50
SURFACTANT BEHAVIOR IN ATMOSPHERIC AEROSOLS Allison Schwier 25 April 2013

Allison Schwier 25 April 2013. 2 The McNeill Group McNeill Group 1 Postdoc 2 Grad Students 1 Fulbright Scholar 1 Visiting Professor 4 Undergrads

Embed Size (px)

Citation preview

SURFACTANT BEHAVIOR IN ATMOSPHERIC AEROSOLS

Allison Schwier25 April 2013

2

The McNeill Group

McNeill Group

1 Postdoc2 Grad Students1 Fulbright Scholar1 Visiting Professor4 Undergrads

3

Aerosol-CIMS

4

Aerosol Chamber

Surfactants

N2O5 (g)

“Inverted micelle”Can also form other morphologies: lenses, crystals, oils or lamellar phases

hydrophilic

hydrophobic

5

Atmospheric Aerosols

Health EffectsAir Quality10 – 90% organic material

2 nm - 20 μm Aerosol composition can be solid, liquid, or complex

http://www.nytimes.com/2007/12/29/world/asia/29china.html?_r=1

6

MechanismPrimary

http://www.chem.wisc.edu/users/keutsch

Secondary

7

http://www.chem.wisc.edu/users/keutsch

8

1. Organic Films can depress surface tension

Cl-

H2

OH2O Na+

H2O

Cl-H2O

Na+

H2ONa+

Effects of Surfactants

3. Can affect trace gas uptake (N2O5, HO2, etc.)

2. Can affect water uptake

H2O

H2O

H2O

N2O5

N2O5

N2O5

Seinfeld & Pandis, 2006

3p p

A BS

D D 4 6

where and w s w

w w

M n MA B

RT

Kelvin/Curvature Effect:

Raoult/Solute Effect:

When Kelvin > Raoult

GROWTH

Köhler Theory- cloud condensation nuclei activity (CCN)

Unknowns:

• Complex systems

• Natural conditions untested (pH, salt, organics)

8

9

I. Under what aerosol conditions will an organic film

form?

Cl-

H2

OH2O Na+

H2O

Cl-H2O

Na+

H2ONa+Cl-H2O

Cl-

H2O

Na+

H2ONa+

Fatty acids

10

Oleic acid (OA) – C18H34O2

Stearic acid (SA) – C18H36O2

O

OH

O

OH

Oleic acid

Stearic acid

OH

O

Surface Tension Experimental Procedure

Bulk Solutions

Pendant Drop Tensiometry

11

2egd

H

Adamson & Gast,1997

e

density diff bt solution and gas phase

d equatorial diameter

H shape factor

Juza, 1997

.18 33 2 3 18 34 2 2

.18 35 2 3 18 36 2 2

C H O Na H O C H O H O Na         1  

C H O Na H O C H O H O Na          2  

Varying organic concentrations

12

Oleic Acid in 3.1 M AS, pH = 3

80

75

70

65

60

55

50

45

σ (

dyn

cm-1

)

0.080.060.040.020.00

C (mol C/kg water)

Stearic Acid in 3.1 M AS, pH = 3

80

70

60

50

40

30

σ (

dyn

cm-1

)

0.40.30.20.10.0

C (mol C/kg water)

Solution σo (dyn cm-1) a ×102 (K-1) b (kg water/mol carbon)

SA 78.5 2.4 ± 0.2 502.3 ± 128OA 78.5 0.92 ± 0.05 (7.3 ± 4.9) ×106

ln(1 )o aT bC

Varying salt concentration

13

1.7 mM Stearic Acid at pH 3

80

75

70

65

60

55

50

σ (

dyn

cm-1

)

543210

(NH4)2SO4 (M)

(NH4)2SO4

(NH4)2SO4 + SA

Varying pH of saturated solutions

14

80

70

60

50

40

30

20

σ (

dyn

cm-1

)

876543210

pH

NaCl(NH4)2SO4

H2OOA NaCl (NH4)2SO4

H2OSA H2O

Saturated oleic acid and stearic acid in saturated NaCl, (NH4)2SO4, and water with varying pH.

Long chain fatty acids form surface films at all

atmospherically relevant conditions.

Impact: Organic films could exist if surfactants are

present.

15Schwier, Mitroo, McNeill, Atmospheric Environment, 2012

IIa. Can we model surface tension and

light absorbing properties of complex

mixtures a priori ?

16

O

O

Methylglyoxal

Glyoxal

O

O

Glyoxal

O

O

Methylglyoxal

Glyoxal

O

O

Methylglyoxal

Aerosol-CIMS

Aerosol CIMS = Chemical Ionization Mass Spectrometer with a volatilization inlet flow

tube (VFT)

Low fragmentationHigh sensitivity (O~ppt)

17

Cross products make up to 55(±5%) product mass

HO

OH

OH

OH

OHO

O

HO

OH O

OHOH

O

O

OHOH

OH

HO

O

OH

OHO

OH OH

O

O

OH

OH

OHOH

HO

OH

OH

OH

OHO

O

HO

OH O

OHOH

O

O

OHOH

OH

HO

O

OH

OHO

OH OH

O

O

OH

OH

OHOH

OHO

HO O

OH

OH

CIMS Data

18

O

O

OH

O

S

O

OH

O

Hydrated G

Hydrated MG

MG - Sulfate

MG - MG

MG – MGMG -GG – G

MG -G

MG – MGMG -G

Hydrated MG

19

70

60

50

40

(d

yn c

m-1

)

86420

CMG (mol C/kg water)

MG + G Sareen et al. (2010)

ln(1 )o i ii

aT bC

Glyoxal Methylglyoxal

Glyoxal-Methylglyoxa

l

a 0 0.0185±0.0008

0.0189±0.0006

b 0 140±34 83±13a= (dyn cm-1 K-1); b= kg H2O (mol C)-1

Surface Tension

O

O

O

O

O

OH

OH

O

OH

OH

HO

OH

OH

HO

OH

OH

HO

HO

OH

OHO

20

Varying concentrations (1:1 G:MG) in 3.1 M AS

[ ] [ ]G MG

dAbs d G d MGl

dt dt dt

4 3

[ ][ ][ ] [ ][ ]II II

A B

d MGk MG NH k MG H O

dt

4 3

[ ][ ][ ] [ ][ ]II II

C D

d Gk G NH k G H O

dt

44 4

[ ][ ][ ] [ ][ ]II II

A C

d NHk MG NH k G NH

dt

33 3

[ ][ ][ ] [ ][ ]II II

B D

d H Ok MG H O k G H O

dt

Light absorbing products

21

2.0

1.5

1.0

0.5

0.0Abs

orba

nce

at 3

45 n

m (

AU

)

0.01 0.1 1 10 100Time (h)

A

B

2.0

1.8

1.6

1.4

1.2

1.0

0.8Abs

orba

nce

at 2

80 n

m (

AU

)

1.00.80.60.40.20.0

Time (h)

kAII 5 × 10-6

kBII 1 × 10-3

kCII 3.25 × 10-5

kDII 0.15

εG 750

εMG 7500

Self- and cross-reactions have the same rate-limiting step (protonation of the carbonyl)

Kinetic Model

2.0

1.5

1.0

0.5

0.0

Ab

so

rb

an

ce

(A

U)

353025201510Total organics concentration (mM)

2.0

1.5

1.0

0.5

0.0

Ab

so

rb

an

ce

(A

U)

3.02.01.00.0Salt Concentration (M)

C

2.0

1.5

1.0

0.5

0.0

Ab

so

rb

an

ce

(A

U)

43210

[H+] Concentration (mM)

A

B

2.0

1.5

1.0

0.5

0.0

Absorbance (A

U)

353025201510Total organics concentration (mM)

2.0

1.5

1.0

0.5

0.0

Absorbance (A

U)

3.02.01.00.0Salt Concentration (M)

C

2.0

1.5

1.0

0.5

0.0

Absorbance (A

U)

43210

[H+] Concentration (mM)

A

B

2.0

1.5

1.0

0.5

0.0

Ab

so

rb

an

ce

(A

U)

353025201510Total organics concentration (mM)

2.0

1.5

1.0

0.5

0.0

Ab

so

rb

an

ce

(A

U)

3.02.01.00.0Salt Concentration (M)

C

2.0

1.5

1.0

0.5

0.0

Ab

so

rb

an

ce

(A

U)

43210

[H+] Concentration (mM)

A

B

2.5

2.0

1.5

1.0Abs

orba

nce

(AU

)

1.00.80.60.40.20.0

Mole fraction glyoxal

1.0 0.8 0.6 0.4 0.2 0.0Mole fraction methylglyoxal

A B

C D

Cross-reaction products make up a

large fraction of product mass.

Absorption kinetics and surface tension can be modeled in

parallel.

Impact: Knowledge of reaction products might not be required to accurately

describe an aerosol system.Schwier, Sareen, Mitroo, Shapiro, McNeill, Environmental Science & Technology, 2010

22

23

IIb. Can we model surface tension of complex

reactive mixtures (up to 6 organics) a priori ?

ln(1 )o aT bC

24

( ) ( ) ln(1 )o i i ii

T T aT bC

( ) ( ) ln(1 )o i i ii

T T aT bC

2( ) ( ) ln(1 ) ln(1 )H O salt salt

salt

T T c aT bC kc bCc

2( ) ( ) ln(1 ) ln(1 )H O salt i i i salt i i

i isalt

T T c aT bC kc bCc

Henning et al. 2005

Schwier et al. 2010

How do we account for salt?

2 ways:Explicitly and ImplicitlyTuckermann et al. 2007

25

Complex Organic Mixture

OO

Methylglyoxal

Glyoxal

O O

Glyoxal

OO

Methylglyoxal

Glyoxal

O O

Methylglyoxal

Oxalic Acid

Succinic Acid

Acetaldehyde

Formaldehyde

26

Leucine + Acetaldehyde

What is the model missing??

~Structurally dissimilar molecule reaction pathways

27

Modeling structurally similar molecules is possible.

However, we are still missing key information about structurally

dissimilar molecules.

Impact: Can we use this information in Köhler

Theory?Schwier, Viglione, Li, McNeill , Atmospheric Chemistry and Physics Discussion, 2012

28

III. If an organic film is oxidized, how does this change the CCN activity?

Cl-

H2

OCl-

H2O Na+

H2O

Cl-

H2O

Na+

H2ONa+

O3

O3

O3

28

Sodium Oleate and Oleic Acid

Azelaic Acid

Nonanaldehyde (nonanal)

Nonanoic Acid

9-oxononanoic Acid

+

OH

HO

OH

H

O

O

OH

O

O

H

O

O

OH

O

OH

HO

OH

H

O

O

OH

O

O

H

O

O

OH

O

OH

HO

OH

H

O

O

OH

O

O

H

O

O

OH

O

OH

HO

OH

H

O

O

OH

O

O

H

O

O

OH

O

Humid conditions

Humid conditions

+

29

OH

O

DMA = Differential Mobility AnalyzerCPC = Condensation Particle CounterCFSTGC = Continuous Flow Streamwise Thermal Gradient Cloud Condensation Nuclei Counter

Methodology 0.001 M and 0.01 M SO0.05 M NaCl

CFSTGC

O3 + N2

Flow Tube Reactor

CPC

DMA

Drier

AtomizerTSI 3076

Sodium Oleate (SO) Solutions

Humidified N2

tr = 3 min

Control Experiments:0.001 M SO0.06 M Na2SO4

Oxidation controls with salt

Acidified Experiments

730

CCN Data

2

3

4

5

6

7

8

91

Crit

ical

SS

[%

]

3 4 5 6 7 8 9100

Critical Dry Diameter [nm]

0.05 M NaCl0.001 M SO.NaCl0.01 M SO.NaCl0.001 M SO

831

Comparison of CCN activity Non-acidified and Acidified

32

2

3

4

5

6

7

8

91

Crit

ical

SS

[%]

3 4 5 6 7 8 9100

Critical Dry Diameter [nm]

0.05 M NaCl0.01 M OA-NaCl0.01 M OA-NaCl-1 ppm O3

2

3

4

5

6

7

8

91

Crit

ical

SS

[%]

3 4 5 6 7 8 9100

Critical Dry Diameter [nm]

0.05 M NaCl0.01 M OA-NaCl0.01 M OA-NaCl-1 ppm O3

2

3

4

5

6

7

8

91

Crit

ical

SS

[%]

3 4 5 6 7 8 9100

Critical Dry Diameter [nm]

0.05 M NaCl0.01 M SO-NaCl0.01 M SO-NaCl-1ppm O3

2

3

4

5

6

7

8

91

Crit

ical

SS

[%]

3 4 5 6 7 8 9100

Critical Dry Diameter [nm]

0.05 M NaCl0.01 M SO-NaCl0.01 M SO-NaCl-1ppm O3

Ozone oxidation of acidified particles slightly decreases CCN activity at higher critical SS

32

Power Law Fits

κ-Köhler

3

3 2

27 lnd c

A

D S

/4where s a w

w

MA

RT

Petters & Kreidenweis, 2007

10

Power Log Fit

κ (avg)

0.001 M SO, Water, (fit to NaCl SS%) -1.491 0.118 ± 0.004

NaCl  -1.503 1.378 ± 0.025

0.001 M SO, NaCl -1.474 1.187 ± 0.034

0.001 M SO, NaCl, 1 ppm O3 -1.464 1.170 ± 0.027

0.01 M SO, NaCl, H2SO4 -1.271 0.971 ± 0.079

0.01 M SO, NaCl, H2SO4, 1 ppm O3 -1.449 0.786 ± 0.024

Na2SO4  -1.503 0.872 ± 0.016

0.001 M SO, Na2SO4  -1.475 0.708 ± 0.037

0.001 M SO, Na2SO4, 1 ppm O3 -1.460 0.708 ± 0.024

0.01 M SO, Na2SO4, H2SO4 -1.370 0.615 ± 0.029

0.01 M SO, Na2SO4, H2SO4, 1 ppm O3 -1.374 0.548 ± 0.024

33

32

cS x

Köhler Theory Analysis

Inferred surface tension for acidified aerosols, assuming in-particle concentrations of 0.176 or 1.76 M oleate in either 8.6 M NaCl or 10.6 M Na2SO4.

σ (mN/m) [0.176 M] σ (mN/m) [1.76 M]Before

OxidationAfter

Oxidation (1ppm)

Before Oxidation

After Oxidation

(1ppm)

NaCl 69.1 72.9 55.5 67.4

Na2SO4 72.4 74.8 66.1 74.8

2 33 2256 1

27

o o o

o w ii i

w i

M

M

RT M

3/2cS d

where

i

ii

i o

i o

m

m m

Padró et al. 2007

34

Oxidation depresses CCN activity, especially for acidic aerosols; it

also makes the organic film disappear.

Impact: Can this change cloud nucleation?

Schwier, Sareen, Lathem, Nenes, McNeill, Journal of Geophysical Research, 2011

35

Surfactant systems in aerosols are incredibly complex

Organic films form at atmospherically relevant conditions

Modeling of reaction mixtures could be simplified depending on the organic species

Oxidation does not always increaseCCN activity

Conclusions

36

Cl-

H2

OH2O Na+

H2O

Cl-H2O

Na+

H2ONa+

Acknowledgements:

V. Faye McNeillDhruv Mitroo

Giuliana ViglioneNeha Sareen

McNeill GroupTerry Lathem

Athanasios NenesKoberstein Group

Funding:37

38

Back-up Slides

39

Impact

Direct Effect: scattering/absorbing solar radiation

Indirect Effect: cloud properties such as cloud lifetime and albedoAerosols mostly believed

to have a cooling effect

http://stratus.astr.ucl.ac.be/textbook/chapter4_node3_2.html

Global radiation budget and climate

Scientific Understanding is LOW

40

41

Taken from Isaksen et al. [2009], adapted from AR4 IPCC [2007]

Mechanisms(Hemi)acetal formation

Aldol Condensation

O

O

OHO

HOHO O

O

O OH

O O

OHOH

O

O

O

O

O O

O O

OH O

OOH

O

2 NH4+ + 2 H2O 2 NH3 + 2 H3O+

2 NH3 +

O

O

-2 H2ONH

NHNH

NH

O

O

- H2ON

N

O

HN

N

O

+

O

O

OHO

HOHO O

O

O OH

O O

OHOH

O

O

O

O

O O

O O

OH O

OOH

O

2 NH4+ + 2 H2O 2 NH3 + 2 H3O+

2 NH3 +

O

O

-2 H2ONH

NHNH

NH

O

O

- H2ON

N

O

HN

N

O

O

O

OHO

HOHO O

O

O OH

O O

OHOH

O

O

O

O

O O

O O

OH O

OOH

O

2 NH4+ + 2 H2O 2 NH3 + 2 H3O+

2 NH3 +

O

O

-2 H2ONH

NHNH

NH

O

O

- H2ON

N

O

HN

N

O

O

O

OHO

HOHO O

O

O OH

O O

OHOH

O

O

O

O

O O

O O

OH O

OOH

O

2 NH4+ + 2 H2O 2 NH3 + 2 H3O+

2 NH3 +

O

O

-2 H2ONH

NHNH

NH

O

O

- H2ON

N

O

HN

N

O

O

O

OHO

HOHO O

O

O OH

O O

OHOH

O

O

O

O

O O

O O

OH O

OOH

O

2 NH4+ + 2 H2O 2 NH3 + 2 H3O+

2 NH3 +

O

O

-2 H2ONH

NHNH

NH

O

O

- H2ON

N

O

HN

N

O

+

O

O

OHO

HOHO O

O

O OH

O O

OHOH

O

O

O

O

O O

O O

OH O

OOH

O

2 NH4+ + 2 H2O 2 NH3 + 2 H3O+

2 NH3 +

O

O

-2 H2ONH

NHNH

NH

O

O

- H2ON

N

O

HN

N

O

O

O

OHO

HOHO O

O

O OH

O O

OHOH

O

O

O

O

O O

O O

OH O

OOH

O

2 NH4+ + 2 H2O 2 NH3 + 2 H3O+

2 NH3 +

O

O

-2 H2ONH

NHNH

NH

O

O

- H2ON

N

O

HN

N

O

O

O

OHO

HOHO O

O

O OH

O O

OHOH

O

O

O

O

O O

O O

OH O

OOH

O

2 NH4+ + 2 H2O 2 NH3 + 2 H3O+

2 NH3 +

O

O

-2 H2ONH

NHNH

NH

O

O

- H2ON

N

O

HN

N

O

42

MechanismsImidazole Formation

O

O

OHO

HOHO O

O

O OH

O O

OHOH

O

O

O

O

O O

O O

OH O

OOH

O

2 NH4+ + 2 H2O 2 NH3 + 2 H3O+

2 NH3 +

O

O

-2 H2ONH

NHNH

NH

O

O

- H2ON

N

O

HN

N

O

O

O

OHO

HOHO O

O

O OH

O O

OHOH

O

O

O

O

O O

O O

OH O

OOH

O

2 NH4+ + 2 H2O 2 NH3 + 2 H3O+

2 NH3 +

O

O

-2 H2ONH

NHNH

NH

O

O

- H2ON

N

O

HN

N

OO

O

OHO

HOHO O

O

O OH

O O

OHOH

O

O

O

O

O O

O O

OH O

OOH

O

2 NH4+ + 2 H2O 2 NH3 + 2 H3O+

2 NH3 +

O

O

-2 H2ONH

NHNH

NH

O

O

- H2ON

N

O

HN

N

O

O

O

OHO

HOHO O

O

O OH

O O

OHOH

O

O

O

O

O O

O O

OH O

OOH

O

2 NH4+ + 2 H2O 2 NH3 + 2 H3O+

2 NH3 +

O

O

-2 H2ONH

NHNH

NH

O

O

- H2ON

N

O

HN

N

O

+

O

O

OHO

HOHO O

O

O OH

O O

OHOH

O

O

O

O

O O

O O

OH O

OOH

O

2 NH4+ + 2 H2O 2 NH3 + 2 H3O+

2 NH3 +

O

O

-2 H2ONH

NHNH

NH

O

O

- H2ON

N

O

HN

N

O

4 2 3 32 2 2 2 NH H O NH H O

32 +NH22 H O

2 H O

O

O

OHO

HOHO O

O

O OH

O O

OHOH

O

O

O

O

O O

O O

OH O

OOH

O

2 NH4+ + 2 H2O 2 NH3 + 2 H3O+

2 NH3 +

O

O

-2 H2O NH

NHNH

NH

O

O

- H2O

N

N

OHN

N

O

43

Köhler Theory

21

32

4

4( ) 4

3

droplet purevapor

v l p T v

pl v p

l

G G G

G N g ng R N g

RG g g R

v

Consider the change of Gibbs free energy of formation of a single drop from a flat surface

Write in terms of vapor and liquid and curvatureRewrite and relate n to Rp

Evaluate gl-gv: Use Gibbs fundamental equation and laws of ideality, simplify, write in terms of pressure, integrate, and re-substitute

3 2

0

4ln 4

3

2exp

( ) 4exp

p pl

oA A

l p

w p w wo

w p

kTG R S R

v

Mp p

RT R

p D M

p RT D

Solve for maximum ΔG, then re-arrange in terms of saturation ratio

Kelvin Equation

Pure Water Droplet

Following Seinfeld & Pandis 44

Köhler Theory cont.Flat Water Solution

*

( ) ( )

exp ( )

w w

o os w w

w w

o os w w

g l

pK T

x RT

p x p

Write out chemical potential of gas phase and liquid phase in terms of partial pressures, activity coefficients, combine, simplify

Aqueous Solution Droplets

Combine these cases

3

3

( ) 4exp

( ) 4ln ln ln 1

( / 6)

( ) 4 6ln

w p w wo

w w p

w p w w s wwo

p p s s

w p w w s wo

w p p

p D v

p x RTD

p D v n v

p RTD D n v

p D M n v

p RT D D

Solve for molar volume, substitute, use dilute approximationSolve molar volume, write in terms of A and B 45

Empirical Model

( ) ln(1 )

( ) ln(1 )

w

w i i ii

T aT bC

T aT bC

Szyszkowski – Langmuir equation

Henning (2005) describes complex non reacting organic species by modifying the above equation:

σ and σw are the surface tension of solution and waterT is the temperatureC is the concentration of soluble carbon (mol C/kg water)a and b constants related to the organicχ Is the carbon content of each species (mol C/kg water)

46

“Salting Out”~ Salt ions surround themselves with a shell of water

Electrostriction~ Decreases amount of available water for organic~ “SALT IN” or “SALT OUT”

log log os s

o

SK C

S

γ and γo are activity coefficients of organic in salt and waterS and So are solubility of organic in salt and waterKs is Setschenow constantCs is salt concentration

Setschenow, 1889

Varies on factors such as polarity of the organic, and type of salt

47

Project 1

Control experiments:

At pH 1, ratio of dissociated vs. non-dissociated using pKa and pH, will remain mostly non dissociated at acidic conditions

Bulk depletion effects – used solid precipitate

Nitric acid effect on surface tension depression

48

Project 2

Time spent in aerosol form: 3.5 s, so oligomerization products were formed in bulk solutions

49

Project 3

Ozone concentration 0.2 & 1 ppm Particle concentration: 9 x 104 cm-3 , 200

nm diameter

Acidified aerosols, pH ~8 to pH ~0.4

Internally mixed aerosols: sum of components for κ-Köhler theory

50