Download ppt - CMOS AMPLIFIERS

Transcript
Page 1: CMOS AMPLIFIERS

CMOS AMPLIFIERS

• Simple Inverting Amplifier

• Differential Amplifiers

• Cascode Amplifier

• Output Amplifiers

• Summary

Page 2: CMOS AMPLIFIERS

Simple Inverting Amplifiers

Page 3: CMOS AMPLIFIERS

Small Signal Characteristics

How do you get better matching?

Inverter with diode connection load

2

1

221

1

m

m

mdsds

m

in

outv g

g

ggg

g

v

vA

12

21

12

21'

'

LW

LW

LW

LW

K

K

v

vA

P

N

P

N

in

outv

2221

11

mmdsdsout gggg

r

Page 4: CMOS AMPLIFIERS

High gain inverters

Page 5: CMOS AMPLIFIERS

Current source load or push-pull

• Refer to book for large signal analysis

• Must match quiescent currents in PMOS and NMOS transistors

• Wider output swing, especially push-pull

• Much high gain (at DC), but much lower -3dB frequency (vs diode load)

• About the same GB

• Very power dependent

Page 6: CMOS AMPLIFIERS

Small signal

High gain! Especially at low power.

21

21

dsds

mm

in

outv gg

gg

v

vA

21

1

dsds

m

in

outv gg

g

v

vA

Dm Ig 21 Dds Ig 1

D

vI

KA

21

1

dsdsout gg

r

Page 7: CMOS AMPLIFIERS

))(1(|)|(2

)1(|)|(2

))(1()(2

)1()(2

22

2

2

2

2

22

22

1

1

2

1

11

oV

PTPinGGPDDoxP

DSPTPSGoxP

D

oV

NTinGGoxN

DSNTGSoxN

D

vVvVVL

WC

VVVL

WCI

vVvVL

WC

VVVL

WCI

DD

DD

Key to analysis by hand:• Use level 1 or 3 model equations• Use KCL/KVL

Page 8: CMOS AMPLIFIERS

PTCDDoxP

ds

mTCDDoxP

m

NTCDDoxN

ds

TCDDoxN

m

DDoCDDGGPCDDGG

C

NPTTPoxPoxN

VEVL

WCg

gVEVL

WCg

VEVL

WCg

VEVL

WCg

VVEVVEVV

E

VVL

WC

L

WC

2

2

22

12

22

2

1

11

1

11

2

2

1

1

)2/)((2

)2/)((

)2/)((2

)2/)((

2/,2/)(,2/)(

:ispoint operating then used, is offset battery a and

,,|| suppose,22

Let

Page 9: CMOS AMPLIFIERS

Dependence of Gain upon Bias Current

Page 10: CMOS AMPLIFIERS

Transfer function of a system

Systeminput u output y

)()1(

)1()()()(

11

1

11

10 susasasa

sbsbsbAsusHsy

nn

nn

mm

mm

)()1()1)(1(

)1()1(

21

10

su

ps

ps

ps

zs

zs

A

n

m

Page 11: CMOS AMPLIFIERS

0)()1( 11

1 sysasasa n

nn

n When u(s) = 0, y(s) satisfies:

These dynamics are the characteristic dynamics of the system. The roots of the coefficient polynomial are the poles of the system.

When y(s) = 0, u(s) satisfies:

0)()1( 11

1 susbsbsb m

mm

m These dynamics are the zero dynamics of the system. The roots of the coefficient polynomial are the zeros of the system.

Page 12: CMOS AMPLIFIERS

Frequency Response of CMOS Inverters

Page 13: CMOS AMPLIFIERS

Poles of CMOS Inverters

Let vin = 0, x = 0, VDD = 0, VSS = 0.

yCGS1, CGS2, CBS1, CBS2 are all short

CGD1, CGD2, CBD1, CBD2, CL in parallel

C’L = Ctotal = CGD1+ CGD2+ CBD1+ CBD2+ CL

Page 14: CMOS AMPLIFIERS

Total conductance from y to ground:

go = gds1 + gds2

KCL at node y:

0)()1(

0)()(

0)()(

0

'

'

'

sys

sygsC

tygdt

tdyC

i

L

o

Cg

oL

oL

Therefore system pole is: '1L

o

C

gp

Page 15: CMOS AMPLIFIERS

Zeros of CMOS Inverters

Let vin = x = u, VDD = 0, VSS = 0.

gds1, gds2 also short

CGD1, CGD2, are in parallel, CBD1, CBD2, CL are all short

No current in them

KCL:

0)()]()[(

)()()()(

2121

2121

suggsCC

gtugtudt

tduC

dt

tduC

mmGDGD

mmGDGD

Zero is:21

211

GDGD

mm

CC

ggz

Page 16: CMOS AMPLIFIERS

Zeros of CMOS Inverters

Let vin = u, X=0, VDD = 0, VSS = 0.

gds1, gds2 also short

CGS2, CGD2, CBD1, CBD2, CL are all short

No current in them

KCL:

Zero is:

0)(][)()(

1111 sugsCgtudt

tduC mGDmGD

1

11

GD

m

C

gz

Page 17: CMOS AMPLIFIERS

Input output transfer function

)1(

)1(

)1(

)1(

)(

'21

21

2121

21

1

10

L

dsds

GDGD

mmdsds

mm

C

ggs

CC

ggs

gg

gg

pszs

A

sA

When s=j0, A(0) 21

210

dsds

mm

gg

ggA

When w∞, A(s) 1'

21

L

GDGD

C

CC

Page 18: CMOS AMPLIFIERS

|p1|=g0/CL’

|z1|=gm/Cgd

=GB*CL’/Cgd

|A0 | =gm/go

0 dB

Unity gain

frequency

=|A0p1|

=GB

=gm/CL’

Acl=1/

-3dB frequency of closed loop=*GB

Page 19: CMOS AMPLIFIERS

Unity gain feedback

A(s)

10

1

0

0

10

0

10

1

0

0

110

10

1

1

1

))1()1(

1(1

1

1

)1(1

)1(

)(1

)(

pAs

zs

A

A

zAA

pAs

zs

A

A

pszsA

zsA

sA

sAAc

Page 20: CMOS AMPLIFIERS

If a step input is given, the output response is

100

0

10

1

0

0 1)(

1

1

1

1

1

1 pAssA

A

spAs

zs

A

A

In the time domain:

0

0

0

0

1)(

110

A

Ae

A

A tpA

Final settling determined by A0

need high gainSettling speed determined by A0p1=GB=UGF,

need high gain bandwidth product

Page 21: CMOS AMPLIFIERS

Gain bandwidth product

'21

'21

21

2110

L

mm

L

dsds

dsds

mm

C

gg

C

gg

gg

ggpAGB

C’L = Ctotal = CGD1+ CGD2+ CBD1+ CBD2+ CL

LDjDjoxoxL CLWCLWCLWCLWCC 221121'

22

21

1

121 EB

oxPEB

oxNmm V

L

WCV

L

WCgg

When CL ≈ C’L, W↑GB↑, but it saturates, when

LDjDjoxox CLWCLWCLWCLWC 221121

Page 22: CMOS AMPLIFIERS

22

2

221

1

1

22 EBoxP

EBoxN

D VL

WCV

L

WCI

Note:

If VEB1 and VEB2 are fixed, W1/L1 and W2/L2

must be adjusted proportionally, and they are

proportional to DC power.

22

2

221

1

1

22 EBDDoxP

EBDDoxN

DDD VVL

WCVV

L

WCIVP

11

2

2

11

1

1 2,

2

EBDDEB

oxP

EBDDEB

oxN

VV

PV

L

WC

VV

PV

L

WC

Page 23: CMOS AMPLIFIERS

)11

(222

211121

EBEBDDEBDDEBDDmm VVV

P

VV

P

VV

Pgg

)11

()),((

2

)11

(2

2121

21'

EBEBDDL

EBEBDDL

VVVWWCC

P

VVVC

PGB

Therefore:

P is proportional to W1, W2CL constant, but C(W1,W2) proportional to W1, W2When C(W1, W2) << CL, GB proportional to PWhen C(W1,W2)CL or >CL, GB saturates

Page 24: CMOS AMPLIFIERS

P

GB

Linear increase region

Page 25: CMOS AMPLIFIERS

),(

2

),(

2

21

1

21'1

WWCC

W

L

IC

WWCC

I

C

gGB

L

DoxN

L

D

L

m

For given current or power (current source load)

Initially, as W1 increased, GB increases

But GB will reach a max, and then drop as W1 increases

Page 26: CMOS AMPLIFIERS

NOISE IN MOS INVERTERS

22

2

2

121

0

2n

m

mn

Vout e

g

gee

in

22

2

1

2212

22

nm

mn

v

outeq e

g

ge

A

ee

21

22

2

1

221

2 1n

n

m

mneq

e

e

g

gee

Page 27: CMOS AMPLIFIERS

NN

PPneq BK

BK

L

Lee

'

'2

2

121

2 1

constant; :noise 1/fFor 2 BfWL

Ben

Dm IL

WKg

'2

N

P

DN

DPneq B

LfW

LfW

B

LIWK

LIWKee 11

2211'

22'

21

2

/2

/21

To minimize:

1) L2 >>L12) En1 small 1

2

2'

1'

L

L

WK

WKgain

P

N

Page 28: CMOS AMPLIFIERS

For thermal noise

Page 29: CMOS AMPLIFIERS

Noise in Push-Pull current source load Inverter

Page 30: CMOS AMPLIFIERS

Differential Input, single-ended output single stage Amplifier

N-Channel

vin+vin-

Page 31: CMOS AMPLIFIERS

P-channel

Page 32: CMOS AMPLIFIERS

Large Signal Eq. in a N-channel Differential pair

iD1=0, when iD2=ISS and VGS2=VT+(2ISS/)0.5

=0.51(VGS1-VT)2

=(2ID1/1)0.5

Page 33: CMOS AMPLIFIERS

21

2

21212

42

222

22

DDSSID

DDDDID

iiIv

iiiiv

21

22

21212

42

4)2

(2

4424

DDID

SSSSSS

DDDDSSSSID

iiv

III

iiiiIIv

22121

242

2 )(44 DDDDSS

IDIDSS iiiiI

vvI

4

422

21ID

IDSSDD

vvIii

Page 34: CMOS AMPLIFIERS

Solving for iD1 and iD2

VON1=VON2=(ISS/)0.5iD1=iD2=ISS/2

2

422

21 422,

SS

ID

SS

IDSSSSDD I

v

I

vIIii

Page 35: CMOS AMPLIFIERS

N-Channel Input Pair Differential Amplifier

C.M. Load

C.M. Bias

Simplecurrentreference

Page 36: CMOS AMPLIFIERS

Voltage transfer curve

Page 37: CMOS AMPLIFIERS

P-Channel Input Pair Differential Amplifier

Page 38: CMOS AMPLIFIERS

Voltage transfer curve

Page 39: CMOS AMPLIFIERS

INPUT COMMON MODE RANGE

VG1=VG2=ViCM

VSDSAT1=VSDSAT2

=VON

VD1=VD3=VSS+VT3+VON

VG1min=VD1-|VT1|

VG1max=VDD-VSD5SAT-|VT1|-VON

Page 40: CMOS AMPLIFIERS

Output Range

Vomin=Vss+Von4

Vomax=Vicm –|VT2|

So what’s the vo range

What’s for the N-chcircuit.

Page 41: CMOS AMPLIFIERS

SMALL SIGNAL ANALYSIS

AV

Page 42: CMOS AMPLIFIERS

Common Mode Equivalent Circuit, with perfect match

iC1

iC1=VIC/(1/gm1

+2rds5)

ro1≈1/gm3

ACM≈1/ 2rds5gm3

CMRR=Av/ACM=2gm1gm3/(gds4+gds2)/gds5

Page 43: CMOS AMPLIFIERS

If not perfectly matched

iC1

io=iIC

is a fraction

go1≈ gds2 + gds4

ACM≈gds5 / 2(gds2 + gds4)

CMRR=Av/ACM=2gm1/gds5

Page 44: CMOS AMPLIFIERS

equations. all on to

respect withderivative partial take small, const Let

d

dic

sTGGDD

oDDTpGDD

soTsd

icD

GDDTpGDD

sGTsd

icD

v

vV

VVVIII

VVVVV

VVVVv

VI

VVVVV

VVVVv

VI

,)1

12

12

122

12

122

525

521

42

34

2

22

2

332

33

31

21

1

Formal detailed analysis

Page 45: CMOS AMPLIFIERS

d

sTGG

d

D

d

D

d

GoDDTpGDD

d

oTpGDD

d

s

d

oTs

dic

d

ssoTs

dic

d

D

d

GTpGDD

d

GGDDTpGDD

d

s

d

GTs

dic

d

ssGTs

dic

d

D

v

VVV

v

I

v

I

v

VVVVVV

v

VVVV

v

V

v

VVV

vV

v

VVVVV

vV

v

I

v

VVVV

v

VVVVVV

v

V

v

VVV

vV

v

VVVVV

vV

v

I

52521

3434

42

34

2

22

222

33

23

3

33333

31

21

3111

2

1

2

22

2

11

2

2

1

22

2

11

2

Page 46: CMOS AMPLIFIERS

ic

Gds

ic

Gm

ic

GTpGDD

ic

GGDDTpGDD

ic

s

ic

Gds

ic

sm

ic

s

ic

GTsic

ic

ssGTsic

ic

D

ic

icd

v

Vg

v

Vg

v

VVVV

v

VVVVVV

v

V

v

Vg

v

Vg

v

V

v

VVVv

v

VVVVVv

v

I

v

vv

33

33

33

23

3

33333

311

31

21

3111

2

1

1

2

11

,0)2

equations. all on to respect withderivative partial take

variable, tindependen as Let

Page 47: CMOS AMPLIFIERS

ic

sds

ic

sTGG

ic

D

ic

D

ic

ods

ic

Gm

ic

oTpGDD

ic

GoDDTpGDD

ic

s

ic

ods

ic

sm

ic

s

icTsic

ic

ssoTsic

ic

D

v

Vg

v

VVV

v

I

v

I

v

Vg

v

Vg

v

VVVV

v

VVVVVV

v

V

v

Vg

v

Vg

v

V

v

VoVVv

v

VVVVVv

v

I

552521

43

4

42

34

3434

22

222

222

2

2

1

1

2

11

Page 48: CMOS AMPLIFIERS

SLEW RATE: the limit of the rate of change of the output voltage

Max |CLdvo/dt|=ISS

C’Ldvo/dt=i4-i2

Slew Rate = ISS/C’L

ISS

ISSISS

0Output swing: Vosw

GB frequency: fGB

vo(t)=Voswsin(2fGBt)

Max dvo/dt =Vosw2fGB

To avoid slewing: ISS > C’L Vosw2fGB

Page 49: CMOS AMPLIFIERS

Parasitic Capacitances

CT: common mode only

CM: mirror cap = Cdg1 + Cdb1 + Cgs3 + Cgs4 + Cdb3

COUT = output cap= Cbd4 + Cbd2 + Cgd2 + CL

Page 50: CMOS AMPLIFIERS

• Impedances– rout = rsd2 || rds4 = 1 / (gds2 + gds4)

– rM = 1/gm3 || rds3 || rds1 ≈ 1/ gm3

– Hence the output node is the high impedance node

• When vi=0, slowest discharging node is output node with dominant pole

p1 = -1/(C’outrout), where C’out = Cout+ Cgd4

• Approximate transfer function

AV(s) = AV/(s/p1─1)

Page 51: CMOS AMPLIFIERS

When vG1=vG2=0(AC)

KCL at D1:

omdsdsgdM

gdD

DmdsdsoD

gdD

M

vgggsCC

sCv

vgggdt

vvdC

dt

dvC

3314

41

13311

41

)(

0)()(

KCL at D2:

144424

14421

4

)())((

0)()(

Dmgdodsdsgdout

DmodsdsDo

gdo

out

vgsCvggsCC

vgvggdt

vvdC

dt

dvC

omgdgd

omdsdsgdMdsdsgdout

vgsCsC

vgggsCCggsCC

)(

)))(()((

444

3314424

Page 52: CMOS AMPLIFIERS

Gain bandwidth product

• Gain AV(0) = gm1 / (gds2 + gds4)

• Bandwidth ≈ |p1| ≈ (gds2 + gds4) / C’out

• GBW ≈ gm1 / C’out

• gm1 = {2*ID1CoxW1/L1}½

– increase gm1 increase GBW

– increase W1 increase GBW• But C’out has Cdb2 and Cgd2 W1

– Once Cdb2 and Cgd2 become comparable to CL, increasing W1 reduces GBW

Page 53: CMOS AMPLIFIERS

Other poles and zeros

M3

M2

M5

M1

M4

Vb2

VDD

VOUT

CL

Vi+ Vi-

Cgd4

(1+AV4)Cgd4

Cgd4

Second pole at D1

r = 1/gm3

C = CM +

(1+AV4)Cgd4

p2 = CM + (1+AV4)Cgd4

─ gm3

AV4 = gm4/gds4

Page 54: CMOS AMPLIFIERS

M3

M2

M5

M1

M4

Vb2

VDD

VOUT

CL

Vi+= - Vi-

Vi-

Unstable zero at Cgd2

Enforce vo=0, float vin.

ids2, ids4 = 0

Cgd2 dvi-/dt= gm2 vi-

z1 = gm2/Cgd2

Page 55: CMOS AMPLIFIERS

M3

M2

M5

M1

M4

Vb2

VDD

VOUT

CL

Vi+ Vi-

For zero at D1:

For diff, Vi+ = - Vi-

which is set by Cgd2

Both Cgd4 and Cgd1 to gnd

Ctot = CM + Cgd4

z2 = CM + Cgd4

─gm3

Page 56: CMOS AMPLIFIERS

• A better approximation of TF:AV(s)=AV(s/z1-1)(s/z2-1)/(s/p1-1)(s/p2-1)

• If p1 is dominant, |p1|<<|p2|,|z1|,|z2|; AV(s)≈AV/(s/p1-1)

• If p1 is non-dominant, at low frequency, AV(s)≈AV /(s/p1+s/p2-s/z1-s/z2 -1)

• 1/peq≈ 1/p1+1/p2-1/z1-1/z2 ≈ 1/p1+1/p2-1/z2 ,

since |z1| >> |z2|, |p1|, |p2|; ≈ 1/p1, if AV4 is not

very large

• In either case, BW ≈ p1

Page 57: CMOS AMPLIFIERS

frequency response

AV

-90

-180PM

p1 p2 z2z1

UGF

All in abs val

Page 58: CMOS AMPLIFIERS

Observations

• PM ≈ 90 – tan-1(UGF/z1) GBW should be at least 2~3 times lower than z1 to

ensure good phase margin at UGF There is conflict between AV and PM

• If z2 not = p2, UGF < AV*p1

• Design approaches• make z1 high higher than UGF

• make Cgd2 small, gm1 large

• make z2 close to p2 better 1st order approx. • make AV4 small

• make p1 low large AV

• make gds2 and gds4 small

Page 59: CMOS AMPLIFIERS

Design Steps

• Select Iss based on– GB & V_osw, SR, or P_max

• Select W1/L1 based on– GB = gm/CL’, Assuming CL’ = (1.1~1.5)CL– Maximize z1 (minimize Cgd2)

• Select W4/L4 based on– ICMR, – Small Av4

• Select W5/L5 based on– ICMR

Page 60: CMOS AMPLIFIERS

NOISE Model

Page 61: CMOS AMPLIFIERS

Input equivalent noise source

Page 62: CMOS AMPLIFIERS

• Total output noise current is found as,

• Let

• Then

Page 63: CMOS AMPLIFIERS
Page 64: CMOS AMPLIFIERS

How does this affect Av4 and go?

Page 65: CMOS AMPLIFIERS

Cascoding

• Objectives– Increase ro

– Increase AV

– Remove feed forward from vin to vo

– Remove unstable zero

• Methods– Direct cascoding– Folded cascoding

Page 66: CMOS AMPLIFIERS

CMOS CASCODE AMPLIFIERS

VDD

Vbb

Vin

CL

Rb

Vout-min increase by VON2

Vout-max decreased if aCascoded source used

Output swing is a big Problem in low voltageApplications

VDD

Vin

CL

Rb

Page 67: CMOS AMPLIFIERS

Vbb

Vin

CL

Vyy

Vxx

VDDQ: How should you set the bias?Q: what is Vout-max?

ro =

AV =

ro at D1?

vD1

vin

=

Cascoded current source load

Page 68: CMOS AMPLIFIERS

Vbb

Vin

CL

Vyy

Vxx

VDDHigh frequency model

AV(s) =AV0(s/z1 -1)…

(s/p1-1)(s/p2-1)…

For poles, short input, and compute the time constants at each node. For zeros, float input but require vo = 0. (don’t short vo!)

Consider only the effect of the lower half circuit.

Page 69: CMOS AMPLIFIERS

Vbb

Vin

CL

Vyy

Vxx

VDDShort vin, float vo:

At the high impedance node

r =rds1(gm2+gmb2)rds2

C =CL+Cdb2+Cgd2

p1 = -1/RC

At the low impedance node

r =1/(gm2+gmb2+gds1+gds2)

C =Cgd1+Cdb1+Cgs2+Csb2

p2 =

Page 70: CMOS AMPLIFIERS

Vbb

Vin

CL

Vyy

Vxx

VDDEnforce vo=0, float vin.

At the G1-D node

iCo=0, no current cross line, and iCgd2=0id2, id3 = 0, gm2vgs2=0

Was the unstable zero removed?

vs2=0

igds1=0

sCgd1vin=gm1vin

Page 71: CMOS AMPLIFIERS

Gain bandwidth product

• If |p1| << |p2|, |p3|,…, |p1| << |z1|, |z2|,…

– BW ≈ |p1|

– GBW ≈ gm1/Co

• Otherwise– AV(s) ≈ AV/(s/p1+s/p2…-s/z1-s/z2… - 1)

– 1/BW ≈ 1/p1+2/p2…-1/z1-2/z2… = RC1 + RC2 + …

Page 72: CMOS AMPLIFIERS

VDD

Vbb

Vin

CL

Rb

VDD

Any enhancement?

Note: rds2, Rb 1/ID2

gm2 √ID2

Effects on:

ro, AV

Co, GBW

Slew rate

Page 73: CMOS AMPLIFIERS

VDD

Vbb

Vin

CL

Rb

Another possible modification

Effects on:

ro, AV?

Co, GBW?

Slew rate?

poles?

zeros?

Page 74: CMOS AMPLIFIERS

VDD

Vin CL

Folded cascoding

Which I source should be cascoded?

ro, AV?

Co, GBW?

Slew rate?

poles?

zeros?

Vbb

Page 75: CMOS AMPLIFIERS

OUTPUT AMPLIFIERS

• Requirements– Provide sufficient output power in the form of

voltage or current.– Avoid signal distortion for large signal swings.– Be power efficient.– Provide protection from abnormal conditions.

• Types of Output Stages– Class A amplifier.– Source follower.– Push-Pull amplifier ( inverting and follower).– Negative feedback (OP amp and resistive).

Page 76: CMOS AMPLIFIERS

Power efficiency

• It is most power efficient at maximum signal level

• Let VSS= ─VDD, Vin is sinusoidal such that Vout reaches Voutmax

• PRL = ½ (Voutmax)2/RL

• Psupply=average((VDD or VSS)*IRL) =VDD*average(Voutmax/RL *sin()) =2*VDD*Voutmax/RL/

• Power efficicy = PRL/Psupply</4 (78%)

Page 77: CMOS AMPLIFIERS

CLASS A AMPLIFIER

ro, AV, z, p as before

Power effic = PRL

Psupply

= 0.5voutmaxIQ

IQ(VDD-VSS) < 25%

VSS=-VDD, Voutmax=VDD-Vdssat

Page 78: CMOS AMPLIFIERS

SOURCE FOLLOWER

or VSS+VT

Page 79: CMOS AMPLIFIERS

Push-pull

Page 80: CMOS AMPLIFIERS

Push-pull inverting amp

Page 81: CMOS AMPLIFIERS

Implementation

Page 82: CMOS AMPLIFIERS
Page 83: CMOS AMPLIFIERS

PUSH-PULL SOURCE FOLLOWER

Page 84: CMOS AMPLIFIERS
Page 85: CMOS AMPLIFIERS

Negative Feedback To Reduce Rout

Ro=?

Page 86: CMOS AMPLIFIERS
Page 87: CMOS AMPLIFIERS

Super source follower

VDD

Vin

Vo

Vo => I1 =(gm1+gmb1)Vo

VGS2= ro1(gm1+gmb1)Vo

I2 = gm2ro1(gm1+gmb1)VoI1

I2

go=gm2ro1(gm1+gmb1) +(gm1+gmb1)+go2

≈gm2ro1(gm1+gmb1)Gm ≈gm1+gm1ro1gm2

AV=Gm/go≈gm1

gm1 + gmb1

Ex: rework these when I1 and I2 have finite ros.

Page 88: CMOS AMPLIFIERS

VDD

Vin

Vo

I1

I2

If we re-arrange witha flipped version, we get this push-pullsuper source follower

Ex: provide a transistorlevel implementation.Comment on powerefficiency.

Page 89: CMOS AMPLIFIERS
Page 90: CMOS AMPLIFIERS

Recommended