90
CMOS AMPLIFIERS • Simple Inverting Amplifier • Differential Amplifiers • Cascode Amplifier • Output Amplifiers • Summary

CMOS AMPLIFIERS

  • Upload
    sissy

  • View
    109

  • Download
    4

Embed Size (px)

DESCRIPTION

CMOS AMPLIFIERS. Simple Inverting Amplifier Differential Amplifiers Cascode Amplifier Output Amplifiers Summary. Simple Inverting Amplifiers. Small Signal Characteristics. Inverter with diode connection load. How do you get better matching?. High gain inverters. - PowerPoint PPT Presentation

Citation preview

Page 1: CMOS AMPLIFIERS

CMOS AMPLIFIERS

• Simple Inverting Amplifier

• Differential Amplifiers

• Cascode Amplifier

• Output Amplifiers

• Summary

Page 2: CMOS AMPLIFIERS

Simple Inverting Amplifiers

Page 3: CMOS AMPLIFIERS

Small Signal Characteristics

How do you get better matching?

Inverter with diode connection load

2

1

221

1

m

m

mdsds

m

in

outv g

g

ggg

g

v

vA

12

21

12

21'

'

LW

LW

LW

LW

K

K

v

vA

P

N

P

N

in

outv

2221

11

mmdsdsout gggg

r

Page 4: CMOS AMPLIFIERS

High gain inverters

Page 5: CMOS AMPLIFIERS

Current source load or push-pull

• Refer to book for large signal analysis

• Must match quiescent currents in PMOS and NMOS transistors

• Wider output swing, especially push-pull

• Much high gain (at DC), but much lower -3dB frequency (vs diode load)

• About the same GB

• Very power dependent

Page 6: CMOS AMPLIFIERS

Small signal

High gain! Especially at low power.

21

21

dsds

mm

in

outv gg

gg

v

vA

21

1

dsds

m

in

outv gg

g

v

vA

Dm Ig 21 Dds Ig 1

D

vI

KA

21

1

dsdsout gg

r

Page 7: CMOS AMPLIFIERS

))(1(|)|(2

)1(|)|(2

))(1()(2

)1()(2

22

2

2

2

2

22

22

1

1

2

1

11

oV

PTPinGGPDDoxP

DSPTPSGoxP

D

oV

NTinGGoxN

DSNTGSoxN

D

vVvVVL

WC

VVVL

WCI

vVvVL

WC

VVVL

WCI

DD

DD

Key to analysis by hand:• Use level 1 or 3 model equations• Use KCL/KVL

Page 8: CMOS AMPLIFIERS

PTCDDoxP

ds

mTCDDoxP

m

NTCDDoxN

ds

TCDDoxN

m

DDoCDDGGPCDDGG

C

NPTTPoxPoxN

VEVL

WCg

gVEVL

WCg

VEVL

WCg

VEVL

WCg

VVEVVEVV

E

VVL

WC

L

WC

2

2

22

12

22

2

1

11

1

11

2

2

1

1

)2/)((2

)2/)((

)2/)((2

)2/)((

2/,2/)(,2/)(

:ispoint operating then used, is offset battery a and

,,|| suppose,22

Let

Page 9: CMOS AMPLIFIERS

Dependence of Gain upon Bias Current

Page 10: CMOS AMPLIFIERS

Transfer function of a system

Systeminput u output y

)()1(

)1()()()(

11

1

11

10 susasasa

sbsbsbAsusHsy

nn

nn

mm

mm

)()1()1)(1(

)1()1(

21

10

su

ps

ps

ps

zs

zs

A

n

m

Page 11: CMOS AMPLIFIERS

0)()1( 11

1 sysasasa n

nn

n When u(s) = 0, y(s) satisfies:

These dynamics are the characteristic dynamics of the system. The roots of the coefficient polynomial are the poles of the system.

When y(s) = 0, u(s) satisfies:

0)()1( 11

1 susbsbsb m

mm

m These dynamics are the zero dynamics of the system. The roots of the coefficient polynomial are the zeros of the system.

Page 12: CMOS AMPLIFIERS

Frequency Response of CMOS Inverters

Page 13: CMOS AMPLIFIERS

Poles of CMOS Inverters

Let vin = 0, x = 0, VDD = 0, VSS = 0.

yCGS1, CGS2, CBS1, CBS2 are all short

CGD1, CGD2, CBD1, CBD2, CL in parallel

C’L = Ctotal = CGD1+ CGD2+ CBD1+ CBD2+ CL

Page 14: CMOS AMPLIFIERS

Total conductance from y to ground:

go = gds1 + gds2

KCL at node y:

0)()1(

0)()(

0)()(

0

'

'

'

sys

sygsC

tygdt

tdyC

i

L

o

Cg

oL

oL

Therefore system pole is: '1L

o

C

gp

Page 15: CMOS AMPLIFIERS

Zeros of CMOS Inverters

Let vin = x = u, VDD = 0, VSS = 0.

gds1, gds2 also short

CGD1, CGD2, are in parallel, CBD1, CBD2, CL are all short

No current in them

KCL:

0)()]()[(

)()()()(

2121

2121

suggsCC

gtugtudt

tduC

dt

tduC

mmGDGD

mmGDGD

Zero is:21

211

GDGD

mm

CC

ggz

Page 16: CMOS AMPLIFIERS

Zeros of CMOS Inverters

Let vin = u, X=0, VDD = 0, VSS = 0.

gds1, gds2 also short

CGS2, CGD2, CBD1, CBD2, CL are all short

No current in them

KCL:

Zero is:

0)(][)()(

1111 sugsCgtudt

tduC mGDmGD

1

11

GD

m

C

gz

Page 17: CMOS AMPLIFIERS

Input output transfer function

)1(

)1(

)1(

)1(

)(

'21

21

2121

21

1

10

L

dsds

GDGD

mmdsds

mm

C

ggs

CC

ggs

gg

gg

pszs

A

sA

When s=j0, A(0) 21

210

dsds

mm

gg

ggA

When w∞, A(s) 1'

21

L

GDGD

C

CC

Page 18: CMOS AMPLIFIERS

|p1|=g0/CL’

|z1|=gm/Cgd

=GB*CL’/Cgd

|A0 | =gm/go

0 dB

Unity gain

frequency

=|A0p1|

=GB

=gm/CL’

Acl=1/

-3dB frequency of closed loop=*GB

Page 19: CMOS AMPLIFIERS

Unity gain feedback

A(s)

10

1

0

0

10

0

10

1

0

0

110

10

1

1

1

))1()1(

1(1

1

1

)1(1

)1(

)(1

)(

pAs

zs

A

A

zAA

pAs

zs

A

A

pszsA

zsA

sA

sAAc

Page 20: CMOS AMPLIFIERS

If a step input is given, the output response is

100

0

10

1

0

0 1)(

1

1

1

1

1

1 pAssA

A

spAs

zs

A

A

In the time domain:

0

0

0

0

1)(

110

A

Ae

A

A tpA

Final settling determined by A0

need high gainSettling speed determined by A0p1=GB=UGF,

need high gain bandwidth product

Page 21: CMOS AMPLIFIERS

Gain bandwidth product

'21

'21

21

2110

L

mm

L

dsds

dsds

mm

C

gg

C

gg

gg

ggpAGB

C’L = Ctotal = CGD1+ CGD2+ CBD1+ CBD2+ CL

LDjDjoxoxL CLWCLWCLWCLWCC 221121'

22

21

1

121 EB

oxPEB

oxNmm V

L

WCV

L

WCgg

When CL ≈ C’L, W↑GB↑, but it saturates, when

LDjDjoxox CLWCLWCLWCLWC 221121

Page 22: CMOS AMPLIFIERS

22

2

221

1

1

22 EBoxP

EBoxN

D VL

WCV

L

WCI

Note:

If VEB1 and VEB2 are fixed, W1/L1 and W2/L2

must be adjusted proportionally, and they are

proportional to DC power.

22

2

221

1

1

22 EBDDoxP

EBDDoxN

DDD VVL

WCVV

L

WCIVP

11

2

2

11

1

1 2,

2

EBDDEB

oxP

EBDDEB

oxN

VV

PV

L

WC

VV

PV

L

WC

Page 23: CMOS AMPLIFIERS

)11

(222

211121

EBEBDDEBDDEBDDmm VVV

P

VV

P

VV

Pgg

)11

()),((

2

)11

(2

2121

21'

EBEBDDL

EBEBDDL

VVVWWCC

P

VVVC

PGB

Therefore:

P is proportional to W1, W2CL constant, but C(W1,W2) proportional to W1, W2When C(W1, W2) << CL, GB proportional to PWhen C(W1,W2)CL or >CL, GB saturates

Page 24: CMOS AMPLIFIERS

P

GB

Linear increase region

Page 25: CMOS AMPLIFIERS

),(

2

),(

2

21

1

21'1

WWCC

W

L

IC

WWCC

I

C

gGB

L

DoxN

L

D

L

m

For given current or power (current source load)

Initially, as W1 increased, GB increases

But GB will reach a max, and then drop as W1 increases

Page 26: CMOS AMPLIFIERS

NOISE IN MOS INVERTERS

22

2

2

121

0

2n

m

mn

Vout e

g

gee

in

22

2

1

2212

22

nm

mn

v

outeq e

g

ge

A

ee

21

22

2

1

221

2 1n

n

m

mneq

e

e

g

gee

Page 27: CMOS AMPLIFIERS

NN

PPneq BK

BK

L

Lee

'

'2

2

121

2 1

constant; :noise 1/fFor 2 BfWL

Ben

Dm IL

WKg

'2

N

P

DN

DPneq B

LfW

LfW

B

LIWK

LIWKee 11

2211'

22'

21

2

/2

/21

To minimize:

1) L2 >>L12) En1 small 1

2

2'

1'

L

L

WK

WKgain

P

N

Page 28: CMOS AMPLIFIERS

For thermal noise

Page 29: CMOS AMPLIFIERS

Noise in Push-Pull current source load Inverter

Page 30: CMOS AMPLIFIERS

Differential Input, single-ended output single stage Amplifier

N-Channel

vin+vin-

Page 31: CMOS AMPLIFIERS

P-channel

Page 32: CMOS AMPLIFIERS

Large Signal Eq. in a N-channel Differential pair

iD1=0, when iD2=ISS and VGS2=VT+(2ISS/)0.5

=0.51(VGS1-VT)2

=(2ID1/1)0.5

Page 33: CMOS AMPLIFIERS

21

2

21212

42

222

22

DDSSID

DDDDID

iiIv

iiiiv

21

22

21212

42

4)2

(2

4424

DDID

SSSSSS

DDDDSSSSID

iiv

III

iiiiIIv

22121

242

2 )(44 DDDDSS

IDIDSS iiiiI

vvI

4

422

21ID

IDSSDD

vvIii

Page 34: CMOS AMPLIFIERS

Solving for iD1 and iD2

VON1=VON2=(ISS/)0.5iD1=iD2=ISS/2

2

422

21 422,

SS

ID

SS

IDSSSSDD I

v

I

vIIii

Page 35: CMOS AMPLIFIERS

N-Channel Input Pair Differential Amplifier

C.M. Load

C.M. Bias

Simplecurrentreference

Page 36: CMOS AMPLIFIERS

Voltage transfer curve

Page 37: CMOS AMPLIFIERS

P-Channel Input Pair Differential Amplifier

Page 38: CMOS AMPLIFIERS

Voltage transfer curve

Page 39: CMOS AMPLIFIERS

INPUT COMMON MODE RANGE

VG1=VG2=ViCM

VSDSAT1=VSDSAT2

=VON

VD1=VD3=VSS+VT3+VON

VG1min=VD1-|VT1|

VG1max=VDD-VSD5SAT-|VT1|-VON

Page 40: CMOS AMPLIFIERS

Output Range

Vomin=Vss+Von4

Vomax=Vicm –|VT2|

So what’s the vo range

What’s for the N-chcircuit.

Page 41: CMOS AMPLIFIERS

SMALL SIGNAL ANALYSIS

AV

Page 42: CMOS AMPLIFIERS

Common Mode Equivalent Circuit, with perfect match

iC1

iC1=VIC/(1/gm1

+2rds5)

ro1≈1/gm3

ACM≈1/ 2rds5gm3

CMRR=Av/ACM=2gm1gm3/(gds4+gds2)/gds5

Page 43: CMOS AMPLIFIERS

If not perfectly matched

iC1

io=iIC

is a fraction

go1≈ gds2 + gds4

ACM≈gds5 / 2(gds2 + gds4)

CMRR=Av/ACM=2gm1/gds5

Page 44: CMOS AMPLIFIERS

equations. all on to

respect withderivative partial take small, const Let

d

dic

sTGGDD

oDDTpGDD

soTsd

icD

GDDTpGDD

sGTsd

icD

v

vV

VVVIII

VVVVV

VVVVv

VI

VVVVV

VVVVv

VI

,)1

12

12

122

12

122

525

521

42

34

2

22

2

332

33

31

21

1

Formal detailed analysis

Page 45: CMOS AMPLIFIERS

d

sTGG

d

D

d

D

d

GoDDTpGDD

d

oTpGDD

d

s

d

oTs

dic

d

ssoTs

dic

d

D

d

GTpGDD

d

GGDDTpGDD

d

s

d

GTs

dic

d

ssGTs

dic

d

D

v

VVV

v

I

v

I

v

VVVVVV

v

VVVV

v

V

v

VVV

vV

v

VVVVV

vV

v

I

v

VVVV

v

VVVVVV

v

V

v

VVV

vV

v

VVVVV

vV

v

I

52521

3434

42

34

2

22

222

33

23

3

33333

31

21

3111

2

1

2

22

2

11

2

2

1

22

2

11

2

Page 46: CMOS AMPLIFIERS

ic

Gds

ic

Gm

ic

GTpGDD

ic

GGDDTpGDD

ic

s

ic

Gds

ic

sm

ic

s

ic

GTsic

ic

ssGTsic

ic

D

ic

icd

v

Vg

v

Vg

v

VVVV

v

VVVVVV

v

V

v

Vg

v

Vg

v

V

v

VVVv

v

VVVVVv

v

I

v

vv

33

33

33

23

3

33333

311

31

21

3111

2

1

1

2

11

,0)2

equations. all on to respect withderivative partial take

variable, tindependen as Let

Page 47: CMOS AMPLIFIERS

ic

sds

ic

sTGG

ic

D

ic

D

ic

ods

ic

Gm

ic

oTpGDD

ic

GoDDTpGDD

ic

s

ic

ods

ic

sm

ic

s

icTsic

ic

ssoTsic

ic

D

v

Vg

v

VVV

v

I

v

I

v

Vg

v

Vg

v

VVVV

v

VVVVVV

v

V

v

Vg

v

Vg

v

V

v

VoVVv

v

VVVVVv

v

I

552521

43

4

42

34

3434

22

222

222

2

2

1

1

2

11

Page 48: CMOS AMPLIFIERS

SLEW RATE: the limit of the rate of change of the output voltage

Max |CLdvo/dt|=ISS

C’Ldvo/dt=i4-i2

Slew Rate = ISS/C’L

ISS

ISSISS

0Output swing: Vosw

GB frequency: fGB

vo(t)=Voswsin(2fGBt)

Max dvo/dt =Vosw2fGB

To avoid slewing: ISS > C’L Vosw2fGB

Page 49: CMOS AMPLIFIERS

Parasitic Capacitances

CT: common mode only

CM: mirror cap = Cdg1 + Cdb1 + Cgs3 + Cgs4 + Cdb3

COUT = output cap= Cbd4 + Cbd2 + Cgd2 + CL

Page 50: CMOS AMPLIFIERS

• Impedances– rout = rsd2 || rds4 = 1 / (gds2 + gds4)

– rM = 1/gm3 || rds3 || rds1 ≈ 1/ gm3

– Hence the output node is the high impedance node

• When vi=0, slowest discharging node is output node with dominant pole

p1 = -1/(C’outrout), where C’out = Cout+ Cgd4

• Approximate transfer function

AV(s) = AV/(s/p1─1)

Page 51: CMOS AMPLIFIERS

When vG1=vG2=0(AC)

KCL at D1:

omdsdsgdM

gdD

DmdsdsoD

gdD

M

vgggsCC

sCv

vgggdt

vvdC

dt

dvC

3314

41

13311

41

)(

0)()(

KCL at D2:

144424

14421

4

)())((

0)()(

Dmgdodsdsgdout

DmodsdsDo

gdo

out

vgsCvggsCC

vgvggdt

vvdC

dt

dvC

omgdgd

omdsdsgdMdsdsgdout

vgsCsC

vgggsCCggsCC

)(

)))(()((

444

3314424

Page 52: CMOS AMPLIFIERS

Gain bandwidth product

• Gain AV(0) = gm1 / (gds2 + gds4)

• Bandwidth ≈ |p1| ≈ (gds2 + gds4) / C’out

• GBW ≈ gm1 / C’out

• gm1 = {2*ID1CoxW1/L1}½

– increase gm1 increase GBW

– increase W1 increase GBW• But C’out has Cdb2 and Cgd2 W1

– Once Cdb2 and Cgd2 become comparable to CL, increasing W1 reduces GBW

Page 53: CMOS AMPLIFIERS

Other poles and zeros

M3

M2

M5

M1

M4

Vb2

VDD

VOUT

CL

Vi+ Vi-

Cgd4

(1+AV4)Cgd4

Cgd4

Second pole at D1

r = 1/gm3

C = CM +

(1+AV4)Cgd4

p2 = CM + (1+AV4)Cgd4

─ gm3

AV4 = gm4/gds4

Page 54: CMOS AMPLIFIERS

M3

M2

M5

M1

M4

Vb2

VDD

VOUT

CL

Vi+= - Vi-

Vi-

Unstable zero at Cgd2

Enforce vo=0, float vin.

ids2, ids4 = 0

Cgd2 dvi-/dt= gm2 vi-

z1 = gm2/Cgd2

Page 55: CMOS AMPLIFIERS

M3

M2

M5

M1

M4

Vb2

VDD

VOUT

CL

Vi+ Vi-

For zero at D1:

For diff, Vi+ = - Vi-

which is set by Cgd2

Both Cgd4 and Cgd1 to gnd

Ctot = CM + Cgd4

z2 = CM + Cgd4

─gm3

Page 56: CMOS AMPLIFIERS

• A better approximation of TF:AV(s)=AV(s/z1-1)(s/z2-1)/(s/p1-1)(s/p2-1)

• If p1 is dominant, |p1|<<|p2|,|z1|,|z2|; AV(s)≈AV/(s/p1-1)

• If p1 is non-dominant, at low frequency, AV(s)≈AV /(s/p1+s/p2-s/z1-s/z2 -1)

• 1/peq≈ 1/p1+1/p2-1/z1-1/z2 ≈ 1/p1+1/p2-1/z2 ,

since |z1| >> |z2|, |p1|, |p2|; ≈ 1/p1, if AV4 is not

very large

• In either case, BW ≈ p1

Page 57: CMOS AMPLIFIERS

frequency response

AV

-90

-180PM

p1 p2 z2z1

UGF

All in abs val

Page 58: CMOS AMPLIFIERS

Observations

• PM ≈ 90 – tan-1(UGF/z1) GBW should be at least 2~3 times lower than z1 to

ensure good phase margin at UGF There is conflict between AV and PM

• If z2 not = p2, UGF < AV*p1

• Design approaches• make z1 high higher than UGF

• make Cgd2 small, gm1 large

• make z2 close to p2 better 1st order approx. • make AV4 small

• make p1 low large AV

• make gds2 and gds4 small

Page 59: CMOS AMPLIFIERS

Design Steps

• Select Iss based on– GB & V_osw, SR, or P_max

• Select W1/L1 based on– GB = gm/CL’, Assuming CL’ = (1.1~1.5)CL– Maximize z1 (minimize Cgd2)

• Select W4/L4 based on– ICMR, – Small Av4

• Select W5/L5 based on– ICMR

Page 60: CMOS AMPLIFIERS

NOISE Model

Page 61: CMOS AMPLIFIERS

Input equivalent noise source

Page 62: CMOS AMPLIFIERS

• Total output noise current is found as,

• Let

• Then

Page 63: CMOS AMPLIFIERS
Page 64: CMOS AMPLIFIERS

How does this affect Av4 and go?

Page 65: CMOS AMPLIFIERS

Cascoding

• Objectives– Increase ro

– Increase AV

– Remove feed forward from vin to vo

– Remove unstable zero

• Methods– Direct cascoding– Folded cascoding

Page 66: CMOS AMPLIFIERS

CMOS CASCODE AMPLIFIERS

VDD

Vbb

Vin

CL

Rb

Vout-min increase by VON2

Vout-max decreased if aCascoded source used

Output swing is a big Problem in low voltageApplications

VDD

Vin

CL

Rb

Page 67: CMOS AMPLIFIERS

Vbb

Vin

CL

Vyy

Vxx

VDDQ: How should you set the bias?Q: what is Vout-max?

ro =

AV =

ro at D1?

vD1

vin

=

Cascoded current source load

Page 68: CMOS AMPLIFIERS

Vbb

Vin

CL

Vyy

Vxx

VDDHigh frequency model

AV(s) =AV0(s/z1 -1)…

(s/p1-1)(s/p2-1)…

For poles, short input, and compute the time constants at each node. For zeros, float input but require vo = 0. (don’t short vo!)

Consider only the effect of the lower half circuit.

Page 69: CMOS AMPLIFIERS

Vbb

Vin

CL

Vyy

Vxx

VDDShort vin, float vo:

At the high impedance node

r =rds1(gm2+gmb2)rds2

C =CL+Cdb2+Cgd2

p1 = -1/RC

At the low impedance node

r =1/(gm2+gmb2+gds1+gds2)

C =Cgd1+Cdb1+Cgs2+Csb2

p2 =

Page 70: CMOS AMPLIFIERS

Vbb

Vin

CL

Vyy

Vxx

VDDEnforce vo=0, float vin.

At the G1-D node

iCo=0, no current cross line, and iCgd2=0id2, id3 = 0, gm2vgs2=0

Was the unstable zero removed?

vs2=0

igds1=0

sCgd1vin=gm1vin

Page 71: CMOS AMPLIFIERS

Gain bandwidth product

• If |p1| << |p2|, |p3|,…, |p1| << |z1|, |z2|,…

– BW ≈ |p1|

– GBW ≈ gm1/Co

• Otherwise– AV(s) ≈ AV/(s/p1+s/p2…-s/z1-s/z2… - 1)

– 1/BW ≈ 1/p1+2/p2…-1/z1-2/z2… = RC1 + RC2 + …

Page 72: CMOS AMPLIFIERS

VDD

Vbb

Vin

CL

Rb

VDD

Any enhancement?

Note: rds2, Rb 1/ID2

gm2 √ID2

Effects on:

ro, AV

Co, GBW

Slew rate

Page 73: CMOS AMPLIFIERS

VDD

Vbb

Vin

CL

Rb

Another possible modification

Effects on:

ro, AV?

Co, GBW?

Slew rate?

poles?

zeros?

Page 74: CMOS AMPLIFIERS

VDD

Vin CL

Folded cascoding

Which I source should be cascoded?

ro, AV?

Co, GBW?

Slew rate?

poles?

zeros?

Vbb

Page 75: CMOS AMPLIFIERS

OUTPUT AMPLIFIERS

• Requirements– Provide sufficient output power in the form of

voltage or current.– Avoid signal distortion for large signal swings.– Be power efficient.– Provide protection from abnormal conditions.

• Types of Output Stages– Class A amplifier.– Source follower.– Push-Pull amplifier ( inverting and follower).– Negative feedback (OP amp and resistive).

Page 76: CMOS AMPLIFIERS

Power efficiency

• It is most power efficient at maximum signal level

• Let VSS= ─VDD, Vin is sinusoidal such that Vout reaches Voutmax

• PRL = ½ (Voutmax)2/RL

• Psupply=average((VDD or VSS)*IRL) =VDD*average(Voutmax/RL *sin()) =2*VDD*Voutmax/RL/

• Power efficicy = PRL/Psupply</4 (78%)

Page 77: CMOS AMPLIFIERS

CLASS A AMPLIFIER

ro, AV, z, p as before

Power effic = PRL

Psupply

= 0.5voutmaxIQ

IQ(VDD-VSS) < 25%

VSS=-VDD, Voutmax=VDD-Vdssat

Page 78: CMOS AMPLIFIERS

SOURCE FOLLOWER

or VSS+VT

Page 79: CMOS AMPLIFIERS

Push-pull

Page 80: CMOS AMPLIFIERS

Push-pull inverting amp

Page 81: CMOS AMPLIFIERS

Implementation

Page 82: CMOS AMPLIFIERS
Page 83: CMOS AMPLIFIERS

PUSH-PULL SOURCE FOLLOWER

Page 84: CMOS AMPLIFIERS
Page 85: CMOS AMPLIFIERS

Negative Feedback To Reduce Rout

Ro=?

Page 86: CMOS AMPLIFIERS
Page 87: CMOS AMPLIFIERS

Super source follower

VDD

Vin

Vo

Vo => I1 =(gm1+gmb1)Vo

VGS2= ro1(gm1+gmb1)Vo

I2 = gm2ro1(gm1+gmb1)VoI1

I2

go=gm2ro1(gm1+gmb1) +(gm1+gmb1)+go2

≈gm2ro1(gm1+gmb1)Gm ≈gm1+gm1ro1gm2

AV=Gm/go≈gm1

gm1 + gmb1

Ex: rework these when I1 and I2 have finite ros.

Page 88: CMOS AMPLIFIERS

VDD

Vin

Vo

I1

I2

If we re-arrange witha flipped version, we get this push-pullsuper source follower

Ex: provide a transistorlevel implementation.Comment on powerefficiency.

Page 89: CMOS AMPLIFIERS
Page 90: CMOS AMPLIFIERS