12
EE130 Lecture 26, Slide 1 Spring 2007 Lecture #26 OUTLINE Modern BJT Structures Poly-Si emitter Heterojunction bipolar transistor (HBT) Charge control model Base transit time Reading: Finish Chapter 11, 12.2

Spring 2007EE130 Lecture 26, Slide 1 Lecture #26 OUTLINE Modern BJT Structures –Poly-Si emitter –Heterojunction bipolar transistor (HBT) Charge control

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Spring 2007EE130 Lecture 26, Slide 1 Lecture #26 OUTLINE Modern BJT Structures –Poly-Si emitter –Heterojunction bipolar transistor (HBT) Charge control

EE130 Lecture 26, Slide 1Spring 2007

Lecture #26

OUTLINE

• Modern BJT Structures– Poly-Si emitter– Heterojunction bipolar transistor (HBT)

• Charge control model

• Base transit time

Reading: Finish Chapter 11, 12.2

Page 2: Spring 2007EE130 Lecture 26, Slide 1 Lecture #26 OUTLINE Modern BJT Structures –Poly-Si emitter –Heterojunction bipolar transistor (HBT) Charge control

EE130 Lecture 26, Slide 2Spring 2007

• Narrow base • n+ poly-Si emitter• Self-aligned p+ poly-Si base contacts• Lightly-doped collector• Heavily-doped epitaxial subcollector• Shallow trenches and deep trenches filled with SiO2 for electrical isolation

B E C

p+ p+ P base

N collector

N+ subcollector

P substrate

N+ polySi

N+

Deeptrench

Deep trench

Shallowtrench

P+polySiP+polySi

Modern BJT Structure

Page 3: Spring 2007EE130 Lecture 26, Slide 1 Lecture #26 OUTLINE Modern BJT Structures –Poly-Si emitter –Heterojunction bipolar transistor (HBT) Charge control

EE130 Lecture 26, Slide 3Spring 2007

• dc is larger for a poly-Si emitter BJT as compared with an all-crystalline emitter BJT, due to reduced dpE(x)/dx at the edge of the emitter depletion region

Polycrystalline-Silicon (Poly-Si) Emitter

dx

pd

dx

pd

D

D

dx

pddx

pdqD

dx

pdqD

E

E

EE

E

EE

EE

EE

2

1

22

1

21

22

11

Si)2 Si;-poly(1

Continuity of hole current in emitter

Page 4: Spring 2007EE130 Lecture 26, Slide 1 Lecture #26 OUTLINE Modern BJT Structures –Poly-Si emitter –Heterojunction bipolar transistor (HBT) Charge control

EE130 Lecture 26, Slide 4Spring 2007

Emitter Gummel Number w/ Poly-Si Emitter

pEEi

EEi

E

EW

Ei

i

polyE

EEEi

EEi

E

EW

Ei

iE

SWn

WNndx

D

N

n

n

WDWn

WNnxd

D

N

n

nG

E

E

)(

)(

)(

)(

2

2

0 2

2

,2

2

0 2

2

For a uniformly doped emitter,

pE

E

iE

iEE SD

W

n

nNG

12

2

1/2

kTqV

E

iB

EBeG

AqnI

where Sp DEpoly/WEpoly is the surface recombination velocity

Page 5: Spring 2007EE130 Lecture 26, Slide 1 Lecture #26 OUTLINE Modern BJT Structures –Poly-Si emitter –Heterojunction bipolar transistor (HBT) Charge control

EE130 Lecture 26, Slide 5Spring 2007

Emitter Band Gap Narrowing

BiE

EiBdc

Nn

Nn2

2

To achieve large dc, NE is typically very large, so that band gap narrowing (Lecture 8, Slide 5) is significant.

/)( /2 kTEEvc

kTEvciE

GEGGE eNNeNNn

/22 kTEiiE

GEenn EGE is negligible for NE < 1E18/cm3

N = 1018 cm-3: EG = 35 meV

N = 1019 cm-3: EG = 75 meV

Page 6: Spring 2007EE130 Lecture 26, Slide 1 Lecture #26 OUTLINE Modern BJT Structures –Poly-Si emitter –Heterojunction bipolar transistor (HBT) Charge control

EE130 Lecture 26, Slide 6Spring 2007

Narrow Band Gap (SiGe) Base

BiE

EiBdc

Nn

Nn2

2

To improve dc, we can increase niB by using a base material (Si1-xGex) that has a smaller band gap

• for x = 0.2, EGB is 0.1eV

Note that this allows a large dc to be achieved with large NB (even >NE), which is advantageous for

• reducing base resistance• increasing Early voltage (VA)

Page 7: Spring 2007EE130 Lecture 26, Slide 1 Lecture #26 OUTLINE Modern BJT Structures –Poly-Si emitter –Heterojunction bipolar transistor (HBT) Charge control

EE130 Lecture 26, Slide 7Spring 2007

If DB = 3DE , WE = 3WB , NB = 1018 cm-3, and niB2 = ni

2, find dc for

(a) NE = 1019 cm-3, (b) NE = 1020 cm-3, and (c) NE = 1019 cm-3 and a Si1-xGex base with EgB = 60 meV

(a) At NE = 1019 cm-3, EgE 35 meV

(b) At NE = 1020cm-3, EgE meV:

(c)

226/352/22 8.3 imeVmeV

ikTE

iiE nenenn gE

6.238.310

109

218

219

2

2

i

i

iEB

iE

BE

EBdc n

n

nN

nN

WD

WD

226/16022 470 imeVmeV

iiE nenn

226/602/22 10 imeVmeV

ikTE

iiB nenenn gB 236F

EXAMPLE: Emitter Band Gap Narrowing

9.147010

109

218

220

2

2

i

i

iEB

iE

BE

EBdc n

n

nN

nN

WD

WD

Page 8: Spring 2007EE130 Lecture 26, Slide 1 Lecture #26 OUTLINE Modern BJT Structures –Poly-Si emitter –Heterojunction bipolar transistor (HBT) Charge control

EE130 Lecture 26, Slide 8Spring 2007

Charge Control Model

B

BB

B Qi

dt

dQ

Wx

BB tptxp 1),0(),(

W

BBB

tpqAWdxtxpqAQ

0 2

),0(),(

A PNP BJT biased in the forward-active mode has excessminority-carrier charge QB stored in the quasi-neutral base:

In steady state,B

BB

B Qi

dt

dQ

0

Page 9: Spring 2007EE130 Lecture 26, Slide 1 Lecture #26 OUTLINE Modern BJT Structures –Poly-Si emitter –Heterojunction bipolar transistor (HBT) Charge control

EE130 Lecture 26, Slide 9Spring 2007

2

),0( tpqAWQ B

B

Bt D

W

2

2

• time required for minority carriers to diffuse across the base • sets the switching speed limit of the transistor

Base Transit Time, t

t

BBBC

BB

Wx

BBC

Q

W

QDi

W

tpqAD

x

txpqADi

2

2

),0(),(

Page 10: Spring 2007EE130 Lecture 26, Slide 1 Lecture #26 OUTLINE Modern BJT Structures –Poly-Si emitter –Heterojunction bipolar transistor (HBT) Charge control

EE130 Lecture 26, Slide 10Spring 2007

Relationship between B and t

tdcB

t

BC

Qi

B

BB

Qi

• The time required for one minority carrier to recombine in the base is much longer than the time it takes for a minority carrier to cross the quasi-neutral base region.

Page 11: Spring 2007EE130 Lecture 26, Slide 1 Lecture #26 OUTLINE Modern BJT Structures –Poly-Si emitter –Heterojunction bipolar transistor (HBT) Charge control

EE130 Lecture 26, Slide 11Spring 2007

The base transit time can be reduced by building into the base an electric field that aids the flow of minority carriers.

• Fixed EgB , NB decreases from emitter end to collector end.

• Fixed NB , EgB decreases from emitter end to collector end.-E B C

-E B C

Ec

dx

dE

qC1E

Ec

Ev

Ev

Ef

Ef

Drift Transistor: Built-in Base Field

Page 12: Spring 2007EE130 Lecture 26, Slide 1 Lecture #26 OUTLINE Modern BJT Structures –Poly-Si emitter –Heterojunction bipolar transistor (HBT) Charge control

EE130 Lecture 26, Slide 12Spring 2007

EXAMPLE: Drift Transistor

• Given an npn BJT with W=0.1m and NB=1017cm-3 (n=800cm2/Vs), find t and estimate the base electric field required to reduce t

cmkVssVcm

cmW

tW

driftv

W

tn

n

/6102/800

10122

5

ps

sVcmV

cm

D

W

Bt 2

/800026.02

10

2 2

252