33
Mass Concrete Thermal Control  Ahmad Abu-Hawash, Iowa DOT Dan Timmons, Jensen Construction 2009 Structures Design Construction Quality Workshop April 1, 2009

Mass Concrete Thermal Control

Embed Size (px)

Citation preview

Page 1: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 1/33

Mass Concrete Thermal Control

 Ahmad Abu-Hawash, Iowa DOT

Dan Timmons, Jensen Construction

2009 Structures Design Construction Quality Workshop

April 1, 2009

Page 2: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 2/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 2

What is Mass Concrete?•  ACI: “any volume of concrete with

dimensions large enough to require thatmeasures be taken to cope with

generation of heat from hydration of thecement and attendant volume change tominimize cracking” 

• Intentionally vague

Page 3: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 3/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 3

Factors Affecting Mass Concrete• Concrete mix design: components

• Environmental condition: – Ambient temperature

 – Concrete mix temperature

 – Differential temperature

• Structural design: steel reinforcement

•  Application: bridge elements• Least dimension: 3’, 4’, or 5’?

Page 4: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 4/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 4

Mass Concrete Hydration• Significant heat is generated in the first few

days after placement• Expected to reach maximum temperaturewithin 1 to 3 days after placement

• Heat is trapped and can not escape quicklyresulting in: – Significant temperature difference: interior of

concrete is much hotter than its surface (>35°F)• Thermal Cracking

 – Concrete mix getting too hot (>160°F)• Delayed Ettringite Formation (DEF)

Page 5: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 5/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 5

Thermal Cracking• Thermal cracking develops when the tensile stress

exceeds the tensile strength of concrete: – Random map cracks in large foundation

 –  A series of vertical cracks in walls (widest near the base)

 – Uniformly spaced cracks in beams (perpendicular to thelongest dimension)

• Mostly, a durability issue: easy pathways for air andwater

• In some severe cases, it may affect the structural

capacity

Page 6: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 6/33April 1, 20092009 Structures Design Construction Quality WorkshopPage 6

Delayed Ettringite Formation (DEF)

• Development of unstable hydration• Long-term effect that may not show for

months or years after construction

• Can cause significant cracking

Page 7: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 7/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 7

Thermal Control

• Objective: Eliminate thermal crackingby controlling temperature differentialand mix temperature (prior to, during

and after concrete placement)• Control measures should be evaluated

for costs vs. benefits

Page 8: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 8/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 8

Thermal Control Measures

• Optimal concrete mix design• Insulation

• Concrete cooling before placement

• Concrete cooling after placement

• Use of smaller placements

Page 9: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 9/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 9

Optimal Concrete Mix Design• Use low-heat cement such as Type II

• Use Class F fly ash and/or slag as a substitutefor a portion of the cement

• Use low water-to-cementitious materials ratio• Minimize the amount of cementitious

materials in the mix

• Use Larger and better graded aggregates• Limestone aggregates are better suited for

mass concrete

Page 10: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 10/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 10

Insulation

• To control temperature differential: corevs. surface

• Has no significant effect on maximum

concrete temperature for placements of5’ or greater

• Typical R-value recommended: 2 to 4hr.ft².°F/Btu

Page 11: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 11/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 11

Concrete Cooling before Placement

• Each 1°F of precooling is expected to reduce

the concrete temperature (after placement)by about the same amount

• Chilled water: about 5°F (100% subs.)

temperature reduction• Chipped or shaved ice: about 15°F to 20°F

(75% subs.) temperature reduction

• Liquid nitrogen (LN2): as low as 35°Freduction. Very effective but the mostexpensive option

Page 12: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 12/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 12

Concrete Cooling after Placement

• Cooling pipes: – Non-corrosive piping embedded prior toconcrete placement

 – Uniformly distributed: typically 1”Ø pipes@ 2’ to 4’ on center

 – Removes heat from placed concrete bycirculating cool water from a nearby source

Page 13: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 13/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 13

Smaller Placements

• Multiple lifts• Result in schedule delays and increased

cost due to additional effort for multiple

thermal control, and horizontal jointpreparation

Page 14: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 14/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 14

Case Study: I-80 over Missouri River

Page 15: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 15/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 15

Iowa Mass Concrete Specifications• Special Provision for Mass Concrete – Control of

Heat of Hydration – Mix design

• Cement: Type II, IP, or IS – min. 560 lbs

• Slag and Class F fly ash substitution• Maximum water to cementitious ratio = 0.45

 – Thermal Control Plan (per 207.4R-05 ACI)

• Concrete temperature at placement: 40°F-70°F• Max. Concrete temperature after placement: 160°F

• Temperature differential: 35°F

• Temperature sensing and recording

Page 16: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 16/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 16

I-80 over Missouri River

Thermal Control Plan

•  Value engineering proposal by JensenConstruction to modify projectspecifications

• Proposed a thermal control plan basedon thermal modeling by CTL

Page 17: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 17/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 17

Thermal Control Plan

• Concrete Mix• Maximum Concrete Temperature

• Temperature Difference Limit

• Cooling System

• Insulation

• Temperature Monitoring & Reporting

Page 18: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 18/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 18

Concrete Mix•  As developed by the supplier per

project specifications – Type IP-F Cement: 420 lbs

 – Slag: 207 lbs – W/C ratio: 0.42

 – Class V sand-gravel: 1586 lbs

 – Limestone: 1322 lbs

 – Air content: 6.5%

Page 19: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 19/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 19

Maximum Concrete Temperature

•Initial concrete temperature based onseveral-truck rolling average: maximumof 85°F instead of 70°F

• Concrete temperature after placement:maximum of 160°F as per specifications

Page 20: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 20/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 20

Temperature Difference Limit

• A compromise between the constantlimit and the performance-based limit

• Included a variable factor of safety

• More conservative in the early age butless conservative at the design strength

• Calculated specifically for the projectmix design

Page 21: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 21/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 21

Temperature Difference Graph

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000

Compressive Strength**, psi

   T  e  m  p  e  r  a   t  u  r  e   D   i   f   f  e  r  e

  n  c  e   L   i  m   i   t   * ,

   °   F

0

10

20

30

40

50

   T  e  m  p  e  r  a   t  u  r  e   D   i   f   f  e  r  e

  n  c  e   L   i  m   i   t   * ,

   °   C

  * Maximum allowable temperature difference between thetemperature sensor locations shown on Drawing Nos. 3 and 4.

** Actual compressive strength of the in-place concrete at the

surface, not the design strength.

Page 22: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 22/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 22

Cooling System• Cooling piping system layout was developed

for each component (footing, stem, cap,…)

• River water was continuously circulated

through the cooling pipes until the insulationis removed

• Flow rate must be sufficiently high so that the

water does not heat by more than 2°F to 3°F

Page 23: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 23/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 23

Typical Cooling System - Footing

Page 24: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 24/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 24

Typical Cooling

System - Stem

Page 25: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 25/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 25

Insulation• Used on top surfaces, over side forms and to

cover protruding reinforcing steel

• R-values in accordance with the Thermal

Control Plan• To remain in place throughout the monitoring

period but may be temporarily removed to

prepare for additional placements

Page 26: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 26/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 26

Typical Insulation Blanket

Page 27: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 27/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 27

Temperature Monitoring & Reporting

• To measure and report concretetemperatures at critical locations(center, surface,…)

• Two temperature sensors (a primaryand backup) at each location

• Data is recorded on an hourly basis

• Report of temperature data (max. anddifferential) is issued

T i l T t S

Page 28: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 28/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 28

Typical Temperature Sensors

Page 29: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 29/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 29

Typical Thermal Control Graph

0

10

20

30

40

50

60

70

80

90100

110

120

130

140

150

160

170

0 50 100 150 200 250 300 350Hours

   T  e  m  p  e  r  a   t  u  r  e  o  r   T  e  m  p  e  r  a   t  u

  r  e   D   i   f   f  e  r  e  n  c  e ,

   °   F

 Air Temperature,

Center Temperature,

Top Surface Temperature,

Corner Temperature,

Side Surface Temperature,

Measured Temperature Difference, °F

TCP1b Temperature Difference Limi t, °F

TCP1b Footing #: Pier 7 Column final temps

Time/Date of Hour 0 :

Page 30: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 30/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 30

Thermal Control Plan Elements

Pier Size* Date Cast

Cooling

Pipes Size* Date Cast

Cooling

Pipes

Least

Dim. Date Cast

Cooling

Pipes

Least

Dim. Date Cast

Cooling

Pipes

1 43' x 12' x 4'-6 10/20/2008 No 39' x 4' x 7' 12/4/2008 No 4' 12/4/2008 No 4' 1/23/2009 No

2 43' x 15' x 5' 11/19/2008 No 38' x 5' x 19' 1/9/2009 No 5' 2/18/2009 No 5' 3/20/2009 No

3 43' x 27' x 7'-3 10/30/2008 No 38' x 6' x 16' 11/21/2008 No 6' 1/23/2009 No 6' 2/25/2009 No

4 43' x 15' x 5' 11/4/2008 No 38' x 5' x 18' 12/10/2008 No 5' 3/5/2009 No 5'

5 43' x 19' x 6'-6 2/3/2009 No 38' x 5' x 20' 2/17/2009 No 5' 5'

6 46' x 18' x 5'-9 11/4/2008 No 38' x 8'-4 x 37' 11/19/2008 8'-4 1/6/2009 No 8'-4 1/22/2009 No

7 43' x 25'-6 x 9' 8/5/2008 Yes 38' x 7' x 35' 9/3/2008 Yes 7' 10/15/2008 Yes 7' 10/30/2008 No

8 77' x 39'-7 x 10'-6 12/30/2008 Yes 46' x 9' x 41' 2/12/2009 Yes 9' 9'

9 77' x 39'-7 x 10'-6 46' x 9' x 34' 9' 9'

10 43' x 19' x 5'-3 3/5/2009 No 38' x 8'-4 x 7' 3/13/2009 No 8'-4 8'-4

11 43' x 17' x 5'-9 1/20/2009 No 38' x 5' x 5' 1/28/2009 5' 2/20/2009 No 5' 3/6/2009 No

Footing Stem Columns Cap

Page 31: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 31/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 31

Completion of Thermal Control• Hottest portion of concrete has reached and

begun to cool from its maximum temperature

• Concrete has reached and begun to cool from

its maximum temperature difference•  At least 3 days has elapsed

• Difference between the hottest portion of

concrete and the average air temperature is< current difference limit

Page 32: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 32/33

April 1, 20092009 Structures Design Construction Quality WorkshopPage 32

Summary• The implementation of the Thermal

Control Plan saved money and kept theproject on schedule

• No thermal cracking in concrete wasreported

Page 33: Mass Concrete Thermal Control

8/13/2019 Mass Concrete Thermal Control

http://slidepdf.com/reader/full/mass-concrete-thermal-control 33/33

A il 1 20092009 St t D i C t ti Q lit W k hP 33

References• Iowa DOT Standard Specifications and

Special Provisions

• Engineering Mass Concrete Structures,

November 2006 – PCA by J. Gajda andE. Alsamsam

•  ACI 207.4R-05

• I-80 over Missouri RiverThermal Control Plan by CTL