31
George V. Voinovich Bridge Project

George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

George V. Voinovich Bridge Project

Page 2: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

• In larger concrete structural elements, the exterior 

surfaces exposed to air or water cool faster versus the 

interior core of the element’s.  

• This differential cooling can result in internal concrete 

stresses where the concrete prematurely cracks which 

can reduce the overall service life of the structure 

element.   

CCG2 ‐‐Mass Concrete ‐‐ ODOT Background

Page 3: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

• Theoretical computer models have been 

developed which use dimensional, material, and 

environmental factors to estimate the elements’ 

concrete temperatures to be experienced during 

its concrete placement and cure period.   

CCG2 ‐‐Mass Concrete ‐‐ ODOT Background

Page 4: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

• ODOT’s 2013 Specification Item 511 includes 

requirements to control thermal cracking in larger 

structural elements.  (i.e.:  Mass Concrete)

• These concrete requirements also reference and 

utilize the Item 455 QC/QA Concrete Quality 

Control plans.  

CCG2 ‐‐Mass Concrete ‐‐ ODOT Background

Page 5: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

• ODOT ‐ District 12 has implemented Mass Concrete 

requirements previously on four separate 

Construction Projects:   

o Fulton Road Bridge over the Zoo in 2006

o LAK 90 Bridge over the Grand River in 2007

o Innerbelt CCG1 in 2010

o Innerbelt CCG2 in 2013

o Statewide, there is a much broader sample.

District 12 ‐‐ Mass Concrete History

Page 6: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

District 12 ‐‐ Mass Concrete History

Fulton Road Bridge Mass Concrete Thrust Block

Page 7: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

District 12 ‐‐ Mass Concrete History

CCG1  Mass Concrete Typical Element

Page 8: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

District 12 ‐‐ Mass Concrete History

CCG2  Mass Concrete Typical Element

Page 9: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

• District 12 has progressively moved from Special 

Provisions, initially in 2006, to the current ODOT 

Item 511 Specifications in 2013 for mass concrete.   

• The District made adjustments to these Provisions 

from the earlier Projects to improve the service 

life and constructability of the structures.  

District 12 ‐‐ Mass Concrete History

Page 10: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

• An example of these progressive changes are:  In 2006, the 

mass concrete dimensional minimum was 6 feet.  In 2010, it 

was revised to 4 feet and now with the 2013 ODOT 

Specifications, it is set at 5 feet minimum.    

• Coincidentally, on current Design‐Builds, ODOT strives for a 

4’–11” minimum design dimension for structural elements 

to minimize the need for mass concrete pours. 

District 12 ‐‐ Mass Concrete History

Page 11: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Innerbelt Mass Concrete Comparison

CCG1 – Contractual

• 4’ or greater dimension• 160F Max Concrete Temp.• 35F or less differential Temp.• 28 Days cure • Project Scope Provisions and 

Appendix with Supplemental Spec. requirements

• Maturity Curve was not  allowed, added by Change Order

CCG2 ‐ Contractual

• 5’ or greater dimension• 160F Max Concrete Temp.• 36F or less differential Temp.• 28 Days cure • ODOT Item 511 and Item 

455 Specification • Maturity curve is allowed by 

Spec.  

Page 12: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Innerbelt Mass Concrete Comparison

CCG1 – Materials

• 500 lbs. cement min.• 50% Max. slag content• 25% Max. Fly ash content• <50% Pozzolan Materials 

CCG2 ‐Materials

• 470 lbs. cement min.• 30% Max. slag content• 15% Max. Fly ash content• <40% Pozzolan Materials 

***   CCG1 had some material correlation testing issues trying to achieve a consistent air content.   The Project made these concrete material mix changes to address these inconsistent testing results.    Achieving better quality results on CCG2.

Page 13: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

• Per Spec. Item 511.03A. Mass Concrete Requirements: For concrete components with 

a minimum dimension of 5‐ft (1.5‐m) or greater, develop a concrete mix design QC‐4 for 

mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control 

placement of the mass concrete so that the highest maximum internal temperature of 

the placed concrete is not greater than 160⁰ F (71⁰ C) and the maximum differential 

concrete temperature does not exceed 36⁰F (20⁰C) over 28 days……

• ODOT was aware of two consultant firms which specialize in 

this TCP work.  Each firm has their own proprietary thermal 

computer model and assumptions to develop such Plans.   

• CCG1 and CCG2, each had different firms develop their TCP’s.   

Innerbelt ‐‐ Mass Concrete TCP

Page 14: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

CCG2 ‐‐Mass Concrete Overview 

• 10 Pier Caps ‐ approx. 600 cy each

Page 15: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

CCG2 ‐‐Mass Concrete Overview 

• 20 Individual Pier Footers ‐ approx. 250 cy each

Page 16: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

• 2 semi‐integral Abutment diaphragms – 100 cy each

*****

• The Drilled Shafts were not required to be Mass 

Concrete on CCG2 as their designed dimension was < 7’.   

• The Department had specifically excluded Drilled Shafts 

for Mass Concrete on CCG1 in the Bid Provisions.

CCG2 ‐‐ Mass Concrete Overview

Page 17: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Thermal Control Plan (TCP) Requirements:

• Mix Design Analysis

• Procedures to Control Temps

• Sensor Monitoring Plan

Mass Concrete – Thermal Control Plan

Page 18: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Mass Concrete – Thermal Control Plan

Page 19: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Mass Concrete – Thermal Control Plan

Page 20: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Mass Concrete – Thermal Control Plan

Page 21: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Mass Concrete – Plan Execution

Page 22: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Mass Concrete – Plan Execution

Page 23: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Mass Concrete – Plan Execution

Page 24: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Mass Concrete – Plan Execution

Page 25: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Mass Concrete – Plan Execution

Page 26: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Mass Concrete – Plan Execution

0

10

20

30

40

50

60

70

80

90

100

110

0 25 50 75 100 125 150

Tempe

rature(⁰F)

Time(hrs)

Mass Concrete Footer Example Temperature v. Time

Core

Bottom

Top

Differential

Allowable

Page 27: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

1. Plan Implementation

2. Schedule/Resource Constraints

Mass Concrete – Best Practices

Page 28: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Plan Implementation 

• Integrate thermal system

• Sensor installation and access

Mass Concrete – Best Practices

Page 29: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Mass Concrete – Best Practices

Page 30: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

Schedule and Resource Constraints 

• Cold/Cool weather impacts

• Formwork / Insulation System

Mass Concrete – Best Practices

Page 31: George V. Voinovich Bridge Project...mass concrete according to 499.03. Develop a Thermal Control Plan (TCP) to control placement of the mass concrete so that the highest maximum internal

• Concrete Supplier – Cuyahoga Concrete Co.

• Mass Concrete Consultant – W. S. Langley, Inc.

• Material Testing – Solar Testing Laboratories, Inc.

• Concrete Monitoring Equipment – FLIR Systems, Inc.

Mass Concrete – Acknowledgements