Metanol Uretm Pazar Yeri

Embed Size (px)

Citation preview

  • 8/8/2019 Metanol Uretm Pazar Yeri

    1/129

    SECTION 3METHANOL PRODUCTION

  • 8/8/2019 Metanol Uretm Pazar Yeri

    2/129

    THE DEVELOPMENT OF LIQUID PHASE METHANOL PROCESS:AN UPDATE

    T. R. Tsao and P. RaoAi r Products and Chemicals, Inc.

  • 8/8/2019 Metanol Uretm Pazar Yeri

    3/129

    ABSTRACT

    Air Products and Chemicals, Inc., with the support of the U.S. Department ofEnergy (DOE), began a research and development project in September, 1981 aspart of DOE's indirect liquefaction program to further develop the Liquid PhaseMethanol (LPMEOH*) Process at a Process Development Unit (PDU) scale. ChemSystems Inc., the inventor of the process, is the key subcontractor in theprogram. Industrial cost-sharing participants have been Air Products, theElectric Power Research Inst itute, and Fluor Engineers, Inc.During the past wear, a 40-day continuous operation with CO-rich gas(H2/C0~0,69) was accomplished in the LaPorte PDUwith a 25 wt% slurry. Theoperating conditions of this run were similar to the one reported last year atthis conference. In this run, catalyst activity and activity maintenance wereexcellent, comparable to performance established in bench-scale reactors.Approximately IB6 metric tons of methanol were produced with a methanol pur ityof 96 percent. The PDUon-stream factor was 97 percent. The success of thisrun was a major milestone in the development of the LPMEOH technology.A second PDU run with a more concentrated catalyst slurry was also performed.lhe catalyst was successfully activated at the high slurry concentration. Highmethanol production, 7 TPD, was achieved with the CO-rich feed, although themethanol productivi ty of the catalyst was lower than expected. The run wasaccomplished with a 100% on-stream factor. There were no operational problemsand catalyst entrainment was modest.Laboratory programs contributed to the development of in-situ catalystreduction techniques that were successfully used at LaPorte. Based onautoclave studies and PDU performance, target KLa values were developed forconsideration of future reactor modifications. In addition, studies wereconducted on the effect of nickel and iron carbonyl on methanol catalystactivi ty , and the desired levels of C02 in CO-rich gas were identi fied.LPMEOHtechnology is reaching development milestones. Additional PDUoperations are planned, and research programs to meet key technical challengesare in place. A program has been proposed for a semi-works demonstrationplant at lVA's gasifier si te in Muscle Shoals, Alabama.

    *A trademark of Chem Systems, Inc.

    3-3

  • 8/8/2019 Metanol Uretm Pazar Yeri

    4/129

    I. INTRODUCTIONThe reactions of hydrogen and carbon oxides to methanol are very exothermic(Figure I). High pressure and low temperature favor the reaction equilibriumin the direct ion of methanol formation. Early methanol synthesis processesgenerally opeFated at pressures of 270-370 atmospheres (4000-5500 psi) andtemperatures oi 340-400C (650-750F) with a zinc-chromium catalyst. With thedevelopment of copper-based methanol synthesis catalysts, the operatingconditions were moderated considerably to pressures of approximately 50-I00 atm(750-I000 psi) and temperatures of 220-270C (430-520F).The most di l f icul t design problem of the methanol synthesis process has alwaysbeen removing the heat of reaction while maintaining close temperature controlto achieve optimum select iv ity and reaction rate. Catalyst l i fe is seriouslyreduced by higher temperatures. In conventional gas-phase reactors, injectionof cool unreacted gas at stages in the catalyst bed or internal coolingsurfaces are employed to provide temperature control . However, these schemeshave been developed for diluted syngas which yields low conversion per pass.lhe Liquid Phase Methanol (LPMEOH*) process invented by Chem Systems Inc.di lfers signif icantly from conventional gas-phase processes in the methodof removing [he heat of reaction. This process ut il izes a heterogenouscatalyst lluidized or entrained by a circulating inert hydrocarbon liquid,usually a mineral oi l. The presence of this liquid serves to control thereaction temperature much better than in gas-phase processes, allowing a higherconversion per pass while permitting recovery of the heat of reaction. Inaddition, laboratory and Process Development Unit (PDU) tests to date showLPMEOHtechnology particular ly suited to coal-derived synthesis gas rich incaFbon monoxide, l hese capabilities make the LPMEOH process a potentiallylower-cost conversion route to methanol, especially when methanol coproductionis added to a coal-based, integrated gasif ication combined cycle (IGCC) powerplant. For a modest increase in the capital cost and complexity of an IGCCplant, the methanol coproduction scheme produces a storable l iquid fuel inparallel with elect ric power production, providing a significant turndown andpeak-load capabili ty for the IGCC plant.Chem Systems conceived the concept of liquid-phase methanol synthesis in themid-1970's. Early research was done on the ebullated-bed reactor, usingrelatively large (3-6 mm) catalyst particles fluidized by gas and liquid flow.lhe development of the liquid phase slurry reactor began at Chem Systems in1979. lhe ini t ial bench-scale work was done in st ir red autoclave reactors. Atthat scale, the research focused largely on int rins ic catalyst performance:catalyst screening, activation, and life tests.In September 198~, the United States Department of Energy (DOE) awarded acontract entitled "Liquid Phase Methanol Process Development Unit:*A trademark of Chem Systems Inc.

    3-5

  • 8/8/2019 Metanol Uretm Pazar Yeri

    5/129

    lll I

    I.~(.11 I.~( I,,,1, ll pel al l, ~n and Kllpp,~rf RtI ld ie ~" l~hich ~'a~ the f i rst phase of at J l~ h l i, Z . J , tl z~ l, ', l , t t l u x l h z ' v d ~ , v e l L ~ p l n g t l z e L I 'M L O t t p l ' o c e ~ I l l a r ep resen ta t i veengineering-scale PDU. A second contract began in July 1985. Air Products andChemicals, Inc. is the prime contractor providing overall program managementand has been responsible for engineering design, procurement, construction, andoperation of the PDU. Chem Systems is performing as the key subcontractor inthe program. Cost-sharing has been provided by Air Products, the ElectricPower Research Inst itute (EPRI), and Fluor Engineers, Inc.In this program, a DOE-owned skid-mounted pilot plant was disassembled andequipment components renovated. The unit was transferred from Chicago,Il l ino is to Air Products' LaPorte, Texas fac i l i ty, refurbished, and rebuil t forservice as the LPMEOH PDU. Synthesis feed gas from the faci l i ty is used totest the unit. The LaPorte LPMEOH PDUdesign provides for a liquid- fluidized(ebullated-bed) mode of reactor operation and a liquid-entrained (s lurry) modeof reactor operation.A total of five major runs have been conducted at LaPorte since itscommissioning in March 1984. The results of the f i rs t three runs made in 1984were reported in the 1984 and 1985 EPRI Contractors' Conferences. Theoperation and results of the latest LaPorte PDU runs (E-3 and E-4) completed in1985 are discussed in th is paper.The development of the LPMEOH process is supported by extensive laboratoryprograms funded by both DOEand EPRI, which include catalyst screening,bench-scale tests, fundamental modeling, poisons studies, C02 effect onmethanol productivi ty, alternate liquid screening, slur ry cr ite ria study,and the effect of in-si tu reduction conditions on catalyst activi ty . Recentresults of the research and development programs are presented in this paper.

    3-6

  • 8/8/2019 Metanol Uretm Pazar Yeri

    6/129

    2. LAPORTE PDUOPERATIONLaPorte PDU DescriptionThe primary Function of the LaPorte PDU is to acquire data at a small,representative engineering scale for testing the feasibil ity of the LPMEOHprocess. Thus, the PDUwas designed with the capability of generating andcollecting plant data over a wide range of operating conditions. The range ofoperating variables chosen for design is shown in Table I. As will be apparentlater, some of the design ranges were exceeded in actual operation.lhe principal reactor feed gas compositions considered during design were:

    Balanced Type (Table 2), in which the hydrogen and carbon oxideconcentrations are approximately stoichiometrically balanced inorder to achieve an "all4methanol '' product.CO-rich Type (Table 3), in which the hydrogen and carbon oxideconcentrations are not stoichiometrically balanced, but arerepresentative of synthesis gases from modern coal gasi fiers.These gases are suitable for once-through methanol synthesisin an IGCC flowsheet configured to make electric power andcoproduct methanol.

    lhe LaPorte PDUwas designed to test both the ebullated-bed mode and theslurry mode of operation. A unified design concept was used so that a commonreactor and PDU system could accommodate both operating modes. Equipment,instrumentation, and valving specifications included consi'deration of bothmodes of operation from the start of the design effort. As a result, theLaPorte PDU can be switched from ebullated-bed to slurry operation withoutequipment or piping alterations.lhe d i f fe ren t reactor feed gas compositions are blended from H2, CO, N2, andCH4 supplied by the adjacent syngas f aci l i ty . Carbon dioxi de is trucked in tothe plant as a li qu id and stored on- si te . Since only a por tio n of the reactorfeed is converted per pass, the unconverted synthesis gas is recycled and mixedwi th fresh makeup gas. The makeup gas is blended so th at the reac to r feed(makeup plus recycle ) simula tes ei th er the balanced or CO-rich gas type.Recycling the unconverted synthesis gas reduces gas consumption by 70 percent.A simplified process flowsheet for the LaPorte PDU is shown in Figure 2. Themakeup synthesis gas is compressed to the reactor pressure (3,500-6,300 kPa,500-900 psig) by the feed compressor. The compressed makeup and recycle gasesare mixed and preheated in the feed/product exchanger before being fed intothe methanol reactor, the inert hydrocarbon liquid or slurry that circulatesthrough the reactor is separated from the unconverted synthesis gas andmethanol product vapor in the primary V/L separator, and recirculated to thereactor through the slurry heat exchanger. The circulating liquid or slurrycan be heated or cooled in the slurry exchanger to maintain a constant reactortemperature, depending upon the level of conversion, system heat losses, and

    3-7

  • 8/8/2019 Metanol Uretm Pazar Yeri

    7/129

    the rate of cold seal flush required by the slurry pump. A ut i l i ty oi l systemprovides the heating or cooling duty to the slurry exchanger.lhe unconverted synthesis gas/product methanol stream leaving the primary V/Lseparator is cooled against incoming feed gas and condensed oil is separated inthe secondary V/L separator. The uncondensed vapor is further cooled in theproduct coo)er. Condensed methanol is then separated from the synthesis gasand additional condensed oil before routing to product storage. A small purgestream is sent to flare. The bulk of the unconverted synthesis gas iscompressed and returned to the front end of the PDU. Additional systems arepresent to activate the catalyst, provide seal flush to the slurry pump, andmix catalyst slurry for the liquid-entrained mode of operation.l aPorte PDUOperating ResultsA total of five major runs have been conducted at the LaPorte PDU sincecommissioning in March 1984. A summary of these campaigns is presentedin fable 4. lhe results of Runs F-l, E-l and E-2, including two phase gasholdup studies, were reported in the 1984 and 1985 EPRI Contractors'Conferences. (1,2)The fi rst PDUrun (F-l) was a lO-day shakedown run. Operation of the PDUwassmooth, and the mechanical integrity and process f lexibi l i ty of the unit weredemonstrated. Up to 8 IPD of methanol was produced. The second PDU run (E-l)was a 40day continuous run on CO-rich synthesis gas (H2/C0=0.7). Stableoperation was achieved but a slow, continuous decline in activity was observed,in excess of that anticipated from isothermal laboratory autoclaves. Theaccumulation of trace poisons on the catalyst was the major cause of this lossof activity (I.1% per day). A third PDU run (E-2) was conducted using acommercially available catalyst powder at high slurry concentration. In-si tureduction was performed. The plant operated well mechanically, providingvaluable experience for the operations and engineering staff on handlinghiqh viscosity catalyst slurries. Methanol productivity was below the valuespredicted from previous laboratory results.Out of a supporting laboratory program funded by EPRI, a series of tests wereconducted and i t was found that inadequate catalyst activation at LaPorte was acontributor to the off-performance at the high solids loading. (3) Changes inthe reduction procedure were identified to remedy this problem. Mass transferresistance may also have contributed to the reduced catalyst performance duringRun E-2, but its existence was masked by the inadequate catalyst activation.Another hiqh slurry concentration PDU run with properly activated catalyst wasdeemed necessary to determine the reactor productivity at high slurryconcentrations.

    Analysis of the results of the 1984 operating program indicated that selectiveupqrading of materials of construction of the LaPorte PDUwould lead tolower levels of trace contaminants. Process improvements which would increasethe data gathering capabil ity were also specified. As a result, modificationswere made to the [aPorte PDUduring early 1985. New equipment was installed toimprove the measurement of slurry concentration and methanol product flow.Also, selected vessels and piping were replaced or modified in order to reducethe levels of trace catalyst poisons, primarily iron and nickel carbonyls. Achemical cleaning program was also undertaken to remove residual contaminants.

    3-8

  • 8/8/2019 Metanol Uretm Pazar Yeri

    8/129

    Upon completion of these act ivi t ies, a second 40-day act ivi ty maintenance test(Run E-3) using CO-rich gas and a 25 wt% catalyst slurry was conducted inMay-June 1985. This was followed by a more concentrated slurry test(Run E-4), which was performed under the new contract with the DOE for asecond phase of LPMEOH development. The results of these latest LaPorte PDUruns made in 1985 are presented in this paper.LaPorte PDU Run E-3The fourth LaPorte PDU Run E-3 took place in May-June 1985. The primaryobjective of th is 40-day operation was to demonstrate improved act ivi tymaintenance of the LPMEOH process with CO-rich gas, wi th trace contaminantseliminated and using catalyst powder which had been reduced in-si tu (Table 5).A fresh batch of the same catalyst powder used in Run E-2 was slurried inoi l and transferred to the reactor system. In-si tu reduction of the 25 wt%slurry was then performed. Hydrogen consumption during reduction is theprime indicator of the progress of catalyst reduction. The hydrogen uptakematched sati sfactory autoclave reduction runs (Figure 3). This indicated thata successful in-situ reduction had been accomplished in the PDU. CO-richsynthesis gas was then brought into the PDU and the reactor conditions wereadjusted to the f i rs t condition listed in Table 6 (E-3A). Two operating pointswere tested over the 40 days of operation. Case E-3A, which was a duplicationof the act ivi ty maintenance condition of Run E-l , was held for the i n i t i a l94 hours to establish a baseline catalyst act ivi ty. The second case (E-3B) wasa brief test at a lower reactor temperature of 225C (437F). Reactorconditions were then returned to 250C (482F) for the remainder of the run(E-3C) to determine the act iv i ty maintenance characterist ics of the catalyst.Highlights of the LaPorte PDU operation during Run E-3 are presented infable 7. Overall, the PDU performed well , achieving a 97% on-stream factor andproducing over 186 metric tons of crude methanol. The major fraction of thedownLime (34 hours) was due to an electrical fault in the motor for the feedcompressor. A replacement motor was located and installed, and synthesis gaswas brought back into the PDU. The outage, though unplanned, demonstratedthe abi l i ty to maintain catalyst act ivi ty through a temporary plant shutdown.The run ended on 13 June after the planned 40 days of operation.Figure 4 shows the CO conversion and methanol productivi ty as a function oftime on synthesis gas for Run E-3. The autoclave prediction is also presentedfor comparison. The LaPorte PDU data have been normalized to a space veloci tyof lO,O00 I/hr-kg to provide a common basis of comparison between the PDU dataand the laboratory resul ts. I t is seen that the PDU performance is comparableto the laboratory predictions throughout the duration of the run.lhe LaPorte PDU data for the f i rst several days exhibi t a high ac t iv i ty thatdoes not f i t the linear decline in act iv i ty observed for the remainder of theFUn. When these in i t i a l hyperact ivi ty points are excluded, a 0.28% per daydecline in methanol producti vi ty is seen over the operation of Run E-3. Thesignificant improvement over the l .l% per day decline observed in Run E-l isbelieved to be a di rect result of removing catalyst poisons by chemicalcleaning and the metallurgical upgrade performed before the run.In ~iguFe 5, the act ivi ty maintenance history based on cumulative methanolpFoducLion is depicted for Run E-3 and for two earlier runs - LaPorte PDURun E I and a 2,267-hour laboratory autoclave run completed in October 1983.

    3-9

  • 8/8/2019 Metanol Uretm Pazar Yeri

    9/129

    The laboratory result represented the previous best performance withCOrich gas. Figure 5 illustrates that the deactivation rate for Run E-l isapproximately a factor of 4 greater than that for the autoclave test. However,after the completion of the metallurgical upgrade and chemical cleaning ofthe PDU, Run E-3 yielded a deactivation rate approaching that in theautoclave.fable 8 compares the results of catalyst analyses from Runs E-1 and E-3. I t isevident that there was essentially no increase in the levels of trace catalystpoisons in Run E-3. The significant improvement over the previous run data(Run E-l) verified the effectiveness of the metallurgical upgrade and chemicalcleaning, lhe achievements of this run are summarized in Table 9.LaPorte PDURun E-4lhe fi f th LaPorte PDURun E-4 was a lO-day run conducted during the summer of1985 to demonstrate in-situ reduction of a high slurry concentration and toobtain performance data with high solids loadings. This run was a repeat ofRun E-2 which had less than expected performance due to unsatisfactory in-situreduction, Catalyst powder was slurried to a concentration of 43 wt% in theslurry prep tank and transferred to the reactor system. Improved catalystreduction techniques resulting from laboratory programs were followed. Totalhydrogen consumption agreed well with autoclave results, indicating asuccessful in-situ reduction.After reduction, the slurry was concentrated to 47 wt% (as oxide) during thef i rst few hours under CO-rich gas. The reactor was maintained at 5,300 kPa(750 psig), 250C (482F), and with a gas superficial velocity of 15 cm/sec(0.5 f t/sec). PDUperformance started well but methanol productivity degradedrapidly and a solids concentration gradient appeared in the reactor. Bothliquid and gas flow rates were increased with no apparent effect on methanolproductivity and the solids concentration gradient. The slurry wassubsequent]y diluted to 40 wt% and later to 34 wt%. With each di lut ion, thereactor performance improved, approaching that of the autoclave. A uniformsolids concentration was restored at the 40 wt% slurry loading. At 34 wt%slurry loading, the methanol productivity improved to a level equivalent to 85%of the autoclave performance, producing 6.9 TPD methanol with CO-rich gas.Stable operation was maintained at this condition for four days with noapparent activity decline. The mechanical performance of the LaPorte PDUwasexcellent during this run, achieving a I00% on-stream factor. There were noproblems with slurry pumping or plugging, and catalyst entrainment was modest.Approximately 68 tons of crude methanol with a 95%purity were produced. Thehighlights of Run E-4 are summarized in lable lO.Subsequent tests in well-mixed autoclaves on slurry samples taken directly fromthe LaPorte run verified that the intrinsic act ivi ty of the catalyst wasnormal, lherefore, i t is believed that the performance of the PDU reactor wasprobably hindered by either mass transfer limitations or inadequate solids/gasmixing at the higher slurry concentrations. To ful ly exploit the potential ofhigh (>40%) slurry operation, engineering studies on alternate reactor systemsas well as research work on alternate liquid media and a better understandingof good slurry behavior, are being carried out in Phase II of the DOE-sponsoredLiquid Phase Methanol program.

    3-10

  • 8/8/2019 Metanol Uretm Pazar Yeri

    10/129

    r3. RESEARCH RESULTS

    The on-going laboratory effort to support the development of the LPMEOH processhas the follew~-: e, :~r ~ c~:%~, e~:(a ) First , i t is desired to further the fundamental understanding of the processand catalyst. Examples of past work include studies of in-situ reduction

    and defining surface properties of properly activated catalysts (3).(b) A second objective is to conduct systematic research towards furtherimprovements in performance of the LPMEOH reactor.( c ) A th ird objective is to provide technical support during start-ups andoperation of the LaPorte PDU. Examples include poisons monitoring ofspecies such as carbonyls, chlorides and hydrogen sulf ide, catalystqualification prior to start-up, and catalyst characterization duringoperation. When required, short-term laboratory programs are ins tituted totroubleshoot a specific problem.lhe results and conclusions in three tasks are presented here. These are:(i) lhe effect of carbonyls (Ni and Fe) on catalyst act iv i ty and propert ies;( i f ) lhe effect of gas composition (primari ly C02) on liquid phase operation; and( i i i ) Studies on alternate liquids and mass transfer limitations .DESCRIPIION OF EQUIPMENTLiquid phase operations in the laboratory are conducted in st irred autoclaves. Asimpl if ied diagram of a system using a l - l i ter autoclave is shown in Figure 6.lhe system is capable of operation at high pressure and temperature with avariety oi prebiended gases. Gases are stored in large cylinders on trai lers andare f i rs t passed through adsorbent guard beds to remove poisons pr ior to del iveryto the autoclave. The system is housed in a walk-in hood with COalarms and iscompletely automated for safe, attended and unattended operation. There are twoaddit ional autoclave systems, each of 300 cc volume that are simi lar to the ll i ter autoclave system. Slurry samples can be withdrawn during methanolsynthesis. A dedicated GC provides the necessary analytical capabi li ty for thecalculation of mass balances and the reporting of results. In addit ion, thereare various other gas phase test uni ts in support of the autoclaves. Analyticalresources provide necessary analyses such as ESCA/AUGER, X-Ray Di ffraction,Atomic Absorption Spectroscopy, BEI surface area measurements, and otherstate-of-the-art measurements.EFFECT OF NICKEL AND IRON CARBONYLSlhe effect of nickel and iron carbonyl was studied in two separate autoclaveruns. Methano] catalyst was slurried with hydrocarbon liquid Freezene-lO0 oi land loaded into a 300 cc autoclave. Standard in- si tu act ivation procedures wereused and the autoc]ave was run on a poison-free, CO-rich synthesis gas for 90hours. Autoclave conditions were 250C (482F), 5,300 kPa (750 psig), at a

    3-11

  • 8/8/2019 Metanol Uretm Pazar Yeri

    11/129

    nominal space velocity of 5000 SL/hr-kg. Stable and sat isfactory operation wasconfirmed and injection was begun of a gas stream containing nickel carbonyl.lhe combined feed to the autoclave contained between 0.5 and l ppmv of Ni(CO)4.lhe plot of methanol producti vi ty with time is shown in Figure 7. For the fi rs t90 hours when no nickel carbonyl was being injected, the performance wasstable and for the conditions tested, agreed well with the expected performance.Upon the injecti on of nickel carbonyl, the methanol producti vi ty began todecline. Operation was terminated af ter about 80 hours of operation underpoisoning conditions. Catalyst samples were withdrawn at various times duringthe run and analyzed. These results wi l l be discussed later in this paper.A second autoclave run was conducted to study the effect of iron carbonyl oncatalyst performance. Once again, the catalyst was in-si tu reduced, and operatedwith poison-free, CO-rich gas for a su ff ici ent run-in period, in this case 120hours, lhe catalyst performance was stable and agreed well with theexpectations. Upon inject ion of iron carbonyl, the ac t iv i ty began to decline asshown in Figure 8. The run was terminated after about 120 hours onpoison-containing gas. As in the nickel carbonyl run, catalyst samples weretaken at various times.The analyses of the catalyst samples are summarized in Tables l] and ]2 forthe nickel and iron carbonyl runs, respectively. These results confirm that thecatalysts were absorbing nickel or iron during the poisoning experiments.However, within experimental error, no effect could be discerned ei therin crystal size measurements of Cu and ZnO or BET surface area. The ESCA/AUGERanalyses proved to be inconclusive and no Ni or Fe was detected on the surface,though their presence in the bulk solid was confirmed by AAS. I t is possiblethat the washing operation used in removing the catalyst from the slurrying oi lremoves the Ni and Fe from the surface.Relative act iv i ty decline as a function of the nickel and iron content is shownin Figure 9. I t is interesting to note that for al l pract ical purposes, nickeland iron appear to be equivalent in the ir a bi l i t y to destroy catalyst ac t ivi ty.It is also interesting to note that these data indicate a levelling-off effect atabout 500 ppm of nickel or iron. Longer runs would have to be conducted toconfirm this with a degree of cer tainty. Also shown in Figure 9 is the relativeact iv i ty decline as a funct ion of Fe and Ni in the catalyst from the LaPorte PDUrun E-I. This run used a di ff erent catalyst with a di ff erent composition. TheLaPorte data also cover a longer period of time than the autoclave studies. Thedata in Figure 9 may indicate that dif ferent catalysts di ff er in thei r abi l i ty towi ths tand carbony l po i son ing.ALIERNAIE LIQUIDS FOR THE LPMEOH PROCESSThe study on alternate liquid candidates was conducted to find a satisfactorysubstitute For Witco Freezene-lO0 oi l . This included developing cr i ter ia for asatisfactory liquid, surveying commercially available liquids and selecting a fewfor analyses and autoclave tests.A satisfactory liqu id for the LPMEOH process must meet certain requirements. I tmust be inert and not react with the feed gases or catalyst. I t must be withinthe suitable range of properties such as viscosi ty , density, gas so lub i l i ty, andsur face tension in order to permit satisfactory catalyst suspension andgas bubble formation. The liquid must not have components that can poison thecatalyst such as trace metals, halogens, sul fur compounds and unsaturates or

    3-12

  • 8/8/2019 Metanol Uretm Pazar Yeri

    12/129

    unstable compounds. The liquid should permit in-situ reduction and its boil ingpoint must be high enough so as not to have excessive vapor pressure at operatingtemperature. Finally, i t should be commercially available at a reasonable cost.Many liquids were considered, and, based on physical and chemical properties,candidates were selected for further testing. The candidates included Exxon200 which is a silicone-based o il , Witco-70, Witco LP-150, andHI-43, Dow Corning test program included catalyst activation, a short-termAmoco l8 USP. The owed by a st i rrer RPMstudy to distinguish liquids of superiora c t i v i t y c he ck l o l lm ass t r a n s f e r c a p a b i l i t i e s . The a c t i v i t y r e s u l t s a re p l o t t e d i n F ig u r e 1 0.S a t i s f a c t o r y p e rf o rm a n c e i s i n d i c a t e d b y d a t a f a l l i n g o n t h e s t a n d a r d p e r fo r m a n cec u r ve . C l e a r l y , s u c c e s s f u l c a n d i d a t e s w e r e W i t c o - 7 0 an d L P - 1 50 . T he c a us e o ft h e f a i l u r e o f E x x o n H ~ -4 3 i s a t t r i b u t e d t o a 2 t o 3% l e v e l o f a r o m a t i c s w h i chmay h a v e p o i s o n e d th e c a t a l y s t . T he c a t a l y s t f r o m t h e D ow C o r n i n g o i l r u n sh ow e dh ig h l e v e l s o f S i c o n t a m i n a t i o n w h i c h m ay h av e b ee n r e s p o n s i b l e f o r i t s p o o rp e rf o rm a n c e, l h e A m o c o- 18 USP o i l d i d n o t p e r fo r m s a t i s f a c t o r i l y .R e s u l t s f r o m t h e RPM s t u d y w i t h s u c c e s s f u l c a n d i d a t e s a r e s h o w n i n F i g u r e 1 1 .Bo th W i t co - lO and LP-150 a re equ i va len t t o F re ezene- lO0 . The F reezene- lO0 cu rvew as d e v e lo p e d a t a s l i g h t l y h i g h e r s p ac e v e l o c i t y , w h i c h i s t h e re a s o n f o rt he m e th a no l p r o d u c t i v i t y l e v e l l i n g o f f h i g h e r a t th e h i g h e r R P M s. T he r eg im e ofm ass t r a n s f e r c o n t r o l i n t h e a u t o c l a v e a t t h e c o n d i t i o n s u s ed , i s i d e n t i f i e d t obeg~n be low abo uL 700 RPM.l he d a ta f ro m F i g u r e l l w e re u se d i n c o n j u n c t i o n w i t h a k i n e t i c s / m a s s t r a n s f e rm o de l t o c a l c u l a L e K La r e q u i r e m e n t s . T he Y a g i a nd Y o s h id a ( 4 ) c o r r e l a t i o n f o rautoclaves was u~ed with solubili ty data from Matsumato and Satterf i eld.(5) Withthe data base from laboratory and LaPorte PDUoperations, i t is now possible toestimate the desirable KLa values for future improvements in reactor designs bothat LaPorLe and in larger demonstration units.EFFECT OF GAS COMPOSITION ( C O ~l h i s t a s k w as u n d e r t a k e n t o d e t e r m i n e t h e e f f e c t o f C O : i n C O - r i ch g a s o nm e th a no l c a t a l y s t a c t i v i t y a nd p r o p e r t i e s . T he g as c o m p o s i t io n s u se d i n t h i ss t u d y a ce l i s t e d i n l a b l e 1 3 . l h e r e f e r e n c e w as C O - r i c h s y ng a s c o m p o s i t io nco nt a i n i ng 13% CO:. Ga ses B, w i th 8% C02, and C, w i th 4% C02, were p icke d tos tudy the impac t o f C02 a t con s ta n t p a r t i a l p re ssu res o f CO and H2 . Gas D wasused to see how much methano l cou ld be p roduced ove r a s to i ch i o m et r i c CO:/H2gas. Reaction conditions were fixed at 250C (4 B2F) and 5,300 kPa (750 psig).lhe catalyst was slurried with oi l and reduced in-si tu. All synthesis resultsare based on a week of stable performance, and are summarized in Table 14 andshown in Figure 12. Based on these data, i t is concluded that for a CO-richfeed, optimum performance is achieved with a C02 content somewhat higher than 13%in the inlet gas, although there is not much change in performance once the C02content exceeds 7-8%. A more rigorous analyses of the data is the subject ofongoing work. Ibis effect wi l l be further studied in the laboratory as part of afuture program. Surface analysis data on the catalysts have shown no obviouseft errs of the variable C02 levels.

    3-13

  • 8/8/2019 Metanol Uretm Pazar Yeri

    13/129

    4. SUMMARY

    LaPorte PDUoperations over the past two years have contributed significant lytoward demonstrating LPMEOH technology at a representative engineering scale. ThePDUhas accumulated over 2,500 hours of synthesis gas operation with an on-streamfactor of 96-I00 percent. The feasibi l i ty of operating the liquid-entrainedsystem with a 25 wt% catalyst slur ry for an extended period of time and convertinga portion of a CO-rich synthesis gas to methanol with low catalyst deactivation isa notable achievement. The abi l i ty to activate methanol synthesis catalystpowders in an inert liquid at high concentrations is also noteworthy. Methanolproduction levels as high as 8 TPD for balanced gas feed and 7 TPD for CO-rich gasfeed were achieved; the purity of the methanol product from CO-rich gas isconsistently higher than 96 wt%, a good fuel grade quality.The extensive supporting research programs have furthered the understanding of theLPMEOHprocess and catalyst performance and provided technical support duringLaPorte PDUoperations. The research work has solved key technical problemsidentif ied during the PDUoperation. A modified in-si tu activation procedure fora concentrated slurry was developed in the laboratory and successfully practicedat LaPorte. The poisoning impact of iron and nickel carbonyl was quantified. Thedata on the desirable C02 content in a CO-rich feed was determined for futurecommercial operation.

    3 - 1 5

  • 8/8/2019 Metanol Uretm Pazar Yeri

    14/129

    5. FUTURE WORK

    Work is in progress to evaluate modified reactor designs to improve reactorproductivity. Improved methods for poisons detection and control must bedeveloped for gases from coal gasifiers, and are being studied. Activi tymaintenance through temperature programming wil l be practiced in the autoclave.A systematic study is continuing on slurry properties and behavior in relationto catalyst act ivat ion and acti vi ty . Further work on the effect of C02 isplanned. Improvements in the kinetic model and the evaluation of other catalystswi ll be conducted. Additional LaPorte PDU runs are planned for the demonstrationof acti vi ty maintenance with catalyst addit ion and withdrawal, as well asimproved reactor design. Longer erm l i fe runs at the PDU level arecontemplated.From LaPorte, i t is anticipated that the LPMEOH technology wi l l advance to asemi-works development/demonstration scale. A proposal has been submitted to DOEunder the Clean Coal Technology Program for a 35 TPD demonstration unit with thehost site being TVA'S Muscle Shoals, Alabama faci l i ty. Clean CO-rich synthesisgas from the lexaco coal gas ifier wi l l be available as once-through feed gas tothe LPMEOH reactor.In sun~ary, the LPMEOH process is reaching development milestones. The resultsto date are encouraging, although some technical challenges remain.The technology is positioned for advancement to a demonstration faci l i ty in thenear future.

    3-17

  • 8/8/2019 Metanol Uretm Pazar Yeri

    15/129

    6. REFERENCES

    l.

    .

    3.

    4.

    .

    J. KIosek and R. L. Mednick, "Progress in Liquid Phase MethanolDevelopment", presented at the 9th Annual EPRI Contractors' Conference onClean Liquid and Sol id Fuels, 8-I0 May 1984.J. Klosek, D. M. Brown and R. L. Mednick, "Status of the LaPorte MethanolPDU", presented at the lOth Annual EPRI Contractors' Conference on CleanLiquid and Solid Fuels, 23-25 Apri l 1985.D. M. Brown, T. H. Hsiung, P. Rao and M. I . Greene, "Catalyst Act ivi ty andLife in Liquid Phase Methanol", presented at the lOth Annual EPRIContractors' Conference on Clean Liquid and Solid Fuels, 23-25 Apri l 1985.H. Yagi and F. Yoshida, "Gas Absorption by Newtonian and Non-NewtonianFluids in Sparged Agitated Vessels," I&EC Proc. Des. Dev. 14 (4), 1975.D. K. Matsumato and C. N. Satterfield, "Solubil i ty of Hydrogen and CarbonMonoxide in Selected Nonaqueous Liquids," I&EC Proc. Des. Dev. 24 (4),1985.

    3-19

  • 8/8/2019 Metanol Uretm Pazar Yeri

    16/129

    R A N G E O F O P E R A T I N G V A R I A B L E S FO RL A P O R T E P D U

    !P OO

    M I N I M U M " N O R M A L " M A X IM U MREACTOR PRESSURE, KPAREACTOR TEMPERATURE, CLIQUID-FLUIDIZED SPACEVELOCITY, LITER/HR-KG CAT.LIQUID-ENTRAINED SPACEVELOCITY, LITER/HR-KG CAT.LIQUID-FLUIDIZED CATALYSTLOADING, SETTLED BED HEIGHT, FTLIQUID-ENTRAIN ED CATALYSTLOADING, WT. %

    3,500 5,300 6,300220 250 270

    1,000 2,500 4,0002,000 6,000 10,000

    5 7 7

    10 20 33N O T E : S P A C E V E L O C I T Y B A S E D O N S T A N D A R D L I T E R S ( 0 C , 1 4 . 7 P S IA ) , K G O F O X I D E C A T A LY S T , A N DZ E R O G A S H O L D U P I N R E A C T O R ,

    Tabl e 1

  • 8/8/2019 Metanol Uretm Pazar Yeri

    17/129

    L A P O R T E P D U P R I N C I P A LF E E D G A S C O M P O S I T I O N

    A L L -M E T H A N O L P R O D U C T

    C. J!

    PO

    B A L A N C E D T Y P ER E A C T O R F E E D

    H2 54 .9 MO LE %CO 18.80 0 2 4 . 9OH4, 02H6 2.1N2 , Ar, INERTS 19.3TOTAL 100 .0H2/CO 2.92H2 2.10(CO + 1.5 002 )( H I2 - - 0 0 2 )(CO + 002)

    2.11

    Table 2

    H_~2 ~--, 2 ~C O

    R E C Y C L E

    M E O H

    C O N V E N T I O N A LM E O H S Y N T H E S I S

    , ~ P URGE F R E S H F E E D S H I F T E D C O 2 R E M O V E D

  • 8/8/2019 Metanol Uretm Pazar Yeri

    18/129

    L A P O R T E P D U P R I N C I P A LF E E D G A S C O M P O S I T I O N

    C O P R O D U C T M E T H A N O L + E L E C T R IC P O W E R

    C~!r~r~

    C O . R I C H T Y P ER E A C T O R F E E D

    H2 34.8 MOLE %CO 51.2002 13.1CH4, 02H6 0.1N2, Ar, INERTS 0.8TOTAL 100 .0H2/CO 0.68H2 0.49(CO + 1.5 CO2)( H ..2 - C O 2 )( C O + C O 2 )

    0.34

    Table 3

    H2c - - b - o . 7 /M E O H

    F U E L> T O G A ST U R B I N E( E L E C T R I CP O W E R )

    O N C E - T H R O U G H M E O HSYNTHESIS, IGCC FLOWSHEET

    NO SHIFT N O C O 2 R E M O V A L

  • 8/8/2019 Metanol Uretm Pazar Yeri

    19/129

    C,JIPOCO

    L A P O R TE P DU O P E R A T IO N S U M M A R YRUN OPERATION CATALYST H O U R SON

    F-1 MAR 1984 SHAKE- EBULLATED -- .- -~ EXTR UDA TES 248D O W N H Y B R ID '- '~ENTRAINEDE-1 APR /MAY 1984 ACTIVITYMAINT.

    E-2 JUN 1984

    M A Y / J U N 1 9 8 5- 3

    HIGH SLURRYCONC., HIGHTHROUGHPUTACTIVITYMA INT .

    HIGH SLURRYCONC., HIGHTHROUGHPUTE-4 JUL 1985

    EBULLATED "- '~HYBRID----~ENTRAINEDENTRAINED

    EXTRUDATES 9 6 4

    POWDER 145

    ENTRAINED

    ENTRAINED

    POWDER

    POWDER

    9 4 8

    231

    2 5 3 6

    Table 4

  • 8/8/2019 Metanol Uretm Pazar Yeri

    20/129

  • 8/8/2019 Metanol Uretm Pazar Yeri

    21/129

    L A P O R T E P D U R U N E - 3 O P E R A T I N G C O N D I T I O N S( 3 M A Y - 1 3 J U N E 1 9 8 5 )C A T A L Y S T :G AS T YPE:

    R E A C T O R P R E S S U R E :SUPERFIC IAL L IQUID V ELOCITY:PO W D ERC O - R I C H5 , 3 0 0 K P A4 . 9 C M / S

    ~ O!U 'I

    CASEE - 3 AE - 3 BE - 3 C

    T (C)2 5 02 2 52 5 0

    SUPERFICIALGAS VEL.( C M / S ) SPACE VEL.

    9 . 58 . 89 . 5

    ( L / H R - K G )1 0 , 0 0 01 1 , 3 0 01 0 , 0 0 0

    SLURRY CONC.(WT% OXIDE)2 82 52 8

    HRS. ATC O N D .

    9 42 383 1

    9 4 8Table 6

  • 8/8/2019 Metanol Uretm Pazar Yeri

    22/129

    L A P O R T E P D U H I G H L I G H T S - R U N E - 3 SMOOTH CATALYST LOADING, MIXING, AND SLURRYT R A N S F E R

    CONTINUOUS SMOOTH OPERATION OF SLURRYCIRCULATION PUMP - ALMOST 100% ON-STREAM TIME

    C ~!

    C ~

    ACHIEVED 97% OVERALL ON-STREAM TIME 34 HOUR OUTAGE DUE TO COMPRESSOR MOTOR PROBLEM

    DEMONSTRATED ABILITY TO MAINTAIN CATALYSTACTIVITY AFTER EXTENDED PDU SHUTDOWN LOW CATALYST CARRYOVERe PRODUCED 186 METRIC TONS METHANOL WITH 96% PURITY

    Table 7

  • 8/8/2019 Metanol Uretm Pazar Yeri

    23/129

    L A P O R T E P D U :C A T A L Y S T A N A L Y S E S F O R R U N S E - 1 A N D E - 3

    L, o!P O.., . , . j

    H R S . O NS Y N G A S

    R U N E- 1I I I I I I

    R U N E- 3F e N i H R S . O N F e(PPMW) (PPMW) SYNGAS (PPMW)

    0 1 6 5 4 2 0 6 8

    N i(PPMW)37

    964 394 137 942 67 26

    Table 8

  • 8/8/2019 Metanol Uretm Pazar Yeri

    24/129

    L A P O R T E P D U : A C H I E V E M E N T S O F R U N E - 3 S U C C E S S F U L I N - S I T U R E D U C T IO N O F A 2 5 W T %

    C A T A L Y S T S L U R R Y A T L A P O R T E P D U S C A L EICO E L I M IN A T I O N O F C A T A L Y S T P O IS O N A C C U M U L A T I O N

    O P E R A T I O N W IT H C O - R I C H G A S W IT H L E S S T H A N0 . 3 % / D A Y C A T A L Y S T D E A C T I V A T IO N

    9 7% O N - S T R E A M F A C T O R

    T ab l e 9

  • 8/8/2019 Metanol Uretm Pazar Yeri

    25/129

    L A P O R T E P D U : S U M M A R Y O F R U N( J U L Y 1 9 8 5 )E - 4

    S M O O T H P D U O P E R A T I O N A T H IG H S L U R R YC O N C E N T R A T I O NC, J!P~

    I M P R O V E D IN - S I T U R E D U C T IO N T E C H N I Q U ES U C C E S S FU L LY D E M O N S T R A T E D H IG H M E T H A N O L P R O D U C T I O N A C H I E V E D W I T HC O - R IC H G A S 10 0 % O N - S T R E A M F A C T O R

    Table 10

  • 8/8/2019 Metanol Uretm Pazar Yeri

    26/129

    E F F E C T O F N i (C O ) 4 O N M E T H A N O L C A T A L Y S T

    ( . , oIC ,J

    O

    HRS. ON Ni FeNi(CO)4 (PPMW CAT.) (PPMW CAT.)0 41.5 40.1

    24 151,0 67,848 299.0 51.054 416.0 60.374.5 542.0 60.683 712.0 69.1

    XRD (A)Cu ZnO

    87.5 53.892.4 67.087.7 60.075.7 67.079.2 69.975.7 67.0

    BET(M2/GM)106.6

    94.2105.3

    92.497.199.2

    Table 11

    . . . . . . . . . . . . I I II . .I I I l i . . ]! . . .. . I J R j III I I I . . . . . . J . . .. . I U L i ._ J - ._ ~ _ 1 1 J ] " - / 11 7 ] ] ]r - . . .. : _ ! 1 : ] _ ~ _ ~ ,E L ~ L _ . . ..

  • 8/8/2019 Metanol Uretm Pazar Yeri

    27/129

    E F F E C T O F F e (C O )5 O N M E T H A N O L C A T A L Y S T

    C OIC Op_ t

    HRS . ON N i FeF e ( C O ) 5 ( P P M W C A T . ) ( P P M W C A T . )0 8 7 . 9 2 9 . 0

    2 4 6 5 . 2 6 6 . 84 8 7 0 . 0 1 0 3 . 07 2 7 4 . 0 1 8 0 . 09 6 8 7 . 0 2 9 7 . 0

    1 2 0 6 7 . 3 4 5 2 . 0

    X R D ( A )i i i i i i iCu Z nO B E T( M 2 / G M )

    7 4 . 0 6 2 . 0 9 8 . 97 7 . 4 7 1 . 4 1 0 5 . 67 2 . 4 6 4 . 4 9 9 . 27 5 . 7 6 9 . 4 9 7 . 47 9 . 2 8 0 . 2 1 0 1 . 1

    Table 12

  • 8/8/2019 Metanol Uretm Pazar Yeri

    28/129

    S Y N G A S C O M P O S I T I O N T E S T E D

    C O!C OP ~

    S Y N G A SC O M P O S I T I O N ( M O L % )

    i

    H 2 C O C O 2i i

    N 2I

    A 3 5 5 1 1 3 1B 3 5 5 1 8 6C 3 5 5 1 4 1 0D 6 5 0 2 1 1 4

    Table 13

  • 8/8/2019 Metanol Uretm Pazar Yeri

    29/129

    A U T O C L A V E R E S U L T S O N C O 2 E F F E C TEXPER IMEN T A L C O N D IT IO N S

    REACTOR TEMP: 250 C ( 48 2F) REACTOR PRESSURE: 5 ,300 kPa (750 PSIG)COI

    COC ~

    SYN G ASABCD

    A U T O C L A V E P E R F O R M A N C EM e O HPRODUCTIVITY( G - M O L / H R - K G ) COC O N V . ( %)2 3 . 22 1 . 61 8 . 65

    1 3 . 41 2 . 31 0 . 5

    i N I N

    CO 2C O N V . ( %)

    m

    n u

    17

    Table 14

  • 8/8/2019 Metanol Uretm Pazar Yeri

    30/129

    M E T H A N O L S Y N T H E S I SC O -i- 2H 2 ~ C H 3 O H -!- H E A T ( 3 9 ,5 0 0 B T U / M O L E )

    f , , , O!, , , p = ,

    002 -~- 3H2 ~ CH3O H -!- H2 0 -I- HE AT (22 , 000 B TU / M O LE )T Y P I C A L R E A C T I O N C O N D I T I O N S :

    490F , 1000 PSI G

    Figure 1

  • 8/8/2019 Metanol Uretm Pazar Yeri

    31/129

    0. )!C~

    Figure 2

    S I M P L I F IE D P R O C E S S F L O W S H E E TF O R L A P O R T E P D U

    i

    ~S

    M I S T E R ~

    RECYCL E COMPRESSOR

    S Y N T H E S I S C W E X C H . L-JFEED GA -F

    REACTOR

    IM . I A S S E RL I[P I

    L P L -L SEPR.

    U T I L I T Y O I L S Y S T E M

    - - IX P . T A N KC O O L E RH E A T E R- - ~ P U M P

    R E D U C I N GGAS TO -,~F L A R E

    U T I L I T YOIL INSL URRYEXCH.

    UT IL ITY) I L RETURN

    R E C Y C L E ' t~ ~ PURGE

    , r e , _ . _ _ .

    ~ O D .C O O L E R ( ~ ', ~ . o o . s ~ )

    H E A T E R

    T O M e O HS T O R A G ET A N K

    S L U R R YS T E A M ~ C I R C U L A T I O N O I L C O N D E N - F I L T E R L P O I LH E A T E R " E L E C T R I C P U M P S A T E P U M P R E T U RNP U M P

  • 8/8/2019 Metanol Uretm Pazar Yeri

    32/129

    IO' t

    H Y D R O G E N U P T A K E A N D W A T E R F O R M A T I O ND U R I N G R E D U C T I O N

    . . I0dI.U=E0r~zOL )zu .I0I I :C~> ..

    2 . 0

    1 . 5

    1 . 0

    .5

    0

    L A P O R T E P D U R U N E - 3, ', H 2 = 1 . 5 2 S C F / L B

    - , A U T O C L A V E R U NA H 2 = 1 . 5 S C F / L B

    H,

    / /~2o5 1 0 1 5

    T I M E IN T O R E D U C T I O N , H R S .

    40

    30

    20

    10

    20

    AUJm

    .JLU~rF-roXuJO

    Figure 3

  • 8/8/2019 Metanol Uretm Pazar Yeri

    33/129

    !, . . . , . j

    L A P O R T E P D U 4 0 - D A Y R U N P E F O R M A N C EM A Y / J U N E 1 9 8 5

    35

    30G MOLEHR-KG 25

    20

    15%

    10

    P R O D U C T I V I T Y ,G M O L E M e O H / H R - K G O X I D E

    m

    C O - R I C H G A S2 5 0 C7 5 0 P S I G8 7 , 0 0 0 S C F H

    , , , 1 0 , 0 0 0 L / H R - K G S V

    A U T O C L A V E P R E D IC T IO NC O C O N V E R S I O N , %

    5 0

    OO 0~ O0 O0 O0 O0 O00 0 000 O 000

    A U T O C L A V E P R E D IC T IO NI I I I ! I I I5 1 0 15 2 0 2 5 3 0 3 5 4 0T IM E O N S Y N G A S , D A Y S

    Figure 4

  • 8/8/2019 Metanol Uretm Pazar Yeri

    34/129

    L A P O R T E P D U M E O H P R O D U C T I V I T Y V SC U M U L A T I V E M E O H P R O D U C T IV IT Y

    3 5

    c oIc oC o

    3 02 5

    M e O HP R O D . 2 0( G - M O L / K G - H ) 1 5

    1 0

    _

    0 0

    i

    I n

    O

    - [ ] R U N E - 3 ( F 2 1 / O E 7 5 - 3 5 ) R U N E - 1 ( R 7 1 / O F 1 2 - 2 6 )- " - A U T O C L A V E D A T AI I I I I I I

    5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0C U M . M e O H P R O D . , K G M e O H / K G C A T . IN S Y S T E M 4 0 0

    Figure 5

  • 8/8/2019 Metanol Uretm Pazar Yeri

    35/129

    ( .,,JI(. ~

    ~C ,

    U N B A L ,S Y N G A S

    B A L . tS Y N G A S

    /H 2 R I C H L , iS Y N G A S I

    L IQ U ID P H A S E M E T H A N O L1 - L I T E R S L U R R Y R E A C T O R S Y S T E M

    . A C T I V .A R C O AB E D S F L o F wr - - - - - " - G

    CONTROL ~" !P A R T I A LR E F L U X

    F L O W: )NTROL

    B A C KP R E S S U R ER E G U L A T O R

    O ILS A M P L E S

    FL-OW 1 -L ITERC O N T R O L R E A C T O RO ILR E S E R V O I R

    G A SS A M P L E SG C

    W E TT E S TM E T E R

    A 0 0 6 8 1 . 0 0 7

    Figure 6

  • 8/8/2019 Metanol Uretm Pazar Yeri

    36/129

    EFFECT OF N i(CO) 4 ON M ETH ANO L PROD UCTIV ITY

    O

    M e O HPROD.,G- MOL"HR-KG

    1 8

    1 6

    1 4

    1 2

    1 0

    R

    5500 SL/HR-KG750 PSIG250CCO-RICH GAS

    8 I I I I0 2 0 4 0 6 0 8 0

    ['-TART OFNi(CO) 4 INJECTION

    I I I I1 0 0 1 2 0 1 4 0 1 6 0TIME ON SYNGAS, HRS 1 8 0A00681.009

    Figure 7

  • 8/8/2019 Metanol Uretm Pazar Yeri

    37/129

    E F F E C T O F F e ( C O ) 5 O N M E T H A N O L P R O D U C T I V I T Y

    C ,OI

    M e O HPROD.

    G-MOLHR-KG

    18

    1 6

    14 -

    12 - -

    10

    80

    i

    m

    5 5 0 0 S L / H R - K G750 PSIG250CC O - R I C H G A S

    r -S T A R T O FFe(CO) 5I N J E C T I O N

    A

    I I I I50 100 150 200 250

    A00681,010F i g u r e 8

  • 8/8/2019 Metanol Uretm Pazar Yeri

    38/129

    E F F E C T O F N i A N D F e P O IS O N I N G O N M E T H A N O L P R O D U C T I V IT Y

    0 . 9 80 . 9 4 LAPORTE RUN E-1

    0 . 9 0C OI

    R E L A T I V EM e O HP RODUCTI V I TY [ ] R U N S

    0 . 86 L ~ - , ~ , , , , . ~ A U T OC L AV E0 . 8 2

    I_ [ ] NICKEL CARBON YL RUN0.78 IRON CARBONYL RUN[ ]

    0 . 7 40 . 7 0 0 2 0 0 4 0 0 6 0 0

    ( N i + F e ) O N C A T A L Y S T , P PM W 8 0 0A00682.008

    Figure 9

  • 8/8/2019 Metanol Uretm Pazar Yeri

    39/129

    A U T O C L A V E R E S U L T S W I T H A L T E R N A T E L IQ U I D S

    C OI

    3 6IIZ :-r- 32

    2 82 40

    > - ' 2 0I -> - - 1 6I. -0~ 1 20 8I=a .- r 40 0

    0

    S T A N D A R D P E R F O R M A N C E C U R V E ,C O - R I C H G A S , 7 5 0 P S I G , 2 5 0 C

    A

    E X X O N H T - 4 3BB D O W C O R N I N G 2 0 0, ~ A M O C O 1 8 -U S PC ) F R E E Z E N E - 1 0 0I -'] W I TC O - 7 0/ X W I T C O L P - 1 5 0

    2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0S P A C E V E LO C I T Y , S L / H R - K G

    1 6 0 0 0A00881.013

    F igu re 10

  • 8/8/2019 Metanol Uretm Pazar Yeri

    40/129

    I

    I

    "I-, . . IOr.p>:i- -m

    mI--.

    E3On r13.-1-O

    20

    15

    1 0

    0 0

    E F F E C T O F A U T O C L A V E S T I R R E R S P E E D O NM E T H A N O L P R O D U C T I V I T Y

    O L P - 1 5 0 / 4 4 5 0 S L / H R - K GIN F R E E Z E N E - 1 0 0 / 5 5 0 0 S L / H R - K GA W l T C O - 7 0 / 4 4 0 0 S L / H R - K G

    200 4 0 0 6 0 0 8 0 0 1 0 0 0STIRRER SPEED, RPM

    I I1200 1400

    Figure 11

  • 8/8/2019 Metanol Uretm Pazar Yeri

    41/129

    I:=O1

    E F F E C T O F C O 2 O N C A T A L Y S T P E R F O R M A N C ECO

    CONV . ,%

    M eOHPROD.,G-MOLHR-KG

    15

    1 0

    2 0

    151 0

    250C, 750 PSIG8 3 0 0 SL/HR-KG35% H2, 51% CO, BALANCE N 2

    AW

    2 I I ! I IINL T C , MOL % 14 A00681,011Figure 12

  • 8/8/2019 Metanol Uretm Pazar Yeri

    42/129

    METHANOL CO-PRODUCTION FOR ELECTRIC U T IL IT Y APPLICATIONSJ. F. Weinhold

    Tennessee Val ley Author i ty

  • 8/8/2019 Metanol Uretm Pazar Yeri

    43/129

    METHANOL COPRODUCTION FOR ELECTRIC UTILITY APPLICATIONS

    J. Frederick Weinho ld

    The addition of methanol coproductio n technology to an integrated coalgasification combined cycle (IGCC) power plant adds a new dimension to an alreadyversatile electric generating system. Using available technology, w hich needs tobe demonstrated at commercial scale using gasifie d c oal , the addition of methanolcoproduction to an economically viable IGCC plant would make sense under favorablecircumstances even at today's depressed oil and natural gas prices. Based on theDepartment of Energy's (DOE's) fuel price projections, it would be particular lyattra ctive in the late 1990s and beyond.

    IGCC SYSTEM

    The basic IGCC system with advanced gas turbine techno logy is expected to providebase-load electr ic power from coal at efficiencies and costs whic h are competitivewith conventional pulverized coal with scrubbers, wi th atmospheric fluidized-bedcombustion systems, and wit h circulating fluidized-bed combustion systems. Inaddition, it offers unique benefits due to its ability to meet very stringent airemissions standards and to be constructed in a phased manner. Because sulfurremoval is accom plis hed at pres sure under reducing conditions, it is possib le toachieve almost complete capture at reasonable cost using proven chemical processtechnology. Thus it would not be necessary to obtain offsets from existing unitswhen building a new unit under an "umbrella." Nitrogen oxides emissions can besignificantly lower than competing systems throug h appropriate combustion turbinedesign and/or control of combustion conditions.

    The phased construction approach allows utilities to schedule the construction ofcombust ion turbin es in resp onse to load growth. Simple cycle gas turbines using

    3-49

  • 8/8/2019 Metanol Uretm Pazar Yeri

    44/129

    natural gas can be ordered and installe d wit h as little as a two-year lead time.S u c h u n i t s a r e s ui t a b l e f or p e a k i n g o p e r a t i o n s . T h e u t i l i t y c a n i n c r ea s e t h ee f f i c i e n c y o f t h e u ni t a t a l a t er d a t e b y a d d i n g h e a t r e c o v e r y s t e a m g e n e r a t o r sa n d t u r b i ne s . H e a t r a t e s of 7 0 0 0 t o 7 5 0 0 B t u / k W h a r e p o s s i b l e w i t h n a t u r a l g a s .T h i s m a k e s t h e u n i t s s u i t a b l e f o r i n t e r m e d i a t e - o r b a s e - l o a d o p e r a t i o n , p r o v i d e dthat natural gas is availab le in suffic ient quantiti es. At today's low naturalgas prices this can be the most econom ic altern ative .

    C o al g a s i f i c a t i o n c a n b e a d d e d t o t h e c o m b i n e d - c y c l e p l a n t w h e n f u e l p r i c e se s c a l a t e a nd s y s t e m c o n d i t i o n s w a r r a n t t h e u s e o f c oa l . I f t h is c a p a b i l i t y i sdesigned in at the start, the gas turbi nes can provide needed syste m gene ratio nw h i l e t h e l o n g e r l e a d t im e g a s i f i c a t i o n a n d s t e a m u n i t s a r e b e i n g c o n s t r u c t e d .The result is great er flexi bilit y in respo nding to changes in demand gro wth andf ue l a v a i l a b i l i t y . P h a s e d c o n s t r u c t i o n a l s o a l l o w s u t i l i t i e s t o m i n i m i z e r a t eshock and spread capital requ irem ents t hrough time. Whe n the time value of moneya n d i n f l a t i o n a r e c o n s id e r e d , t h e f i n a n c i a l s a v i n g s a s s o c i a t e d w i t h p h a s e dconst ructi on could account for up to 30 perce nt of the plant' s capital cost.

    M E T H A N O L C O P R O D U C T I O N

    Methan ol is curren tly being produc ed from natur al gas and coal. The raw materiali s f i r s t c o n v e r t e d t o a s y n t h e s i s g a s - - c a r b o n m o n o x i d e a n d h y d r o g e n - - t h e n s hi ft edt o o b ta i n a h y d r o g e n t o c a r b o n m o n o x i d e r a t i o s l i g h t l y o v e r t w o a n d f i n a l l yr e c y c l e d t h r o u g h a c a t a l y s t b e d u n t i l i t i s a l mo s t c o m p l e t e l y c o n v e r t e d t om e t h a n o l . M o d e r n n a t u r a l g a s - t o - m e t h a n o l p l a n t s u s e n e a r l y t w o Bt u ' s o f f ee ds to ckto obtain one Btu of product.

    C o p r o d u c t i o n o f m e t h a n o l w i t h e l e c t r i c p o w e r o f f e r s s o m e r ea l o p p o r t u n i t i e s t oimprove effic iency and cut costs. In the once -thr ough concept, the synthesis gasproduced by coal gasi fica tion (H /CO = .5) is cleaned and sent through a methanolcatalyst reacto r just once. Much of the hydro gen and 20 perce nt of the totalenergy are converted to metha nol. The deplete d gas is then burne d as fuel in thec o m b u s t i o n t u r b i n e . T h e e q u i p m e n t a n d l o s s es a s s o c i a t e d w i t h s h i f t i n g a nd re cy cl eare saved.

    M e t h a n o l c o p r o d u c t i o n c a n b e i n c l u d e d w h e n t h e g a s i f i c a t i o n u n i t i s d e s i g ne d an dconstruct ed. It can enhance the ability of the unit to meet several utilityo b j e c t i v e s .

    3 -50

  • 8/8/2019 Metanol Uretm Pazar Yeri

    45/129

    E n s u r e F u el A v a i l a b i l i t y - U t i l i t i e s a d o p t i n g a n e x p a n s i o ns t r a t e g y i n v o l v i n g s i g n i f i c a n t l y i n c r e a s e d d e p e n d a n c e o n g a st u r b i n e s t o m e e t p e a k i n g a n d i n t e r m e d i a t e d e m a n d f a c e t h ep o s s i b i l i t y t h a t n a t u r a l g a s w i l l n o t b e a v a i l a b l e a t r e a s o n a b l ep r i c e s o r a t al l t o m e e t s o m e s y s t e m g e n e r a t i o n r e q u i r e m e n t s .T h i s m a y o c c u r s o o n i n r e s p o n s e t o m a r k e t d i s r u p t i o n s o r l a t e r d u et o t h e d e p l e t i o n o f l o w c o s t n a t u r a l g a s r e s e r v e s . L i q u i d f u e lm u s t b e a v a i l a b l e t o c o v e r th i s p r o b l e m . D i s t i l l a t e o i l n o wp r o v i d e s t h e a l t e r n a t e , b u t i t is m o r e c o s t l y a n d i s s u b j e c t t oc h a n g e s i n t h e w o r l d o i l s i t u a t i o n . E v e n i n t o d a y ' s d e p r e s s e de n e r g y m a r ke t , m e t h a n o l f r o m a n a d d - o n o n c e - t h r o u g h u n i t w o u l dp r o v i d e l i q u i d f u e l f r o m c o a l f o r p e a k i n g g a s t u r b i n e s a t c o s t sw h i c h a r e c o mp e t i t i v e w i t h d i s t i l l a t e . I t i s p o s s i b l e t h a t t h ev a r i a b l e c o s t of o n c e - t h r o u g h m e t h a n o l f r o m c o a l w o u l d b ec o m p e t i t i v e w i t h n a t u r a l g a s . T h u s a u t i l i t y w h i c h u n d e r t a k e s a ne x t e n s i v e c o m b u s t i o n t u r b i n e - b a s e d e x p a n s i o n p l a n w o u l d f i n d i td e s i r a b l e t o i n c l u d e o n c e - t h r o u g h m e t h a n o l c a p a b i l i t y a t i t s I G C Cp l a n t t o s u p p l y l i q u i d f ue l f o r i t s p e a k i n g t u r b i n e s . A o n c e -t h r o u g h u n i t a s s o c i a t e d w i t h a b a s e - l o a d 5 0 0 - M W I G C C p o w e r p l a n t( n o r m a l l y 4 0 0 M W o f e l e c t r i c i t y w i t h t h e r e m a i n i n g g a s u s e d t op r o d u c e m e t h a n o l ) w o u l d s u p p l y a p p r o x i m a t e l y 8 0 0 t o 90 0 M W o fs i m p l e c y c l e g a s t u r b i n e s o p e r a t i n g 5 0 0 h o u r s p e r y e a r f o r p e a k i n go r 2 2 0 0 M W i f t h e y o p e r a t e d o n l y 2 0 0 h o u r s p e r y e a r . T h e s a m em e t h a n o l c o p r o d u c t i o n u n i t c o u l d s u p p l y a b o u t 2 5 0 ~ o f a d v a n c e dc o m b i n e d c y c l e g e n e r a t i o n o p e r a t i n g 2 5 0 0 h o u r s p e r y e a r f o ri n t e r m e d i a t e l o a d a p p l i c a t i o n s . T h u s t h e d e v e l o p m e n t o f o n c e -t h r o u g h m e t h a n o l t e c h n o l o g y n o w a n d m a k i n g p r o v i s i o n f o r i tsi n c l u s i o n i n f u t u r e I G C C p l a nt s a l l o w s u t i l i t i e s t o b u i l d l o w c os tn a t u r a l g a s t u r b i n e p e a k i n g p l a n t s n o w a n d t o e n s u r e a g a i n s tf u t u r e n a t u r a l g a s / d i s t i l l a t e u n a v a i l a b i l i t y .P r o v i d e L o a d F o l l o w i n g / E n e r g y S t o r a g e - T h e p r e v i o u s o p t i o na s s u m e d t h a t a b a s e l o a d e d I G C C un i t w o u l d b e o p e r a t e d a te s s e n t i a l l y f u l l l o ad ( 8 5 p e r c e n t c a p a c i t y f a c t o r ) t o p r o d u c es t o r a b l e l i q u i d f u el f o r u s e i n o t h e r c o m b u s t i o n t u r b i n e u n i t s i nt h e sy s t e m. T h e s e o t h e r u n i t s w o u l d o p e r a t e t o m e e t i n t e r m e d i a t ea n d / o r p e a k d e m a n d . I t is a l s o p o s s i b l e t o d e s i g n t h i s l o a df o l l o w i n g / e n e r g y s t o r a g e c a p a b i l i t y i n t o a s i n g l e I G C C / m e t h a n o lc o p r o d u c t i o n u n i t . B y si z i n g t he c o m b i n e d - c y c l e p l a n t t o h a n d l et h e e n t i r e o u t p u t o f t h e g a s i f i e r s a n d p r o v i d i n g a b y p a s s o f t h em e t h a n o l u n i t , i t is p o s s i b l e t o i n c r e a s e t h e e l e c t r i c a l o u t p u t o ft h e I G C C u ni t b y 2 5 p e r c e n t w h i l e m a i n t a i n i n g a c o n s t a n t g a s i f i e rl o a d~ A d d i t i o n a l c o m b i n e d c y c l e o r s i m p l e c yc l e c o m b u s t i o nc a p a c i t y c o u l d be i n c l u d e d i n t h e u n i t . T h e m e t h a n o l p r o d u c e dc o u l d f u e l t h e c o m b i n e d c y c l e p o w e r u n i t w h e n t h e g a s i f i e r w a s n o to p e r a t i n g a n d co u l d f u e l a d d i t i o n a l s i m p l e c y c l e t u r b i n e s. T h ea c t u a l m a t c h i n g o f g a s i f i e r a n d c o m b u s t i o n t u r b i n e c a p a c i t i e sw o u l d d e p e n d o n o v e r a l l s y s t e m c o n f i g u r a t i o n , r e l i a b i l i t yr e q u i r e m e n t s , a n d s p a r i n g p h i l o s o p h y . T h e m o d u l a r n a t u r e o f b o t ht h e g a s i f i e r s a n d c o m b u s t i o n t u r b i n es , i n c o n j u n c t i o n w i t h t h eo n c e - t h r o u g h m e t h a n o l u n i t , g i v e s t h e d e s i g n e r a g r e a t d e a l o ff l e x i b i l i t y . T h u s u t i l i t i e s l a c k i n g p u m p e d h y d r o , c o m p r e s s e d a i ro r o t h e r c y c l i n g s t o r a g e p o t e n t i a l c o u l d m e e t b o t h b a s e l o a d a n dc y c l i n g n e e d s w i t h a s i n gl e I G C C / m e t h a n o l u n i t .

    3-51

  • 8/8/2019 Metanol Uretm Pazar Yeri

    46/129

    P r o v i d e P o t e n t i a l P o w e r Cost R e d u c t i o n s T h r o u g h P r o d u c tD i v e r s i f i c a t i o n - M e t h a n o l p r o d u c e d a t a n I G C C / o n c e - t h r o u g hm e t h a n o l p o w e r p l a n t w o u l d b e e c o n o m i c a l l y c o m p e t i t i v e w i t h o t h e rs o u r c e s o f m e t h a n o l , p r o v i d i n g t h a t t h e e l e c t r i c p o w e r s y s t e m w a sa b l e t o s u p p o rt t h e c o s t o f t h e g a s i f i c a t i o n a n d c o m b i n e d - c y c l eunits. It is thus feasible for a util ity to consi der installi ng ao n c e - t h r o u g h m e t h a n o l u n i t t o p r o d u c e m e t h a n o l f o r s a le .D e p e n d i n g o n i t s u l t i m a t e u s e, t h e m e t h a n o l m a y h a v e t o b eu p g r a d e d t o c h em i c a l o r m o t o r f u e l g r a d e . T h e 5 0 0 - M W I G C C p l a n td i s c u s s e d a b o v e w o u l d p r o d u c e a b o u t 7 0 - m i l l i o n g a l l o n s o f m e t h a n o lp e r y e ar , r o u g h l y o n e - t h i r d t h e o u t p u t o f a w o r l d - s c a l e n a t u r a lg a s - t o - m e t h a n o l p l a n t . W i t h t o d a y ' s c o a l p r i c e s , t h e v a r i a b l ec o s t o f p r o d u c i n g o n c e - t h r o u g h m e t h a n o l w o u l d o n l y b e 1 4 t o 2 5c e n t s p e r g a l l o n , w e l l b e l o w t h e c u r r e n t d e p r e s s e d m a r k e t p r i c e o f37 to 42 cents per gallon. This leaves room for a substantialo p e r a t i n g m a r g i n e v e n w h e n t r a n s p o r t a t i o n a n d u p g r a d i n g c o s t s a r eadded. This operating margin could be used to offset some of thev a r i a b l e c o s t s of p r o d u c i n g e l e c t r i c i t y f r o m t h e I G C C u n i t t h e r e b yplacing the unit earlier on the dispa tch list. If and whe nm e t h a n o l p r i c e s i n c r e a s e , t h e m e t h a n o l r e v e n u e c o u l d s u b s t a n t i a l l yr e d u c e t h e n e t e l e c t r i c g e n e r a t i n g c o s t . T h u s t h e c o p r o d u c t i o na n d s a l e of m e t h a n o l c o u l d p r o v i d e n e w e l e c t r i c g e n e r a t i o n f r o mcoal at a net cost appro aching the system average cost rather thanw e l l a b o v e .

    T h e t h r e e o p t i o n s o r o b j e c t i v e s f o r m e t h a n o l c o p r o d u c t i o n a r e n o t m e a n t t o b eexclusive. They are aids in thinkin g about and justif ying its installa tion. Iti s q u i t e p o s s i b l e t h a t a o n c e - t h r o u g h m e t h a n o l u n i t w o u l d b e j u s t i f i e d i n t er m s o fthe insurance it provid es a util ity syste m for its natura l gas fired combu stionturbines. Once installed, however, it could be used to produc e metha nol for saleprovidi ng that market s were availabl e, the econo mics were favorable , and the salesc o n t r a c t s s o s t r u c t u r e d t h a t i t c o u l d m e e t i t s i n s u r a n c e o b j e c t i v e w h e n n e e d e d .

    E C O N O M I C S O F M E T H A N O L C O P R O D U C T I O N U N D E R C U R R E N T M A R K E T C O N D I T I O N S

    N o m a t t er w h i c h o f t h e t h r e e o p t i o n s o r r a t i o n a l e s f o r o n c e - t h r o u g h m e t h a n o l i sb e i n g u se d , i t i s n e c e s s a r y t o u n d e r s t a n d t h e f o l l o w i n g e c o n o m i c e l e m e n t s .

    V a r i a b l e C o s t s o f P r o d u c i n g M e t h a n o l - T h e v a r i a b l e c o s t o fp r o d u c i n g m e t h a n o l i n a o n c e - t h r o u g h u n i t c a n b e e s t i m a t e d b ya s s u m i n g t h a t t h e s y s t e m i s c o n f i g u r e d s o t h a t t h e m e t h a n o l u n i tc a n e i t h e r b e o p e r a t e d o r b y p a s s e d t o p r o d u c e a d d i t i o n a le l e c t r i c i t y . T h e v a r i a b l e c o s t is t h e n t h e v a l u e o f t h e e l e c t r i cp r o d u c t i o n f o r e g o n e p l u s t h e v a r i a b l e c o s t s a s s o c i a t e d w i t h t h em e t h a n o l u n i t i t s e l f . I f t h e I G C C u n i t i s t he m a r g i n a l p r o d u c e rin the system at the time, then the value of electric ity for egonei s t h e m a r g i n a l c o s t o f e l e c t r i c i t y f r o m t h e u ni t . I f o t h e r m o r ecostly units are operatin g, then the cost of backi ng down the IGCCunit is the marg inal cost of the last increment of system supp ly

    3 -52

  • 8/8/2019 Metanol Uretm Pazar Yeri

    47/129

    t h e n o p e r a t i n g . W h e n t h e o p p o r t u n i t y c o s t s f o r p r o d u c i n g m e t h a n o le x c e e d t h e s y s t e m r e p l a c e m e n t c o s t, m e t h a n o l w o u l d b e p r o d u c e d .On a system si milar to TVA's, loc ated clo se to eastern coalf i e l d s, c o a l - b a s e d p o w e r i s g e n e r a t e d a t a v a r i a b l e c o s t o f 1 .3 t o1 . 8 c e nt s p e r k i l o w a t t h o u r ( h i g h - s u l f u r c o a l a v a i l a b l e a r o u n d$ 1 . 2 5 p e r m i l l i o n B t u ) . W i t h h i g h l y e f f i c i e n t c o n v e r s i o n o fs y n t h e s i s g a s i n t o m e t h a n o l ( e f f i c i e n c y o f 9 5 p e r c e n t o r b e t t e r ) ,m e t h a n o l c o u l d b e p r o d u c e d a t a v a r i a b l e c o s t o f 1 4 t o 1 9 ce n t sp e r g a l l o n ( $ 2 . 1 5 t o $ 2 . 8 5 p e r m i l l i o n B t u ) . O n o t h e r c o a l - b a s e ds y s t e m s w i t h l e s s f a v o r a b l e c o a l p r i ce s , c o a l - b a s e d e l e c t r i c p o w e ris gene rate d at a vari able cost of 1.8 to 2.5 cents perk i l o w a t t h o u r . T h i s w o u l d p r o d u c e m e t h a n o l w i t h a v a r i a b l e c o s t o f1 9 t o 2 5 c e n t s p e r g a l l o n ( $ 2 . 8 5 t o $ 3 . 8 5 p e r m i l l i o n B t u ) .C a p i t a l C o s t o f M e t h a n o l U n i t - T h e m e t h a n o l u n i t i t s e l f p l u sm o d i f i c a t i o n s t o th e g a s c l e a n u p s y s t e m w i l l r e q u i r e a d d i t i o n a lc a p i t a l e x p e n d i t u r e s w h i c h c a n b e d i r e c t l y a s s o c i a t e d w i t h t h ec o s t of ~ h e m e t h a n o l p r o d u c e d . W h i l e t h e r e a r e n o d e f i n i t i v eestima tes of these costs, they appear to be in the rang e of 5 toi 0 p e r c e n t o v e r th e I G C C p l a n t c o st ( $ 1 5 0 0 / k W ) . T h e c a p i t a lc h a r g e p e r g a l l o n w o u l d d e p e n d o n t h e q u a n t i t i e s p r o d u c e d p e ry e a r . U n d e r f a v o r a b l e m e t h a n o l d e m a n d / m a r k e t c o n d i t i on s , t h eg a s i f i e r u n i t w o u l d b e r u n a t f ul l c a p a c i t y t o t h e m a x i m u m e x t e n tp o s s i b l e ( i . e ., 8 5 p e r c e n t o f t h e t i m e ). T h e o n c e - t h r o u g hm e t h a n o l u n i t w o u l d b e r u n a t f u l l c a p a c i t y ( 2 0 p e r c e n t o f t h e g a su s e d t o p r o d u c e m e t h a n o l ) e x c e p t w h e n t h e u t i l i t y s y s t e mc o n d i t i o n s r e q u i r e d m a x i m u m e l e c t r i c p r o d u c t i o n . A t t h at ti m e ,t he m e t h a n o l u n i t w o u l d b e b y p a s s e d a n d f u l l e l e c t r i c p r o d u c t i o no b t a i n e d . A s s u m i n g t h e u n i t w a s b y p a s s e d 5 0 t im e s p e r y e a r f o r 8h o u r s e a c h ( 4 0 0 h o u r s ) , t h e e l e c t r i c g e n e r a t i n g u n i t c a p a c i t yf a c t o r w o u l d b e 6 8 . 8 p e r c e n t a n d 1 6 . 2 p e r c e n t o f t h e r a t e dg a s i f i e r o u t p u t w o u l d b e u s e d t o m a k e m e t h a n o l . T h e u s e of a 1 6p e r c e n t p e r y e a r c a p i t a l c h a r g e r a t e w o u l d r e s u l t i n a c a p i t a lc h a r g e p e r g a l l o n o f 7 . 7 t o 1 5 .5 c e n t s p e r g a l l o n , d e p e n d i n g o nw h e r e w i t h i n t h e 5 t o i 0 p e r c e n t m a r g i n a l i n v e s t m e n t r a n g e t h eplant was.C a p i t a l C o s t o f G a s i f i c a t i o n a n d P o w e r G e n e r a t i n g U n i t s - D u r i n gn o r m a l o n c e - t h r o u g h m e t h a n o l o p e r a t i o n w i t h t h e g a s i f i e r so p e r a t i n g a t i 0 0 p e r c e n t o f c a p a c i t y, t h e s y s t e m w o u l d u s e u p t o2 0 p e r c e n t o f t h e g as s t r e a m e n e r g y f o r m e t h a n o l p r o d u c t i o n a n d 8 0p e r c e n t f o r e l e c t r i c i t y p r o d u c t i o n . I t is t h u s n e c e s s a r y t odecide ho w much, if any, of the capital cost of the gasi fic ati ona n d r e l a t e d u n i t s s h o u l d b e a s s i g n e d t o t h e m e t h a n o l p r o d u c e d .T h e c a p i t a l c o s t s o f p o w e r p r o d u c t i o n a n d g a s i f i c a t i o n u n i t s a r eroughl y the same, so the capital cost of 20 percen t of theg a s i f i c a t i o n u n i t w o u l d b e a b o u t I 0 p e r c e n t o f t h e to t a l p l a n tcost. This is roughl y equal to the cost of the meth anolc o p r o d u c t i o n u n i t . T h e o n c e - t h r o u g h m e t h a n o l u n i t w o u l d , h o w e v e r ,b e o p e r a t e d i n s u c h a w a y a s t o i n c r e a s e t h e o v e r a l l p l a n tc a p a c i t y f a ct o r . G i v e n a d e q u a t e m a r k e t s f o r t h e m e t h a n o l a n d t h ef a v o r a b l e m a r g i n a l c o s t / v a l u e p i c t u r e , i t w o u l d b e p o s s i b l e t oi n c r e a s e t h e c a p a c i t y f a c t o r o f t h e I G C C s y s t e m t o a b o u t 8 5p e r c e n t , o r w h a t a c h e m i c a l p l a n t m i g h t a c h i e v e , a s c o m p a r e d w i t ha 6 0 - t o 7 0 - p e r c e n t r a t e f o r u t i l i t y g e n e r a t i n g u n i t s . ( E i g h t yp e r c e n t o f 8 5 p e r c e n t i s 6 8 p e r c e n t . ) T h i s c o u l d j u s t i f y p o w e rp r o d u c t i o n b e a r i n g t h e e n t i r e c a p i t a l c o s t o f t h e g a s i f i c a t i o nu n i t . S u c h a n a l l o c a t i o n w o u l d b e j u s t i f i e d w h e r e t h e c o m b u s t i o n

    3 -53

  • 8/8/2019 Metanol Uretm Pazar Yeri

    48/129

    t u r b i n e s a r e d e s i g n e d t o h a n d l e t h e f u l l f l o w o f th e g a s i f i e r s( m e t h a n o l u n i t b y p a s s e d ) . T h i s c o n f i g u r a t i o n c o u l d b e v i e w e d a s an o r m a l I G C C s y s t e m w i t h a n a d d - o n o n c e - t h r o u g h m e t h a n o l u n i t t o b eo p e r a t e d w h e n t h e s y s t e m d i d n o t n e e d t he f ul l p o w e r o u t p u t . T h es y s t e m w o u l d b e o p e r a t e d f o r m o r e h o u r s p e r y e a r a t 2 0 p e r c e n tl o w e r e l e c t r i c a l o u t p u t t o p r o d u c e a b o u t t h e s a m e n u m b e r o fk i l o w a t t h o u r s p e r y e a r .V a l u e o f t h e M e t h a n o l - T h e m e t h a n o l c o u l d b e u s e d d i r e c t l y b y t h eu t i l i t y i n c o m b u s t i o n t u r b i n e s t o r e p l a c e d i s t i l l a t e o r n a t u r a lg a s m a k i n g i t a c o a l - d e r i v e d f u e l s u i t a b l e f o r p e a k i n g s e r v i c e .I f t he c a p i t a l c h a r g e s a s s o c i a t e d w i t h m o d i f y i n g t h e fu e l s t o r a g e ,f ue l h a n d l i n g , a n d b u r n e r c o n f i g u r a t i o n w e r e n e g l e c t e d , t h e n t h eB t u v a l u e o f t h e m e t h a n o l w o u l d e q u a l t h e B t u v a l u e o f t h ed i s t i l l a t e or n a t u r a l g as . F r o m 1 98 3 t h r o u g h 1 98 5 , d i s t i l l a t es o l d f o r 7 5 t o 8 5 ce n t s p e r g a l l o n ( $ 5 . 4 0 t o $ 6 . 1 0 p e r m i l l i o nB t u ) w h i c h i s e q u i v a l e n t t o 3 5 to 4 0 c e n t s p e r g a l l o n o fm e t h a n o l . T h e a v e r a g e c o s t o f n a t u r a l g a s t o u t i l i t i e s w a s $ 3 . 5 0t o $ 3 . 75 p e r m i l l i o n , b u t v a r i e d w i t h l o c a t i o n a n d t y p e o fc o n t r a c t . T h i s i s th e e q u i v a l e n t o f 2 2 t o 2 4 c e n t s p e r g a l l o n o fm e t h a n o l . T h e w o r l d o i l m a r k e t i s c u r r e n t l y e x p e r i e n c i n g a r a p i dp r i c e d ro p , f r o m n e a r l y $ 3 0 p e r b a r r e l t o l e s s t h an $ 2 0 . T h i sc o u l d r e s u lt i n d i s t i l l a t e p r i c e s a r o u n d 5 0 c en t s p e r g a l l o n .T h e c u r r e n t m e t h a n o l m a r k e t p r i c e i s 37 t o 4 2 c e nt s p e r g a l l o n( $ 5 . 7 5 t o $ 6 . 5 0 p e r m i l l i o n B t u ) . W h i l e t h e s t a b i l i z e d m e t h a n o lf u el p r o d u c e d i n a u t i l i t y o n c e - t h r o u g h u n i t w o u l d b e s u i t a b l e f o ru s e i n c o m b u s t i o n t u r b i n e s w i t h n o f u r t h e r p r o c e s s i n g , i t w o u l dh a v e t o b e u p g r a d e d , i . e . , d i s t i l l e d , f o r s a l e as c h e m i c a l - g r a d em e t h a n o l . T h i s w o u l d r e q u i r e a d d i t i o n a l c a p i t a l a n d a d d a b o u t 2c e n t s p e r g a l l o n t o o p e r a t i n g c o s t s . I t i s n o t c l e a r h o w m u c hu p g r a d i n g w o u l d b e r e q u i r e d f o r t h e m e t h a n o l t o b e u s e d i ng a s o l i n e b l e n d i n g . T o s e l l m e t h a n o l , i t w o u l d a l s o b e n e c e s s a r yt o i n c u r m a r k e t i n g a n d t r a n s p o r t a t i o n e x p e n s e s . I t w o u l d c o s ta b o u t 5 t o I 0 c e n t s p e r g a l l o n t o b a r g e m e t h a n o l f r o m a c c e s s i b l ei n l a n d l o c a t i o n s i n t he e a s t e r n U . S . t o G u l f C o a s t m a r k e t s .S p e c i a l c o n d i t i o n s o f c o n v e n i e n c e , s u c h a s n e a r b y u s e r s , c o u l d o fc o u r s e o f f s e t th i s co s t . T h e m a r k e t i n g c o s t s w o u l d i n v o l v es t o r a g e , h a n d l i n g , a n d a d m i n i s t r a t i v e c o s t s a s s o c i a t e d w i t hp a r t i c u l a r c u s t o m e r s o r m a r k e t s .T h e v a l u e o f c o p r o d u c e d m e t h a n o l f u e l i s c u r r e n t l y b e l o w t h e l e v e li t w o u l d h a v e b e e n i n 1 9 8 0 t h r o u g h 1 9 82 . U n d e r t h e e c o n o m i c sw h i c h p r e v a i l e d f r o m 1 9 8 3 t h r o u g h 1 9 8 5, i t s v a l u e w o u l d b e 3 5 t o4 0 c e nt s p e r g a l l o n ( $ 5 . 4 0 t o $ 6 . 1 0 p e r m i l l i o n B t u ) a s ar e p l a c e m e n t f o r t u r b i n e d i s t i l l a t e ( 2 . 1 5 g a l l o n s o f m e t h a n o l t o 1g a l l o n o f d i s t i l l a t e ) a n d 2 6 t o 3 5 c e nt s p e r g a l l o n ( 3 8 t o 4 2c e n t s - 5 t o I 0 c en t s t r a n s p o r t a t i o n - 2 c e n t s u p g r a d i n g ) a sm e r c h a n t - g r a d e m e t h a n o l ( $ 4 . 0 0 t o $ 5 . 4 0 p e r m i l l i o n B tu ) . T h e s ef i g u r e s d o n o t r e f l e c t t h e a d d e d c a p i t a l n e e d e d t o u s e o r m a r k e tt h e m e t h a n o l . O n t h i s b a s i s , i n t e r n a l u s e w o u l d b e s l i g h t l y m o r ea t t r a c t i v e t h a n s a l e. H o w e v e r , i f d i s t i l l a t e pr i c e s r e m a i n a tt h e i r c u r r e n t ( e a r l y 1 9 8 6 ) l o w l e ve l s a n d m e t h a n o l c o n t i n u e s t or e t a i n i t s m a r k e t p r i c e , t h e n s a l e w o u l d b e m o r e a t t r a c t i v e .G i v e n t h i s u n c e r t a i n t y , b o t h o p t i o n s s h o u l d b e e v a l u a t e d .C a p i t a l C o s t o f U s i n g / S e l l i n g M e t h a n o l - T h e u s e o f m e t h a n o l i nt h e u t i l i t y ' s o w n c o m b u s t i o n t u r b i n e s c o u l d i n v o l v e m o d i f i c a t i o n s

    3-54

  • 8/8/2019 Metanol Uretm Pazar Yeri

    49/129

    p

    i

    t o f u e l s t o r a g e , f u e l h a n d l i n g , a n d b u r n e r s y s t e m s , s i n c e i t h a sa b ou t h a l f t he e n e r g y p e r u n i t v o l u m e a s d i s t i l l a t e f u e l o i l . I fm an y e x i s t in g u n i t s m u s t b e m o d i f i e d , t h e i n v e s t m e n t w o u l d b es u bs t an t ia l . G e n e r a l E l e c t r i c h a s e s t i m a t e d t h e c o s t t o b e a b o u t$ i .5 m i l l i o n f o r m o d i f y i n g o n e o f t h e i r e x i s t i n g l a r g e c o m b u s t i o nt u rb i ne s . T h e m e t h a n o l c o u l d a l s o b e u s e d f o r l i g h t i n g o f f a n ds u st a in i ng c o a l - f i r e d u n i t s . T h e m o d i f i c a t i o n a n d c a p i t a l c o s t sf o r t h is a p p l i c a t i o n h a v e n o t y e t b e e n e s t i m a t e d .T h e i n v e s t m e n t s r e q u i r e d t o u p g r a d e , h a n d l e , a n d s e l l m e t h a n o lh a ve n o t b e e n e s t i m a t e d e i t h e r . G e n e r a l l y , t h e u n i t c o s t s a r ea c c ep t a bl e w h e r e l a r g e q u a n t i t i e s a n d h i g h c a p a c i t y f a c t o r s a r einvolved.O th er E c o n o m i c F a c t o r s T o B e E v a l u a t e d - A n u m b e r o f s e c o n d a r yc o n c e r n s ca n a l s o a f f e c t t h e o v e r a l l e c o n o m i c p i c t u r e . S i n c e t h eg a s i f i c a t i o n u n i t s a n d t h e c o m b u s t i o n t u r b i n e s a r e a f f e c t e d b ya m b i en t t e m p e r a t u r e d i f f e r e n t l y , s t o r e d m e t h a n o l c o u l d o f f s e t t h em i s m a t c h es . A n I G C C u n i t d e s i g n e d t o p r o d u c e s u f f i c i e n t g a s t of u l ly l o a d t h e c o m b u s t i o n t u r b i n e / c o m b i n e d c y c l e i n th e w i n t e r( 2 0 F ) w i t h t h e m e t h a n o l u n i t b y p a s s e d w o u l d h a v e s u f f i c i e n t s p a r eg a s p r o d u c t i o n c a p a c i t y i n t h e s u m m e r ( 9 0 = F ) t o f u l l y l o a d t h et u r b in e s ( r e d u c e d o u t p u t ) w i t h t h e m e t h a n o l u n i t i n f u l lo p e r a t i o n. S u p p l e m e n t a l f i r i n g o f s t o r e d m e t h a n o l t o p r o d u c es t e a m f or t h e s t e a m t u r b i n e g e n e r a t o r c o u l d a l s o i n c r e a s e u n i to u t p u t .L i k e w i s e , m e t h a n o l c o p r o d u c t i o n c o u l d b e u s e d t o e l i m i n a t e t h en e e d f o r s p a re g a s i f i c a t i o n c a p a c i t y w h i l e a s s u r i n g a h i g h d e g r e eo f p l a n t a v a i l a b i l i t y . T h e p o w e r u n i t c o u l d b e o p e r a t e d w i t hs t o r e d m e t h a n o l w h e n o n e o r m o r e g a s i f i e r s a r e o ut o f s e r v i c e i no r d e r t o m a i n t a i n o u t p u t . T h e m e t h a n o l c o u l d a l s o b e u s e d f o rs u p p l e m e n t a l f i r i n g i f a t u r b i n e w e r e o u t o f s e r v i c e .F u r t h e r m o r e , w i t h o n e o f fi v e n o r m a l l y o p e r a t i n g g a s i f i e r s d o w n ,t h e m e t h a n o l u n i t c o u l d b e b y p a s s e d a n d t h e r e m a i n i n g g a s i f i e r su s e d t o m e e t i 0 0 p e r c e n t o f t h e e l e c t r i c a l l o a d .F i n a l l y , e c o n o m i e s o f s c al e i n b u i l d i n g t h e g a s i f i c a t i o n a n d / o rp o w e r u n i t s o f t h e p l a n t m a y h a v e a d i f f e r e n t i a l i m p a c t o n t hed i f f e r e n t c o n f i g u r a t i o n s a n d o p t io n s .S u m m a r y - T h e t a b l e b e l o w s u m m a r i z e s s o m e o f t h e c o s t s a n d v a l u e so f c o p r o du c e d m e t h a n o l u n d e r c u r r e n t m a r k e t c o n d i t i o n s , a s s u m i n gt h a t t h e m e t h a n o l d o e s n o t h a v e t o b e a r a s h a r e o f t he c a p i t a lc o s t o f t h e c o a l g a s i f i c a t i o n u n i t .

    3-55

  • 8/8/2019 Metanol Uretm Pazar Yeri

    50/129

    COAL COSTS

    Methanol CostsV a r i a b l e C o s t s 1 4 - 1 9Total cost at 5% added capital 22-26

    10% 29-34

    F a v o r a b l e L e s s F a v o r a b l eC e n t s p e r G a l l o n

    1 9 - 2 52 6 - 3 334-40

    M e t h a n o l V a l u e sA s d i s t i l l a t e s u b s t i t u t e @ 7 5 - 8 5 c e n t s / g a l . 3 5 - 4 0

    @ 50 cents/ gal. 23As natural gas substi tute 19-23To be upgra ded and sold as

    c h e m i c al m e t h a n o l 2 5 - 3 5

    E C O N O M I C S O F M E T H A N O L C O P R O D U C T I O N I N T H E F U T U R E

    T h e p r e v i o u s d i s c u s s i o n f o c u s e d on t h e e c o n o m i c c o m p e t i t i v e n e s s o f m e t h a n o lcoproduc tion in face of today's depressed oil and gas prices. Unde r espec iall yf a v o r a b l e c i r c u m s t a n c e s it w o u l d b e e c o n o m i c a l l y c o m p e t i t i v e . H o w e v e r , t h e r e alj u s t i f i c a t i o n f o r d e v e l o p i n g s y n t h e t i c f u e l s f r o m c o a l r e s t s o n t h e w i d e l y h e l de ~ p e c t a t i o n t h a t o i l a n d ga s p r i c e s w i l l a g a i n r i s e s i g n i f i c a n t l y f a s t e r t h a ninflati on due to resource depletio n. Coal prices, on the other hand, are expectedto remain stable due to the vas tly lar ger coal resou rce base. DOE shows such achange taking place in the 1990s, as eviden ced by the reference fuel price dataimcluded in the Clean Coal Techn ologi es Solicit ation. This data (in constant 1984dollars) indicates that oil prices will fall from their 198 4 levels to 1990 and thenrise rapidly through 2010. Natural gas prices rise slowly until 1990 and then riser a p i d l y w i t h o i l p ri c e s . C o a l p r i c e s , h o w e v e r, r i s e o n l y m o d e r a t e l y d u r i n g t hee n t i r e p e r i o d .

    These fuel prices can be used to estim ate cop roduce d meth anol costs and values byemploying te chniques simila r to those employed in the previo us analysis. Assumingthat the delive red cost of coal to an IGCC/o nce- thro ugh methanol unit ra ngesbetween ll0 percent and 150 percent of the average mine mou th cost and thatincremental capital costs are between 5 and 10 percen t of the cost of an IGCCplant, the range of total costs is 25 to 37 cents per gallo n in 1984. Based onthe DOE data, these costs increase at a rate of less that 1 percent per year.

    3-56

  • 8/8/2019 Metanol Uretm Pazar Yeri

    51/129

    Beginning in 1990, the value of methanol as a dist illa te su bstit ute or inc o m p e ti t i o n f r o m m e t h a n o l f r o m n a t u r a l g a s i n c r e a s e s a t n e a r l y 5 p e r c e n t p e ryear. As shown in figure i, these conditions make copr oduce d meth anol veryattractive in the post 1995 period. By 1995 unde r virt uall y all conditions, it isless costly than metha nol from natura l gas or distill ate. By 2000 it can replacenatural gas as a combust ion tur bine fuel on a full cost recove ry basis.

    C O N C L U S I O N

    M e t h a no l c o p r o d u c t i o n a d d s s i g n i f i c a n t v e r s a t i l i t y t o a n a l r e a d y v e r s a t i l e I G C Cp o w e r g e n e r a t i n g s y s t e m u s i n g l o w - c o s t , h i g h - s u l f u r c o a l . T h e m o s t f u n d a m e n t a lq u e s t i o n s u t i l i t y p l a n n e r s f a c e i n v o l v e t h e v i a b i l i t y o f t h e b a s i c c o a lg a s i f i c a t i o n u ni t a n d th e p o t e n t i a l u s e s o f m e t h a n o l . W h e n d o e s a n I G C C c o m p e t ewith natural gas fired turbines and other new coal based gene ratin g option s in ap a r t i c u l a r s y st e m ? T h i s i n v o l v e s e n v i r o n m e n t a l c o n s i d e r a t i o n s a n d o t h e ri m p o n d e r a b l e s. P h a s e d g e n e r a t i o n a d d it i o n s , s t a r t i n g w i t h n a t u r a l g a s f i r e dc o m b u s t i o n t u r b i ne s f o l l o w e d b y s t e a m b o t t o m i n g c y c l e s a n d c o a l g a s i f i e r s w h e nfuel availa bilit y and economics just ify them, may be the prudent answer.

    Once this first hur dle is passed, does the util ity have need for a storable liquidturbine fuel or can it find good mark ets in whi ch to sell the meth anol? A 500-MWI G C C pl a n t w i t h a o n c e - t h r o u g h m e t h a n o l u n i t o p e r a t e d i n t he m a n n e r d e s c r i b e da b o v e, w o u l d p r o d u c e 7 0 m i l l i o n g a l l o n s o f m e t h a n o l p e r y e a r , o n e - t h i r d t h e o u t p u to f a w o r l d - s c a l e m e t h a n o l f r o m n a t u r a l g a s p l a n t . I f t h e u t i l i t y h a s a c c c e s s t or e l a t i v e l y l o w - p r i c e d c o a l a s w e l l a s m e t h a n o l u s e s a n d m a r k e t s w h i c h s u p p o r tm e t h a n o l v a l u e s c o m p a r a b l e w i t h d i s t i l l a t e o r m e r c h a n t m e t h a n o l , t h e n m e t h a n o lc o p r o d u c t i o n w o u l d b e a g o od i n v e s t m e n t .

    Even at today's depress ed oil and natural gas prices, the addition of once -thro ughm e t h a n o l c a p a b i l i t y c o u l d b e j u s t i f i e d u n d e r f a v o r a b l e c i r c u m s t a n c e s i n c l u d i n g aninternal need for the metha nol to replace d istil late or a market with priceslinked to those for chemical- grade methanol. Based on the DOE fuel pricep r o j e c t i o n s , c o p r o d u c e d m e t h a n o l w o u l d b e c o m p e t i t i v e u n d e r a l m o s t a l lcircum stance s by the late 1990s. This is the time metha nol units associ ated withp h a s e d c o n s t r u c t i o n I G C C p l a n t s w o u l d f i r s t be e x p e c t e d t o c o m e o n l in e . O n c einstalled, these units woul d produc e methanol at the lowest variab le cost of anydomesti c source, so woul d be operated at full load except when system electricpower Feeds dictated that high cost peaking power was req uired.

    3-57

  • 8/8/2019 Metanol Uretm Pazar Yeri

    52