24
1 BUA650 1 Understanding the Scale of the Problem: US Energy Sources and CO2 Emissions Pete Wilcoxen Departments of Economics and Public Administration The Maxwell School, Syracuse University BUA/ECS 650/EST 696 March 22, 2010 BUA650 2 US greenhouse gas emissions in 2005 160 ‐‐ Halocarbons 367 1.2 Nitrous Oxide 612 27 Methane 6008 6008 Carbon Dioxide mmt CO2e mmt Gas mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalent

mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

Embed Size (px)

Citation preview

Page 1: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

1

BUA650 ‐ 1

Understanding the Scale of the Problem:US Energy Sources and CO2 Emissions

Pete WilcoxenDepartments of Economics and Public AdministrationThe Maxwell School, Syracuse University

BUA/ECS 650/EST 696March 22, 2010

BUA650 ‐ 2

US greenhouse gas emissions in 2005

160‐‐Halocarbons

3671.2NitrousOxide

61227Methane

60086008Carbon Dioxide

mmt CO2e

mmt Gas

mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalent

Page 2: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

2

BUA650 ‐ 3

Where does the CO2 originate?

• Equivalent measures: 12 tons of carbon  44 tons of CO2

BUA650 ‐ 4

Controlling CO2 emissions

• Natural result of combustion▫ Not an impurity like sulfur▫ Not from poor combustion (ozone, NOx, particulates)

• Reductions require either or both of the following▫ Reduction in fuel use▫ Capture and sequestration of CO2

Page 3: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

3

BUA650 ‐ 5

Fuel use and energy units

• National fuel use is measured in quads▫ 1 quad = 1 quadrillion British Thermal Units (BTU)▫ quadrillion = 10^15

▫ 1 quad = 10^15 BTU = about 1 exajoule (10^18 J)

BUA650 ‐ 6

Putting a quad in perspective ...

• Coal delivered by “unit trains”▫ 100 cars, about 1 mile long

• 1 train = 10,000 tons of coal▫ Fuels a 500 MW power plant for 

about 2.5 days

• 1 quad = 4,500 unit trains

• Powder River Basin in WY:▫ 60 trains a day

Photo: University of Wyoming

Page 4: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

4

BUA650 ‐ 7

How many supertankers?

• 1 tanker = 1 million barrels of oil

• 1 quad = 170 tankers• US used 21 million barrels per day (57% imported) in 2005

BUA650 ‐ 8

How much energy is used?

• World energy consumption▫ 400 quads per year▫ 1 quad every 22 hours

• US consumption▫ 100 quads per year▫ 25% of the world total

Page 5: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

5

Page 6: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

6

BUA650 ‐ 11

A very large problem ...

• US fossil energy▫ 86 quads

• US emissions▫ 6 billion tons of CO2 or 1.7 billion tons of C

• Limiting temperature increase to 2° C▫ Need to bring CO2 down by more than 80%▫ Obama Administration’s goal: 83% reduction by 2050

BUA650 ‐ 12

Four options for abatement

• Fuel switching▫ Shift to fuels with lower CO2 for 

given energyExample: coal to gas for electricity

• Improve efficiency▫ Use fuels more efficiently to 

produce lighting, heating, etc.Example: better lights

• Reduce energy services▫ Use less lighting, heating, etc.

Example: turn lights off

• Capture and sequester CO2▫ Store in old oil reservoirs or saline 

aquifers

Page 7: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

7

BUA650 ‐ 13

Fuel switching

BUA650 ‐ 14

Efficiency improvements

Page 8: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

8

BUA650 ‐ 15

Service reductions

BUA650 ‐ 16

Page 9: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

9

BUA650 ‐ 17

Abating vehicle emissions

• Shift fuel mix ‐‐ less CO2 per unit of energy, less imported oil▫ Toward natural gas▫ Toward biofuels (really feasible?)▫ Toward electricity with sequestration

• Improve fuel efficiency ‐‐ less energy per mile▫ Hybrids▫ Advanced diesel▫ Public transportation

• Reduce driving ‐‐ fewer miles▫ Live closer to work▫ Change habits

BUA650 ‐ 18

Electric sector has multiple roles

• Adapting to climate change▫ Higher summer temperatures▫ Potentially greater peak demand for electricity

• Implementing climate policies▫ Generation and delivery of renewable power▫ Replace on‐site fuel use in order to sequester carbon▫ Support plug‐in hybrids

• Implications▫ Even greater role for the grid

Page 10: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

10

BUA650 ‐ 20

Key problem for power producers...

• Need to follow variations in demand▫ Electricity essentially non‐storable at the grid level

• Power demand varies strongly over the day▫ Higher during the day than at night

• Also varies strongly over the year▫ Higher in the summer due to air conditioning

Page 11: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

11

BUA650 ‐ 21

California load curve

• Independent System Operator▫ CAISO▫ Operates part of the electrical grid

• Data for March 22, 2010

• Demand (red curve):▫ Min at 3:30 am, 19 GW▫ Max at 9:00 pm, 28 GW▫ Max is 47% higher

• Capacity (green curve):▫ 28–31 GW

BUA650 ‐ 22

Types of plants

• Base load▫ Run almost all the time▫ Expensive to build, slow start, cheap to run▫ Coal, nuclear

• Peaking▫ Run during peak periods▫ Cheap to build, quick start, expensive to run▫ Gas, oil, hydro

• Intermittent▫ Weather dependent: wind, solar

Page 12: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

12

BUA650 ‐ 23

Typical base load coal plant

• AES Somerset on Lake Ontario• 655 MW capacity• 91% utilization in 2005• 5.2 million MWh• 4.5 mmt CO2

Photo: NYS DEC

Oil12% of capacity

Natural Gas22% of capacity

Coal72% of capacity

Renewables34% of capacity

Nuclear90% of capacity

7 GWyr

224 GWyr

90 GWyr

39 GWyr

444 GWyr

84 GWyr

290 GWyr

84 GWyr

50 GWyr

10 GWyr

77 GWyr

511 GWyr

955 GWyr

Electric Sector Capacity Utilization2006

Legend

Electricity, GWyr [GWyr]

Additional Capacity, GWyr [GWyr]

Page 13: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

13

BUA650 ‐ 25

Summary of generation mix

63827.5315741Fossil total 

444

39

90

224

84

7

Generation(GWyr)

63827.5958Total

‐‐‐‐116Renewables

936.4374Gas

130.657Oil

53220.5310Coal

‐‐‐‐100Nuclear

Carbon(Mmt C)

Fossil Fuel Use

(Quads)

Capacity(GW)

Fuel

BUA650 ‐ 26

Leading options for replacing fossil

• Integrated gasification combined cycle coal (IGCC) ▫ With carbon capture and sequestration (CCS)

• Combined cycle gas (CC)▫ With CCS

• Nuclear

• Renewables▫ Biomass▫ Hydro▫ Wind▫ Solar thermal, photovoltaic 

Page 14: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

14

BUA650 ‐ 27

Advanced coal power plants

Integrated gasification combined cycle (IGCC)

IGCC plant at Puertollano, Spainhttp://www.powergeneration.siemens.com/press/press‐pictures/igcc/igcc‐puertollano1.htm

BUA650 ‐ 28

Cost of building new power plants

$6.0 B

$5.0 B

$1.9 B

$2.2 B

$3.8 B

$3.3 B

Capital cost per GW of capacity

Solar/PV

Solar Thermal

Onshore Wind

Hydro

Biomass

Adv Nuclear

Technology

$1.9 BCC with CCS

$0.9 BNat Gas CC

$3.5 BIGCC with CCS

$2.4 BIGCC

$2.1 BCoal

Capital cost per GW of capacity

Technology

Page 15: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

15

BUA650 ‐ 29

Replacing fossil completely?

• Need about 550 GW total▫ Peaking: 220 GW▫ Baseload: 330 GW

• All cases at right assume gas is used for peaking

• Fossil with carbon capture▫ 410 GW of advanced coal▫ 80% utilization▫ Total = $1.8T

• Nuclear▫ 367 GW advanced nuclear▫ 90% utilization▫ Total = $1.2 T

• Intermittent renewables▫ 1300 GW of wind▫ 25% utilization▫ Total = $2.9 T

BUA650 ‐ 30

Very important implication

• Would be less expensive if demand were lower• Need to reduce fuel use on the demand side

Page 16: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

16

BUA650 ‐ 31

Transmission grid

• Can we get power where it’s needed?

• Especially important for wind and solar▫ Best locations are far from cities▫ Need geographic dispersion

BUA650 ‐ 32

More grid capacity needed for wind

Variation in wholesale electricity prices due to grid congestion

From “2006 Midwest ISO‐PJM Coordinated System Plan (CSP),” December 2006. 

Page 17: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

17

BUA650 ‐ 33

Reducing demand?

• Very quick overview of energy use

• Residential and commercial▫ Heating▫ Air conditioning▫ Water heating▫ Appliances

• Industry▫ More difficult due to accounting for feedstocks▫ Mostly in the production process▫ Most of that is heating

BUA650 ‐ 34

ElectricityRefrigerators5% (9% C)

TotalConsumption

3.9

Gas

4.8

Oil 1.1

Renewables0.4

4.6

1.3

0.4

Lighting3% (6% C)

Clothes Dryers2% (4% C)

Freezers1% (2% C)

Color TVs1% (2% C)

Other8% (14% C)

0.6

0.5

0.4

2.4

10.2

3.9

6.3

Space Heating50% (32% C)

Air Conditioning6% (11% C)

Water Heating16% (13% C)

5

0.6

1.7

Appliances27% (44% C)

2.8

0.5

0.8

0.3

0.2

0.1

0.1

Ovens & Ranges7% (7% C)0.7

US Residential Energy Consumption2001

Values in quadrillion BTUunless otherwise noted

Legend

Electricity [Quad]

Natural Gas [Quad]

Oil [Quad]

Renewables [Quad]

Carbon [mmt C]

Carbon from Electricty [mmt C]

Data source: Residential Energy Consumption Survey 2001

93 mmt C

32 mmt C

38 mmt C

27 mmt C

19 mmt C

17 mmt C

11 mmt C

7 mmt C

6 mmt C

40 mmt C

163 mmt C

127 mmt C

290 mmt C

Page 18: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

18

BUA650 ‐ 35

Electricity

Refrigeration5% (7% C)

TotalConsumption

3.1

Gas

2

Oil 0.2

1.7

0.3

Lighting13% (19% C)

Office Equipment10% (15% C)

Other7% (8% C)

1

0.2

1.9

5.3

3.1

2.2

Space Heating34% (17% C)

Air Conditioning19% (27% C)

Water Heating6% (3% C)

1.9

1

0.3

Other41% (52% C)

2.1

0.3

0.3

0.7

0.6

Cooking5% (3%)

0.3

US Commercial Building Energy Consumption1999

Values in quadrillion BTUunless otherwise noted

Legend

Electricity [Quad]

Natural Gas [Quad]

Oil [Quad]

Carbon [mmt C]

Carbon from Electricty [mmt C]

Data source: Residential Energy Consumption Survey 2001

33 mmt C

52 mmt C

6 mmt C

14 mmt C

6 mmt C

37 mmt C

28 mmt C

15 mmt C

91 mmt C

100 mmt C

191 mmt C

0.2

BUA650 ‐ 36

US Manufacturing Energy Consumption, 2002

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Food

Bev

erag

e, T

obac

co

Text

ile M

ills

Text

ile P

rodu

ct M

ills

App

arel

Leat

her

Woo

d P

rodu

cts

Pap

er

Prin

ting

Pet

role

um P

rodu

cts

Che

mic

als

Pla

stic

s, R

ubbe

r

Non

met

allic

Min

eral

s

Prim

ary

Met

als

Fabr

icat

ed M

etal

s

Mac

hine

ry

Com

pute

rs, E

lect

roni

cs

Ele

ctric

al E

quip

men

t

Tran

spor

tatio

n E

quip

men

t

Furn

iture

Mis

cella

neou

s

Qua

drill

ion

BTU

Page 19: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

19

BUA650 ‐ 37

Historical perspective?

• Does fuel use rise inexorably no matter what?• What do we know from history about fuel use?

BUA650 ‐ 38

Exponential growth after WW II (3.4%)

050

100

150

200

Quadrillion BT

U

1940 1960 1980 2000Year

Actual Fitted

Page 20: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

20

BUA650 ‐ 39

Sharp change after the energy shocks!

050

100

150

200

Quadrillion BT

U

1940 1960 1980 2000Year

Actual Fitted

BUA650 ‐ 40

Energy prices matter!

• Stabilized US energy consumption▫ Flat for about 20 years

• GDP growth was a little slower▫ About 0.2% per year: from 3.2% to 3.0%

Page 21: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

21

BUA650 ‐ 41

Policy option: carbon tax

• Tax fossil fuels based on the carbon emitted when burned▫ Example: $15 per ton of CO2

• Raises price of natural gas, gasoline and electricity▫ Gasoline 

13 cents per gallon▫ Natural gas

82 cents per 1000 cubic feet▫ Electricity

0 to 1.6 cents per kWh

▫ In general, about a 6% increase

BUA650 ‐ 42

Cents per kWh due to a $15 CO2 fee

National average price is now about 9 cents per kWh

Page 22: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

22

BUA650 ‐ 43

What political problems arise?

• Large energy taxes may not be politically viable▫ Not possible to discuss seriously?▫ Pressure to repeal every year

• Main policy question becomes▫ Can we get similar incentives with a different policy?

BUA650 ‐ 44

Alternative: a cap and trade system

• Fuel users must own 1 permit per ton of CO2• Limit the number of permits• Allow owners to buy and sell them

• Market price of a permit provides incentives▫ Example: $15 per ton▫ Non‐owners must buy; incentives similar to a carbon tax▫ Owners who can cut emissions for $10: profitable to cut and sell

Page 23: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

23

BUA650 ‐ 45

Problem with permits

• Guarantees emissions but does not limit costs▫ Market price may be very high if policy is unexpectedly stringent

• Congress likely to require cost containment provisions▫ A price ceiling or price collar

BUA650 ‐ 46

Other policies: efficiency regulations

• Appliance standards▫ Energy ratings, Energy Star program

• Building codes▫ Insulation▫ Windows

• CAFE standards▫ Vehicle fuel efficiency requirements

Page 24: mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalentwilcoxen.maxwell.insightworks.com/pages/3078/bua650-v04.pdf · 1 BUA650 ‐1 Understanding the Scale of the Problem: US

24

BUA650 ‐ 47

Other policies: technology subsidies

• Subsidies for hybrid cars

• Subsidies for alternative fuels▫ Corn‐based ethanol not a good solution▫ Cellulosic ethanol great but expensive to produce

• Subsidies for R&D▫ A Manhattan Project for energy ?

• Carbon capture and sequestration▫ Would allow coal use without climate damage▫ Basic technologies are known▫ Need large scale demonstration projects

BUA650 ‐ 48

No matter what, need fossil fuel prices to rise

• Fossil fuels are currently very cheap

• Technology policies alone won’t be enough▫ Unlikely to produce a “silver bullet” technology that would be cheaper than fossil fuels and also carbon‐free