

Constant current:

Similar constant current: I+δ

nnn Ttt 1

1

11

n

iin Ttt

)()1()1( 11 IfntTnttn

))()()(1()()( IfIfnItIt nn the distance between spikes grows linearly

Page 42: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Reliability of spike timing Constant current + noise:

Variance:

1

11

n

iin Ttt noise smallTTi

)noise smallvar()1()var( ntnthe distance between spikes grows as n

Page 43: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

But

Mainen & Sejnowski (1995)

The same variable current is injected 25 times

The timing of spikes is reproductible even after 1 s.

(cortical neuron in vitro, injection at soma)

Page 44: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

In the integrate-and-fire model

)(tRIVEdt

dVmL

m and if Vm=Vt: Vm → Vr

in silico in vitro

Spikes are precise if the injected current is variable

Page 45: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Dendrites

Page 46: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The dendritic tree

So far we assumed the potential is the same everywhere on the neuron (« point model » or « isopotential model »)

Not true!

Page 47: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Electrical model of a dendrite

outside

inside

Assumptions:• Extracellular milieu is conductor (= isopotential)• Intracellular potential varies mostly along the dendrite (not across)

dx

Let V(x) = Vintra(x) - Vextra

Page 48: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Electrical model of a dendrite

V(x) V(x+dx))(xI i

x

V

RdxR

dxxVxVxI

aai

1)()()(

Page 49: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Electrical model of a dendrite

dx

Capacitance: dxdCdxC m

d

specific membrane capacitanceMembrane resistance:

dxd

R

dx

R m

specific membrane resistance

Axial resistance:

2

4

d

dxRdxR i

a

intracellular resistivity

Page 50: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The cable equation

LEVt

V

x

V

2

22

Kirchhoff’s law at position x:

mmCR

i

m

R

dR

4

membrane time constant

space constant or« electrotonic constant »

Page 51: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

SynapsesIs(t) = synaptic current at position x

Discontinuity of longitudinal current at position x:

)(),(),( tItxItxI sii

)(),(1

),(1

tItxx

V

Rtx

x

V

R saa

Page 52: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Stationary response

LEVt

V

x

V

2

22

LEVdx

Vd

2

22

Let EL=0 (reference potential)

Vdx

Vd

2

22

Solutions: //)( xx beaexV

We need boundary conditions to determine a and b

Page 53: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Stationary response: infinite cableI = (constant) current at x=0

V(x) is bounded

Itx

V

Rt

x

V

R aa

),0(1

),0(1

Exponential solution on each half-cylinder:

/

2)( xa e

IRxV

d

RR m

a

Page 54: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Green functionI(t) = current at position x=0

bounded V(x)

)(),0(1

),0(1

tItx

V

Rt

x

V

R aa

Let G(x,t) the solution of the cable equation with condition LV=δ(t).Then:

0

)(),(),( dsstIsxGtxV

G = Green function

(convolution)

Page 55: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Green functionI(t) = current at position x=0

bounded V(x)

)(),0(1

),0(1

ttx

V

Rt

x

V

R aa

)()4

exp(4

1),(

2

2

tHt

xt

tCtxG

(Fourier transform)

(Gaussian for x)

Page 56: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Dendritic delay

t

V

time to maximum = t*(x)

0*),(

txt

V

0*),()(log

tx

t

V

simpler (and equivalent:)

)/1(82

)(* xoxxt

(Pseudo) propagation speed:2

v proportional to d

Page 57: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The dendritic tree

not really a cylinder

but almost: connected cylinders

Page 58: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Cable equation on the dendritic tree On each cylinder k:

At each branching point:

kkk

k Vt

V

x

V

2

22

i

mkk R

Rd

4

0

2

1

Continuity of potential:

Kirchhoff’s law

)0()0()( 210 VVLV

L),0(

1),0(

1),(

1 2

2

1

1

0

0

tx

V

Rt

x

V

RtL

x

V

R

2

4

k

ik d

RR

Page 59: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Cable equation on the dendritic tree At endings:

At the soma:

Kirchhoff’s law:

No current across:

0),(

tLx

Vk

0isopotential

),0(),0(),0(1

000

0

tVgtt

VCt

x

V

R L

transmembrane current

Page 60: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Cable equation on the dendritic tree Synapses: Is(t) = synaptic current at position x

)(),(1

),(1

tItxx

V

Rtx

x

V

R sk

k

k

k

Page 61: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Cable equation on the dendritic tree Summary:

kkk

k Vt

V

x

V

2

22

Linear homogeneous PDEs

)0(

)0(

)(

2

1

00

k

k

kk

V

V

LV

),0(1

),0(1

),(1 2

2

1

10

0

0

tx

V

Rt

x

V

RtL

x

V

Rk

k

k

kk

k

k

Synapses:

0),(

tLx

Vk

),0(),0(),0(1

000

0

tVgtt

VCt

x

V

R L

Linear homogeneous conditions:

Lj(V)=0

linear operator

)(),(1

),(1

tItxx

V

Rtx

x

V

R sk

k

k

k

)()( tIVS s

Page 62: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Superposition principle Postsynaptic potential PSPj(t):

solution at soma of

Solution for multiple spikes at all synapses:

kkk

k Vt

V

x

V

2

22

)()( tIVS jj

Lj(V)=0

synaptic current at synapse jfor a spike at time 0

PSPj(t)=V(0,t)

cable equation

homogeneous conditions(branchings, etc)

kj

kjttPSPtV

,

)(),0( kth spike at synapse j

Page 63: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Dendrites: summary Membrane equation ⟶ partial

differential equation « the cable equation »

Linearity ⇒ superposition principle

Different story with non-linear conductances!

ji

jiim ttPPStV

,

)()(

jiii VEgV

x

V

t

V

,2

22 )(

See: Biophysics of computation, by Christof Koch, Oxford University Press

Page 64: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Variations around the integrate-and-fire model

Page 65: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The « perfect integrator » Neglect the leak current:

Or more precisely: replace Vm by

)(tRIVEdt

dVmL

m

2rt VV

)(2

tRIVV

Edt

dV rtL

m

2rt VV

Page 66: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The perfect integrator

Normalization Vt=1, Vr=0

)(tIdt

dV and if V=Vt: V → Vr

= change of variable for V:V* = (V-Vr)/(Vt-Vr)idem for I

)(2/)()(* tRIVVEtI rtL

Page 67: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The perfect integrator Constant current

Integration: Time to threshold:

Firing rate:

Idt

dV

ItVtV )0()(

IT

1

IT

F 1

if I>0

Page 68: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The perfect integrator Variable threshold

Integration:

Firing rate:

)(tIdt

dV

t

dssIVtV0

)()0()(

IF

)2sin(2

1)( fttI

0Iif

0F otherwiseHz

Page 69: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Comparison with integrate-and-fire: constant current

R

Good approximation far from threshold(proof: Taylor expansion)

Page 70: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Spike timing: the perfect integrator is not reliable

2 different initial conditions:

2 slightly different inputs (ex. noise):

)(1 tIdt

dV )(2 tI

dt

dV

constant difference modulo 1

)(1 tIdt

dV )()(2 ttI

dt

dV

the difference grows ast

dss0

)( tO

(modulo 1)if ε(t) = noise

Page 71: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The quadratic IF model Comes from bifurcation analysis of HH model,

i.e., for constant near-threshold input.

More realistic current-frequency curve (contant input)

But not realistic in fluctuation-driven regimes (noisy input)

RIVVVVadt

dVt ))(( 0

Resting potential Threshold

Spikes when V>Vmax (possibly infinity)

Page 72: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The exponential integrate-and-fire model

Boltzmann functionVa=-30 mV, ka=6 mV(typical values)

(Fourcaud-Trocmé et al., 2003)

The exponential integrate-and-fire model

Spike initiation is due to the sodium (Na) channel

)()( 3 VEhmgVEgdt

dVC Nall

INa

)exp(~a

TNa k

VVI

(spike when V diverges to infinity)

Page 73: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

The exponential integrate-and-fire model

(Fourcaud-Trocmé et al., 2003)

Na+ current (fast activation)

Brette & Gerstner (J Neurophysiol 2005)Gerstner & Brette (Scholarpedia 2009)

With adaptation, it predicts output spike trains of Hodgkin-Huxley models

Badel et al. (J Neurophysiol 2008)

V

The exponential I-V curve fits in vitro recordings

Page 74: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Izhikevich model

Fig. from E. M. Izhikevich, IEEE Transactions on Neural Networks 14, 1569 (2003).

Many neuron types by changing a few parameters

Comes from bifurcation analysis of HH equations with constant inputs near threshold→ not correct for fluctuation-driven regimes

Page 75: Neurons II CA6 – Theoretical Neuroscience Romain Brette (romain.brette@ens.fr)

Adaptive exponential model Same as Izhikevich model, but with exponential initiation

Spike:V → Vr

w → w + bwEVadt

dw

IwVV

gEVgdt

dVC

lw

T

TTLLL

)(

)exp()(

More realistic for fluctuation-driven regimes

Brette, R. and W. Gerstner (2005). J Neurophysiol 94: 3637-3642.