28
ZnO/metal layered 3D Photonic crystals Dept. of Physics and Astronomy, Youngstown State University, Youngstown, OH Michael McMaster , Dr. Tom Oder, Dr. Donald Priour

ZnO /metal layered 3D Photonic crystals

  • Upload
    chen

  • View
    102

  • Download
    0

Embed Size (px)

DESCRIPTION

ZnO /metal layered 3D Photonic crystals. Michael McMaster , Dr. Tom Oder, Dr. Donald Priour. Dept. of Physics and Astronomy, Youngstown State University, Youngstown, OH. What to Expect. What is a Photonic Crystal? Experimental Procedure Modeling/Results Conclusion. Photonic Crystal. - PowerPoint PPT Presentation

Citation preview

Page 1: ZnO /metal layered 3D Photonic crystals

ZnO/metal layered 3D Photonic crystals

Dept. of Physics and Astronomy, Youngstown State University, Youngstown, OH

Michael McMaster, Dr. Tom Oder, Dr. Donald Priour

Page 2: ZnO /metal layered 3D Photonic crystals

What to Expect

• What is a Photonic Crystal?• Experimental Procedure • Modeling/Results• Conclusion

Page 3: ZnO /metal layered 3D Photonic crystals

• “Photonic crystals are materials patterned with a periodicity in dielectric constant, which can create a range of ‘forbidden’ frequencies called a photonic bandgap. Photons with energies lying in the bandgap cannot propagate through the medium. This provides the opportunity to shape and mould the flow of light for photonic information technology.” – J.D. Joannopoulos, Pierre R. Villeneuve & Shanhui Fan

• Applications include

Photonic Crystal

– Waveguides– LED light extraction– Ultrafast photonic crystal

nanocavity laser

– High speed communication– High speed information

processing

Page 4: ZnO /metal layered 3D Photonic crystals

Callophrys Gryneus

Vinodkumar et. Al. (2010)

Page 5: ZnO /metal layered 3D Photonic crystals

Parides sesostris

Vinodkumar et. Al. (2010)CERN Courier (2005)Vigneron et. Al. (2012)

Peacock

Weevil and two Longhorns

Page 6: ZnO /metal layered 3D Photonic crystals

Joannopoulos et. Al. (2008)

Page 7: ZnO /metal layered 3D Photonic crystals

Pillars Comprise a 3-D Photonic Crystal

Page 8: ZnO /metal layered 3D Photonic crystals

ZnO/Cr and ZnO/Al Multilayer Films• Substrate: double-side polished sapphire• Base Pressure: 10-7 mtorr• Preheat temperature:~700°C• Depositions temperature: 300°C• Deposition pressure: 10 mtorr• Ambient gas: Ar• Flow Rate: 10 sccm• Presputter: 3 min• ZnO Buffer Layer: 250 nm• Layer thicknesses:

– ZnO/Cr (120 nm/12 nm)x10– ZnO/Cr (90 nm/ 5nm) x10– ZnO/Al (170 nm/ 5nm) x8

Page 9: ZnO /metal layered 3D Photonic crystals

Bottom Up• Shadow mask sputtering• Periodic Array of Pillars• Quick and easy

Top Down• FIB• Holes in 1-D crystals• Accurate, small feature size

How can we make 3-D Photonic Crystals?

Page 10: ZnO /metal layered 3D Photonic crystals

• Index of Refraction:

• Snell’s law

• The Electric Field Equation:

Some Quick Physics Facts

Page 11: ZnO /metal layered 3D Photonic crystals

n1 n2 n3 … nN-1 nN ns

A0 A1 A2 … … AN As

B0 B1 B2 … … BN Bs

x0 x1 x2 … … xN xs

The Electric Field can be shown for different refractive indices as:

So we get a vector representing the amplitudes of the wave function.

Mathematical Interlude

Yeh. (2004)

Page 12: ZnO /metal layered 3D Photonic crystals

We can describe light at the interface of materials with different refractive indices with the dynamical matrices:

so that light passing through the interface responds such that

.Also, as it travels through a material, the change is shown by the transfer matrix:

Mathematical Interlude (continued)

Yeh. (2004)

Page 13: ZnO /metal layered 3D Photonic crystals

• By acting on the vector representing light passing through the system with the matrices describing the environment we can predict the transmission spectrum.

• Recall:

But metals have an imaginary index of refraction (n) so let’s write:

But Φ has real an imaginary parts Re(Φ) and Im(Φ) so

where we see the Decay term.

Mathematical Interlude (Recap)

Yeh. (2004)

Page 14: ZnO /metal layered 3D Photonic crystals

• Refractive Indices in Visible Spectrum– ZnO 2.0– Cr 3.2– Al 1.3

• Layer thicknesses of samples: – ZnO/Cr (120 nm/12 nm)x10– ZnO/Cr (90 nm/ 5nm) x10– ZnO/Al (170 nm/ 5nm) x8

1-D Photonic Crystals

Page 15: ZnO /metal layered 3D Photonic crystals

Transmission SpectrumTheoretical Transmission Spectrum Actual Transmission Spectrum

?

Page 16: ZnO /metal layered 3D Photonic crystals

After Annealing

ZnO/Cr 1-D photonic CrystalTheoretical Model

Page 17: ZnO /metal layered 3D Photonic crystals

After Annealing

ZnO/Cr 1-D photonic CrystalTheoretical Model

Page 18: ZnO /metal layered 3D Photonic crystals

Photonic CrystalNot a Photonic Crystal

Remember those cosines?

ZnO/Cr (120nm/12nm)x10Theoretical Model

Page 19: ZnO /metal layered 3D Photonic crystals

We can Control the Band-Gap!(this Time in Blue)

Band-GapZnO/Cr 1-D photonic CrystalTheoretical Model

Page 20: ZnO /metal layered 3D Photonic crystals

• Band-gap is maximized when n1d1=n2d2

• nZnO=2.0 nAl=1.3• ZnO/Al (170 nm/ 5nm) x8• We predict a smaller band-gap

Aluminum

Joannopoulos et. Al. (2008)

ZnO/Al 1-D photonic CrystalTheoretical

Page 21: ZnO /metal layered 3D Photonic crystals

ZnO/Cr (120 nm/12 nm)x10

ZnO/Cr (90 nm/ 5nm) x10

ZnO/Al (170 nm/ 5nm) x8

EDX Results (Not Chromium Oxide)

Expected Transmission Spectrum if Chromium had

oxidized. (CrO3 refractive index 2.55)

Page 22: ZnO /metal layered 3D Photonic crystals

Annealing in Different Gas

Page 23: ZnO /metal layered 3D Photonic crystals

4-Point Probe Results

ZnO/Cr (120 nm/12 nm)x10 .012 15

ZnO/Cr (90 nm/ 5nm) x10 .0027 310

ZnO/Al (170 nm/ 5nm) x8 too resistive .095

Pre Annealing Post Annealing

Bulk Resistivity (Ω∙cm)

Page 24: ZnO /metal layered 3D Photonic crystals

• Produce 3-D photonic crystals • using Shadow mask or FIB• Model in higher dimension• TEM/AFM for layer thickness

What Next???

What we Expect• Evidence of 3-D from

diffraction pattern• Measureable band-gaps in

oblique directions• Improved modeling

What we Hope For• both polar and radial angle

band-gap dependance• Predict band-gap• Test the effect of electric

field on optical the band-gap

Page 25: ZnO /metal layered 3D Photonic crystals

• Vinodkumar Saranathan, Chinedum O. Osuji, Simon G. J. Mochrie, Heeso Noh, Suresh Narayanan, Alec Sandy, Eric R. Dufresne, and Richard O. Prum. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales PNAS 107 (26) 11676-11681 (2010).

• Joannopoulos, John D., Steven G. Johnson, Joshua N. Winn, Robert D. Meade. Photonic Crystals Modeling the Flow of Light Second Edition. Princeton University Press (2008).

• Yeh, Pochi. Optical Waves In Layered Media: 2nd (second) Edition. Whiley Press (2004).

• Peacock feathers prove photonic crystals cast brown light in nature. CERN Courier. Aug 22, 2005

• Joannopoulos J.D. , Pierre R. Villeneuve and Shanhui Fan. Photonic Crystals: putting a new twist on light. Nature 386 (13) 143-149 (1997)

• Vigneron, Jean Pol, and Priscilla Simonis. Natural photonic crystals. Physica B Condensed Matter 407 (20) 4032-4036 (2012)

References

Page 26: ZnO /metal layered 3D Photonic crystals

• We gratefully acknowledge support of funds from NSF (DMR#1006083) and from the State of Ohio (Third Frontier - RC-SAM).

• Support and funds from Youngstown State University

• I would also like to thank Dr. Jim Andrews, Jessica Shipman and Matt Kelly and Dr. George Yates for helping with this project.

Acknowledgements

Page 27: ZnO /metal layered 3D Photonic crystals

Any Questions?

Xkcd.com

Page 28: ZnO /metal layered 3D Photonic crystals