30
NATIONM ADVISORY COMMI’rrEE FORAERONAUTICS TECHNICAL NOTE2037 RESIST~CE OFSIXCASTHIGH-TE~EWT~ ALLOYS TO CRAC~G CAUSEDBY THEWL SHOCK By M. J. Whit_, R. W. Hall,andC. Yaker LewisFlightPropulsionLaboratory Clevehd, Ohio ,*...,-

NATIONMADVISORYCOMMI’rrEE FORAERONAUTICS/67531/metadc55359/m... · frm 7@ to duringroc4n-1600°F temperature (f%-lb) S! ((ln~.) “tensiletest N o 700E lmoo3’ w+ s-816 ‘%.owlo+

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • NATIONMADVISORYCOMMI’rrEEFORAERONAUTICS

    TECHNICALNOTE2037

    RESIST~CE OFSIXCASTHIGH-TE~EWT~ ALLOYS

    TO CRAC~G CAUSEDBY THEWL SHOCK

    By M.J.Whit_, R. W. Hall,andC. Yaker

    LewisFlightPropulsionLaboratoryClevehd, Ohio

    ,*...,-

  • TECHLIBRARYKAFB,NM ___

    .

    *

    Illlllllllllllluullflll‘-nn~s~b~”“.+-=NATIONALADVISORYCOl!MITTE4FORAERONAU’rLw-- .-

    T!3CHNICALNOTE2037

    RESE3TANCEOFSJXCASTHIGH—~ ALLOYS

    TOORACKINGCAUSEDBYTHXRMALSHOOK

    ByM.J.Whilman,R.W.Hall,andC.Yaker

    ImMARY

    Aninvestigationwaaundertakentoresistanceofsixcasthigh-temperature

    determinealloysto

    therelativecrackingcaused

    bythermalshook.Thethermal-shockemal.uatfonunitutilizdacontrolledwaterquenchofthesymmetricaledgeofa uniformlyheated,modifiedwedge-shapedspecimen.Thespecimenswereheatedata uniformtemperatureof1750°F for1hourandwaterquenchedat45°F. Thiscyclewasrepeateduntilthermal-shockfailmeoccurred, Theorderofdecreasingresistancetothermal-shockcrackingofthealloyswasS-816,S-590,Vitallium,422-19,X-40,andStellite6.

    Theheating-and-quenchingcycleproducedelongationofthequenchededge.Measurementsofthesedeformationsweremadeduringthecyclictests.Thetotalelongationofthequenchededgeatfailurewasfoundtoincreasewiththeresistanceofthematerialtothermalshock.b thisinvestIgation,materialshavingshLLarthermalproperties,suchescoefficientoflineerexpeasion,con-ductivity,andspecificheat,wereshowntohavewidelydifferingresistsncestothermalshock.Metallurgicalexaminationofthealloystructureandstudyofthenatureofcrackpropagationyieldednocorrelationbetweenstructuralcharact~isticsandresistancetocrackingcausedbythermalshock.

    Ananalysisofthemannerinwhichthethermal-~hockcrackformedandprogressedintothespecimenandanexaminationofavailabledataonthenotchimpactstrengthofcasthigh-temperatureallogsindicatedthattheremightbea relationbetweennotchimpactstrengthti resistancetocrackingcausedbythermalshock.

    .

    .

  • NACATN2037

    INTRODUCTION

    .

    TheoperatingconditionsofaircraftgasturbipessubJectcertaincomponentstolargeandsuddentemperaturegradients,whichresultinthermalstressesthatare,insomecases,eithera primeorcontributingcauseofcomponentfailure.Foremmple,ges-turbinebladesaresubjectedtothermalstresseswhentheengineissts&ted,accelerated,decelerated,orstopped.Rapidcoolingoftheturbine-bladeedgesduringdecelerationandstoppingcausescontractionofthesethinsections.Thiscontractionisresistedbytheadjacenthottermetalandasa resultthecooleredgesaresub~ectedtosuddentensilestresses.Rapidheatingproducescom-pressivestressesinthesameareaO.

    ObservationsmedeattheNACAMwislaboratoryindicatethatcertaingas-turbinecomponentsfallintensionasa resultofthermalstressesorfail~tercrackshavebeencausedbythesestresses.Theseobservationsitiicatethatonecriterioninselectinga high-temperatureturbinematerialmaybe itsabilitytowithstandtensilestressesproduced.bysuddenlooalizedmolingfrom.anelevatedtemperature.

    Previouslaboratoryevaluationsofalloysforhigh-temperatureuseinjetengineshaveconsistedIndeterminingstress-rupture,creep,fat@ue,andcorrosion-resistantproperties.Thefewattemptsthathavebeenmadetoappraisethethermal-shookresist-anceofheat-resistantalloyshavegenerallybeenofa qualitativenature.Anexigencyexistsfora standardmeansofevaluatingthesusceptibilityofgss-turbinematerialstocrackingcausedbythermalshook.

    l?he@mary-”purposeoftheinvestigationreportedhereinwastoevaluatetherelativeresistanceofsixhigh-temperaturealloystothermal-shockcracking,whichhereinafteriscalledthermalcracking.

    Thethermal~operties,coefficientaPLLneararpanslon,themalconductivity,andspecificheat,havebeenameptedasfactorsrelemnttotheabtlityofmaterialstoresistthermalshock(references1 and2). Experimentalevaluationofthermal-shookresistanceshouldmakepossiblea comparisonoftherelativeimportanceofthermalandmechanicalpropertiesindetermlnhgthermal-cracklngresistanceofalloys.Impactstrengthaswellastensilepro~rtiesareconsiderdbecausethemannerinwhichthetemperaturegradientisinduoedresultsinratesofloadingcon-siderablygreaterthanthoseencounteredinnormaltensiletests. .

    .

  • NACATN2037 3.

    .

    Al

    Thesixeastalloysinvestigated,S-816,S-590,Vitallium,422-19,X-40,ad Stellite6,havebeenUS* orconsideredforuseingas-turbineandotherhigh-tmperatureapplications.Thealloyspecimenswereuniformlyheatdto1750°F andthenstressedbyproducinga thermalgradientwitha controlledwaterquenchat45°F.Bothspecimencrackinganddeformationprdzoedbythermalshockwereinvestigated.

    Metallurgicalexaminationsofthealloysbeforeandafterthermal-shockcyclingweremadetoiLeterminetheqannerofpropa-gationofthecracksanatheeffectoftheshockcycleonthestructureofthealloys.

    APPARATUSm PROCEDURE

    Resistancetothermalcrackingwasdeterminedforthefollow-ingcastalloys:s-816,s-590,VitKLIium,422-19,X-40s~Stellite6. Thecompositionsofthesealloys,= aete~inedfr~chemicalanalysisoftestspecimensthathadfailed,aregivenintable1. Allsmcimen8mea inthisinvestigationwerecsstatthislaboratory.Theshapeandtheahnensionsofthespecimens,selectedareshowninfigure1. Thisdesignwsachoseninordertoproviaea concentrateionofthermalstressesduringthecoolingor quenchingphaseofthecycle.Quenchingonlythdsmtricaledgeofthespecimenproducesa largetemperaturegradientbetweenthisedgeandtheunquenchedbaaeofthespeoimen.Thethermalstressesresultingfrcmthetemperaturegradientarelargestinthesmallcross-sectionalareaofthequenchesedge.Thisedgeisthereforemostlikelytocrack.A finiteedgewidthof1/32inohwasselectedinpreferencetoa knifeedgeprincipallytominimizetheeffectoxidationmightcontributetofailureoftheeilge.

    Thequenching~p~atus(ftg.2)wassoaesignedthatthenarrowedgeofthespecimenwasquenchedina streamofwater,theflowrateandtemperatureofwhichwerecontrollable.InordertominimizeLestconductionfromthespecimentotheholaer&uringquenching,thespecimenwassupportedinsuch amsnnerthatlinecontactwasestablishedbetweentheholaerandthetwocurvedsisesofthespectien(inset,fig.2). Verticaladjustmentofthespeci-menholaerwasPovidedbyfourmachinescrews,whichalsoservedasrigiasupportsfortheholaer.Misallnementofthespecimenwiththeholderwasnegligible.

  • 4 NACATN2037

    Theessentialfeaturesoftheflowsystemthroughwhichthequenchingwaterflowsareaisoshowninfigure2. Tapwaterentersatthebaseofthequenohingtank,passesthrougha coolingcoil,andentersthebaseofthequenchingtrough.A horizontalbd’fleabovethewaterinleteliminatesturbulenceandassuresa uniformoverflowofwateralongtheentirelengthofthetrough.ThequenchhgtroughIsequippedwithadrainateachend;thesedrain-ageltnesareclosedduringthe“quenchingoperation.

    Thefbwrateofthequenchingwateriscontrolledbyapressure-regulatingvalveplacedintheinletlineofthequenchingtank.Theflowrateismeasuredbyclosingthevalveinthequenohing-troughdrainandmeasuringtherateofflowofwaterfromthesamplingtube.Theflowrateselectedforthequenchwaathehighestatwhichthelevelofwaterabovetheedgeofthetroughwasuniform.Higherflowratesresultedinanunevenor bubblingflowofwaterfromthetrough.Thelevelofthespecimenholderwassoad~ustedthatthesymmetricaledgeofthespeoimenjustcontaotdthewater.

    Temperatureofthequenchingwaterwascontrolledbymaintain-inga constanttemperatureinthebathinwhichthecoolingcoilislocated.Thetemperatureofthebathwaaadjustdbyaddingsolldcarbondioxideasrequired.

    Thespecimens,placedinV-shapedgroovesnotohedina softrefractorybrickrestingontheheerthofthefurnace,wereheatedina smallwire-woundresistancefurnace.Specialtongs,whichgrippedonlythebaseedgesofthespecimen,wereusedtotransferthespecimensfromfurnaoe toquenchingtrough.

    Selectionofexperimentalconditionstobeusedinthethermal-shockcyoleswasbasedonconsiderationof’thefollowtngobjectives:

    1.Simulation,asnearlyas~sslble,ofconditionsthatmightbeencounteredinaircraft-enginecomponents

    2.Attainmentofcundltionssufficientlyseveretoinsurefailurewithina reasonabletimepericd

    3.Avoidanceofhighfurnaoetemperaturesinotiertopreventexcessiveoxidationandchangesinthemicrostructureofthealloys

    Onthebesisoftheseconsiderations,a furnacetemperatureof1750°Fwss chosenfortheheatingcycle.Temperaturesinthisrangemaybeencounteredforshortperiodsoftimeingas-turbine

    .

    .

  • NACATN2037 5

    bladesduringacceleration.Aninertatmspherewasnotusedinthefurnace,whiohfurtherstmulatedengineoperatingconditions.Intheproceduredeveloped,thespecimenwasheldata furnaoetemperatureof1750°1’for1hourtoinsuretemperatureequilibriumthroughoutthespectien.Attheendofthis perid, the sPec~~wassippedinthespeoialtongsandtransferredtothespeoimenholder.Thequenching-troughdrainvalvewasinunediatelyclosed.,causingthe.tier toriseovertheedgesofthetroughontothenarrowedgeofthespeoimen.Thetemperatureoftheq,uemhtigwaterwascontrolledat450+20F andtheflowrateat680+1Oc~biccenttietersperminute.

    Whenthespecimenwascool,ftvesremvedfra theholder,theoxidefilmwascarefullyremvedfromthensrrowedge,andthisedgewasmicroscopicallyexainedforcracks.Beoausecraokpropa-gationwasnotIdenticalforallthealloys,an=bitrarycriterionforfailurewasdefineaaspresenoeofanopeningthatextendedaorosstheenttrewidthofthequenchededge.InsomespecimenscraokeprogressedslowlyaorossthewidthoftheWge,whereasinothersoracksextendedaorosstheentirewidthassoonastheyoriginated.C@ing ofthespectmenswascontinuedafterfailure,asdefined,toinvestigate13efo-tionresultingfromthermalcycling.Thenumberofcompletecraokspresentaftereachquenchcyclewas observed.

    Inadditiontocausingcraoking,thermalstressescausedwarp-ingofthetestspecimens(fig.3). Inordertodeterminerelattveresistanceofthevariousalloystosuchdeformation,measurementsofthedistortionweremadeaftereverytwoshockcycles.Dis-tortionwasdeterminedbymeasuringtheheightofthese~ntformedbythebaseofthespeoimenandthelineconnectingitsendpoints. SuchmeasurementsweremadeonanopticalcomparatortoanaOCtWaOy of 0.0001Inch.Percentageelongationwascalculatedfromthemeasureddeformationatthetimethefirstcanpletecrackappeared.

    E thermaldtifusivityofalloysis to beoalculatecl,the ‘ ,specificheatmustbeknown.Becausespecific-heatvalues forthealloysinvestigatedwereunavailable,cliffusivityvaltzesat3000FwereexperimentallydeterminedusingthemethodofForbes(refer-ence3). Validityofthemethoiwascheckedusingoxygen-freehi~-conauctivity copper,WE 1020steel,and347stainlesssteel.Valuesofcliffustvitycamputedfrqnthemsnufaoturers’datafcmthesematerialswerehigherthantheex~rimentallydete?mindvaluesby8.0’percentforthecopper,9.4percentforthe1020steel,and6.5percentforthe347stainlesssteel.Theerrorin

  • 6 NACATN2037-

    experimentallydeterminedcliffusivityvaluesisnotonlyconsistentbutlessthanthepercentagevariationinreportedvalues fen?coefficientoflinesrexpension.InasmuchasthevaluesofbothdiffusivityandcoefficientoflinesrexpansionareusedInoneequation,whtchrelatesphysicalpropertiestoresistancetothezmalcracking,theaccuracyoftheresultsobtainedfromtheequationwillnotbe impairedbqcauseoftheerrorsindlffusivtty.

    Uponcompletionofthethemal-crackingexperiments,ametal-lurgicalamminatlonofthefailedspeck.-wasmade.Thespeci-mensweresectionedandexaminedusingstandardmetallographicprocedures.In@icular, studiesweremadeofgrainsize,locationofcrackswithrespecttograinboundaries,andchangesinmicrostructureresultingfromrepeatedheatingaticooling.

    KESULTS

    A tabulationofcyclestofailureforallthespecimensobservedispresentedintable11inorderofdecreasingresist-anceofthealloystothermalcracking.Figure4 presentsthedeformationsofthevariousmaterialsthroughsuccessivecyclesandfigure5 ~esentsa comparisonofthethermal-shockdefor-mationcharacteristicsofthesixalloys.Thedeformationpercyclewasfoundtodecreasewithsuccessiveshock.cyclesandtovaryconsiderablyamongthealloys.

    Thecraoksformastheresultoftensilestressesappliedata veryhighrateofloadingduringthequenchportionofthecycle.Thecracksoriginateatanedgeofthequenchedsurfaceandpro-@essacrossthesurfacewtthrepeatedcycling.ThenumberofoyclesbeforecrackingstartsIsgreaterendtherateofcrackprogressionissmallerforthematerialshavingsuperiorresistancetothermalcracking.

    Metallographicexaminationaftercyclingrevealedthatthespecimensallhadapproximatelythesamegrainsize- vaqyingfroma coarsesizeM 100~r squareinchatthecenterofthespecimento1600persquareinchatthequenchededge.Althoughsomeevidencewasfoundindicatingthatincertaininstancesacraokinitiatedata grainboundary,thecrackswerepredominantlytranscrystallineintheirpropagation(fig.6). U general,thestructuresofthevariousmaterialsweres~lar, consistingofcamplexcarbidesina solid-solutionmatrixwithvaryingemountsof agingprecipitate.

    .

  • NACATN2037

    DISCtESIOl!?OFRESULTS

    Withtheapparatusandtheevaluationproceduredevelopedduringthisinvestigation,theresistancetothermalcrackingofheat-resistantalloysmaybedetermined.The~rocedurefacilitatesobtainingthefollowing:

    1.GoodreproducibilityofdataresultingfromeasilycontrolledConditions

    2.A largevariationincyclestofailureforclifferentalloyspermittingreadydeterminationofrelativeresistancetothermalcracking

    3.Deformationdatathatcanbeusedforccmrelationwiththermalandphysicalproperties

    Thecompositecurvesofdeformation(fig.5)gf~eanindi-cationoftherelativeresistanceofthealloystodistortioncausedbythermalstresses.Thebehaviorofthematerialsisconsiderablydifferent:S-590endS-616showthemostdeformationpershockcycle,Vitallimand422-19anintermediateamount,andX-40andStellite6 theleast.Althoughalloy422-19hasa deformationmagnittiesWlar tothatofVitallium,theaverage numbera?cyclestofailurefor422-19isaboutthesameasforX-40.Thecurvesarenonlinesrforallthematerialsandttiicatethatinitialshockcyclescausemoredeformationthanensuingshockcycles.A possibleexplanationoftheconcavityofthecurvesisthattheyield@ntofa metalisraistibythestrainhardeningthatresultsfromayplhdthermalstress.U@n repetitionofthesme thermalstress,lessplastfcflowwouldbeexpectedinthemetalbecauseitthenhesa higheryieldpoint.Thel-hourheattngperi~at1750°Fdurtngeachshockcyclemay,however,annealanappreciableportionofthestrainhardening.At%era fewcycles,X-40andStellite6suddenlyfailedanddidnotappreciablydeformwhensubjectedtoadditionalcycles,~obab~ indicatingthatfurtherapplicationofthethermalstressesresultedh extensionofthefracturewithoutfurtherplasticdeformation.

    Actualelongation of thenarrowedgeattimeoffailurewascalculatedfromthedeformationmeasurements.Incalculatingtheelongation,thespecimenwsaassumedtobewarpedasanwc ofacircle.Thisassumption=justifiedbycampsrisonsofthecurva-tureoftiespecimensonanopticalcomparatoragainsta circleofsuitableradius.Calculationsoftotalelongationattheswface

  • 8

    ofthenarrowedgeatcaseslessthanwould

    NACATN2037

    failureshowedthattheelongationwasinallhavebeenexpectedina room-temperature

    tensiletest.Thisapparentloweringofductilitymayresultfromthehigherrateofloadingofthethermal-shockcycles.

    l’romanexaminationoffigure7,thematerialsthatshowthegreatestelongationatfailurealsoresistthegreatestnumberofcyclesbeforefailure,indicatingthata relationexistsbetweenshockductility(theabilitytodeformundersuddenloads)endresistancetothermalcracking.

    Thefactorsthatmaycontributetothethemal-crackingresistanceofamaterialmaybeamad intotwoclasses:thermalandmechanicalyoperties.ha previousinvestigation(referenoe1)oftheeffeotsofa temperaturegradtentresultingfromthesuddencoolingofa uniformlyheat~body,theequation

    (1)

    wasdevelopedfromtheassumptionthat flt/dx03lfi andfromtheequation E = stress/strain.

    ThesymbolsusedInequation(1)and.thesubsequentdiscussionaredefinedasfollows:

    c heatcapaoity,(Btu/(lb)(%’))

    dtjdx thermalgradient

    E YOUng’S-UhlS, (lb/sqh.)

    Ed ductilitymodulus,(lb/sqin.)

    ~2 diffusivity,~, (sgftk)

    K constant

    k thermalconductivity,(Btu/(hr)(sqft)(%/ft))

    n numberofcyclestofailure

    r’ coefficientofdetermination

    ‘t tendencytobresk

    .

    .

  • 9NACATN2037

    t temperature,(%’)

    x distancefromsurface,(in.)

    a coefficientoflinearexpansion,((in./in.)/%)

    P density,(lb/cuft)

    % elongationattimeoffailure(breakingstrain),(in./in.)

    .

    .

    a stress,(lb/sqin.)

    ‘b breakingstress,(lb/sqin.)

    Fornotiuctilematerialsthatbreakwithoutplasticdeformation,theequation~ = E% wasequation(l)inthefollowingmanner:

    appreciablecombinedwith

    (2)

    Intheinvestigate.onreportedinreference1,a correlationwasfoundtoexistbetweenSt and a/liZbfora numberofceramicbcdies.Thesameequationt?anbeconsideredtoapplyto~ter~alsthatshowsomeplaaticductllttybeforefaihrefromthermalshookiftheconventionof“ductilitymcdulus”(reference4)isused.Thisconventionstatesthattheductilitymodulus~ isequaltoultimatestressdividedbybreakingstrain.Theparametera/hZbeonsistsofa thermal~opertyfaotora/h anda mechanicalfactorl/~. Figure7 isa plotonlog-logcoordinatesof 1Aagainstcyclestofatlureforthesixmat alloysandfigure8 L$a s~1~ plotOf O@b 8$ain8tGycl@tof~l~e. Fromthesetwoftgures,usingstandardstatisticalmethods(reference5),theliqesofregressionwerecomputed~ pldted,andthecoefficientsofdeterminationwerecalmlated.Thecoefficientofdeterminationr2 isameasurecfthevarianceinoneoftwovariablesthatisassociatedwiththerelationbetweenthetwovariables.A valueofr2 of1.00indicatesperfectsasociationofonevariblewithanother.Itwasfoundthatfor n aeinst l~b#

    !!r . 0.953dfor n againsta%, r2= 0.963.Thisapproachtounityinvaluesof # indicatesthatinbothcasesa straight-lineplotona log-logscale& n against either1/Zb or a/hZb ti

  • 10

    justifiable.Theagreementalsoincorrelationbetweenn and

    NACATN2037

    indicatesverylittleimprovementl~b withtheintroductionofthe

    thermalfactoru/h totheindependentvariable.

    Itmaythereforebeconcludedthatknowledgeofthethermalproperties,coefficientofltnearexpansion,thermaloonductivlty,endspecificheatisunnecessaryindeterminingtherelativethermal-crackingresistanceofthealloys.A plotOf l/~bagainstn (fig.7)defineswitha highdegreeofaccuracythereeistancetothermalcracking.Thevaluesof h end a usedandthesourceofthe a valuesexelistedintableIII..F’orqualita-tivecomparism,equtio~weredevelopedfromthedataintables11andXIIforcyclestofailureasa functionofthereciprocaloftheelongationatfailured ofthethermalconstanta/h ttiesthereciprocalofelongationatfailure.Theequations,X deter-minedbythemethdofleastsquares~are

    -1.318n=

    (~)4L98 1

    and.

    -1.370n=

    (%)0.002&

    h

    Althoughthemagnitudeofthestressescausingfailureofthesespecimensisunlmown,a qualitativeexplanationofcrackformationendprogressionmEVbepostulated.WhentheedgeIssuddenlyquenched,ittendstoc~tractrapids.~is ContritionisrestrainedbythethickerportionofthesPcimen,whichisstillatanelevatedtemperature.Thestressessetupbytheseopposingforcesexceedtheyieldpointofthematerialandplasticflowofthenarrowedgeresults.Althoughthehottermetalunderlyingthenarrowedgehasa loweryieldpoint,thestressesarenot so con-centratedinthisregionbecauseofthelargercross-sectionalarea.Plasticflowofthenarrowedgetendstorelievethestressesinthis~ge butleavesitelongated.Astherestofthespecimencools,itcontractsinenattempttoattainitsoriginalsize,butthiscontractionisrestrainedbytheelongatednarrowedgeandthespecimentheultimatewillresult.

    warps.E’thestressesinthestrengthatthetemperatureofInmostcases,cracksstarted

    quenchededgeexceedtheedge,crackingattheintersections

    .

    .

  • NACATN2037 11

    of’thequenchedsurfaceandthecurvedfacesofthespecimenandworkedgraduallyacrossthefaceoftheedgeduringsuccessivecycles.Veriousstagesofthisprocessareappsrentinfigure9.

    The@eatestrateofcoolingandthereforethemostdrasticshockconditionserefowi alongtheintersectionsofthequenchedsurfaceandthecurvedfacesofthespecimen.Thisfactorcom-binedwiththepresenceofverysmallroughspots,nicks,andotherflawsthatcemactesstressraisersresultsintheformatimofsmallcracksatthesecorners.Withrepeatedcycling,thesecracksbecomelargeruntiltheyprogresscompletelyacrossthequenchededge(fig.9).

    Whenthe relation betweenthe thermal-crackingresistanceandthemechanicalpropertiesofa materialisconsidered,itisneces-saryfirsttoanalyzethenatureofthestresseffectsproducedinthethermalshook.Thesuddenproductionofa temperaturegradientina materialrapidlyproduceshighstresses.Therateatwhichthesestressesareproducedismuchhigherthanthoseencounteredinnormaltensile-testingprocedures.Thethermalstressesso~o-ducedcauserapiddeformationandfinalfailurebycracking.Thenatureofthecrackpropagationinthisinstigationwassuchthatsfterthecracksbegan,thestressededgeofthematerialcanbeconsiderednotched.Thethermal-shockevaluationthereforecon-sistsofrepeatedrapidapplicationsofload,whichproducestressesthatareincreasedbya notcheffectasthespecimensapproachfailure.

    Becausethenatureofthethermal-shockcycleissuchthattheedgeisnearbathtemperaturewhiletheheavyPrtionofthespeci-menisnearfurnace temperature,itmaybepostulatedthatthefailureoftheedgeoccursatapproxhnatelyroomtemperature.Ifthisassumptioniscorrect,itwouldbeexpectedthata room-temperaturetestthhtapproxinwtesthestressccmditionsinthermalshockcouldbecorrelatedwiththethermal-crackingresist-anceofamaterial.Ofalltheroom-temperaturetests,theimpacttestmostnearlyresemblesthethermal-shocktestbecauseofthehi@ rateofloadingandpresenceofthenotcheffect.Theimpacttestshouldthereforeyielddatathatcanberelatedtothermal-crackingresistance.TablesIIand111indicatethat,ingeneral,thealloyswiththehighestimpactstrengtharethosethathavethegreatestthermal-crackingresistance.Theimpactstrengthofanalloymaythereforebesomeindicationofitsthermal-crackingresistance.

  • 12 NACATN2037

    Theresultsofthemetallurgicalexamination-icatedthatthealloysweresimihzringrainsize.Allthealloysagedduringheating,theamountofprecipitationincreasingwithincreasedtimeattemperature.ThecracksweregenerallytrenscrystallineinpropagationandIttherefcmeappearsthatgrainsizeisanunimportantfactorindeterminingtie’kmal-crackingresistemce.Perhapsthemostprobablereasonforthedlfferencesamongsamplesofeachalloyistheranlcanorientationthatispresentincastcoexse-grdnedalloysofthistype.Becauseallthealloysaresimllarintheirstructuralbehavior,theorderofmeritobtainedinthisinvestigationtightapplyatlowerevaluationtemperatures,thatis,onlythemagnitude(number& cyclestofailure)ofthethermal-crackingresistanceofeaohalloywouldchangewithtem-perature.

    SUMMARYOFRESULTS

    h investigationwasconductedtodeterminetherelativeresistanceofsixcastheat-resistingalloystothermalcrackingcausedbyrepeatedthermalstresses.

    TheorderofdecreasingresistancetothermalcrackingofspeoiallydesignedalloyspectienswasS-816,S-590,Vltallium,422-19,X-40,andStellite6. Thematerialswiththegreatershockductility(theabilitytodeformundersuddenloads)survtvdthegreatermmberofshookcycles.Toofewdata,huwever,wereavail-ableforaccuratequantitativestatmentoftherelation.

    Materialehavingsimilarthermalproperties(coefficientofllnearexpansion,thezmalconductivity,andspecifioheat)wereshowntohavewidelydifferentresistancestothermalshock.

    Metallurgicalexaminationc&thealloystructuresanda studyofthenatureoforaokpropagationledtotheconchsionthatstructuralcharaoteristlosofthealloyswereinsignificantIndefiningresistancetothemalcraoking.

    TheUmltedavailabledataonnotchimpactstrengthofcasthigh-temperaturealloystndioateda possiblerelationbetweennotchimpactstrengthad resistancetothermalcracking.

    LewisFlightPropulsion Laboratory,NatfonalAdvisoryCommitteeforAeronautics, .

    Cleveland,Ohio,July22,1949.

    .-

    .

    .

  • NACATN2037

    1.Norton,F.H.: Refractories.McGraw-HillBookCo.,Ihc.,2dcd.,1942,p.470.

    2.Avery,HowardS.,adl?illcs,CharlesR.: CastHeatResistatAlloysofthe26~lChromim-20%NickelTyw-p~t 1. ~~.A.S.M.,vol.4021948,pp.529-577;discussion,pp.577-584.

    3.Cork~JamesM.: Heat.JohnWiley& Sons,Inc.,2dcd.,1942,p.121.

    4.LidmanJW.G.~andBobrows@~A.R.: CorrelationofthePhysicalPropertiesofCeramicMaterialswithResistancetoI&acturebyThermalShock.NACATN1918,1949.

    5.Heel,PaulG.:IntroductiontohtathematicalStatistics.JohnWiley&Sons,Inc.,1947,pp.78-89.

    6.Kittel,J.Howard:ComparisonofCrystalStructuresd 10 .WroughtHeat-ResistingAlloysatElevated.TemperatureswithTheirCrystalStructuresatRoomTemperatures.NACATN1488,1947.

    7.Anon.:MetalsHa@book,1948~itioa.Am.Sot.Metals(Cleveland,0.),1948,P.579.

    8.Grant,NicholasJ.,Fredrickson,A.F.,andTa@or,M.E.:[email protected],vol.161,no.12,March18,1948,pp.73-78.

    9.Anon.: SymposiumonMaterialsforGasTurbines.Am.Sot.TestingMaterials(Philadelphia),1946.

  • NACATN2037

    TA6LIEI - COMPOSITIOIVOFAZLOYSEECIMENSASDENRWNED

    BYOmMIcmlAlfALYsEs

    AlloyS-816S-SWVitallium422-19X-40Stellite6

    CICr

    L003018.06.3119.17.3 2’?.0.4 25.4.5 25.1.9328.6rJi co Mo w m Fe Si20.8043.804.073.743.51 2.72---20.3219.654.273.823.8025.39---2.7 61.1 5.8 --------1.5 ---15.649.1 6.3 --------1.3 ---11.254.2 ----7.6 ---- .6 0.3.5 62.2 ----5.4 ---- .7 .3

    AlloyS-81.6

    S-SW

    vltdmlnl

    422-19

    f

    PX-40Stellite6

    3pedlnenCyclestofailureA 86.B 104H 105A 34D 34E 36D 24w 30VI 6v~ 6v 8

    A 7B 6D 7H 7B 2D uE 4G 2Q 2u 2

    .

    *

    !!

    .

  • b .

    TABLEIII - HH’81CALEROPERTXB W AIWYS INVISTIGA!I!Q

    Alloy Cmrfl.ofent!mf’fUaivity ‘lkmsi.lestrength Percente43e(alarpyV-no’tohd llllear(SQft/br) (1./sllin.) elongation ilnpaot g~ion in2inohes

    :~y,*

    frm 7@ to duringroc4n-1600°F temperature (f%-lb) S!

    ((ln~.) “tensiletestNo

    700E lmoo 3’ w+

    s-816 ‘%.owlo+ bO.16 ‘loo.Oxloa ‘5 b~e4.7fe.53 %12 .0 ‘6.0%.6’0d9.4

    s-590 8g.2ox@ bo.16 b~e3.2a9.22‘9.20

    Vitallillm ‘8.72x10-6 bo.22 CIO1.3XI.03 a71.o~$ dlo e.9%01.3 f86.2 08.2allo,Q f8.2

    422-19 ‘8.54x10-6 bo.20 ’98.M03 d58.3xlo3 a5.o %.5fe,~ 098.1 C59.9 05.0

    f~o~ f5.o

    X-40 ‘%l.78XLo-6 bo.19 clol.oxu$ ’76.8X.$ % *.368.86 ‘101.O ‘80.1 %.o

    Stielllte6 [email protected] ~o.19 f&05.4xlo3 :;~;.mlos ::? @2.4) 03.4 , ●

    %fWenoe 6./

    %?qerlreentallyd.etenninadat IMCA MS laboratory.‘Ref’erenoe7.dReferenoe8.‘Ihg&s held 21 hr at 172@ F ed alr-oml.ed.‘Mm@kdmrer !sdata.~Reference9.‘Data reportd for alloy61.

  • 16 NACATN 2037

    ~Quenched edge

    ~“’radiusFigure1.- Specimenfordetermining

    to thermalcracking.swcimen—~

    resistance

    ~ Speoi.men

    ed

    3 verticaldJustment\ 1“4”””-’”’‘TCon’wolled-P&Cooling-waterOVerflou~coolm? coils—

    ‘JLConslmnt-pre8surewater-supplyInlet

    .. ..

    Figure2.-Appwatueforquenchingthermal+hookspecimens.

  • NACATtd 2037 17

    t =s=I C-2467611-18.49Figure3.-Specimenafterrepeatdthermal+hookqwlea.170teourmture~umd by

    thermalstreee.

  • .

  • .

    .06-

    .040

    .02@@

    0-

    I (a)S-816.

    1. .

    00 ;ao ~ IJO Jou

    \.

    \ { F:.rst (maok

    S-816spOcimen

    A;BOH

    ●06

    .0+ — — — — — )_ _ _ _ _ _ _ _

    ) S-590.02 LFir ,gtorack

    specimenOACID.o~

    =%=

    ‘o 20 40 60 m 100 120 140 160.

    Thermal-shock cycle

    (b) S-590.

    Figure 4. - Deformation produced in speoimens by thermal ,yhock.

  • .

    Thermal-shock cycle

    (c) Vitallium. (d) 422-19.

    F@ure 4. - Centimed. %formation “~oduced in apecimena by thermal “shock.

    . t v ,

  • ,

    NACATN 2037 21

    .

    1 I

    .

    ●012

    .008 1

    X-40

    “004‘g:—

    u

    n

    I (e) X-40. I.012-

    ~n Clu J

    ❑❑n!] 00 0

    .008- A Av w A\ o/30 o 0 00 QAA 4A A

    A .A ~ts AK

    9 Stelllte6specimen

    o 6Bo 6D,0 m

    Firstcrac”fA 6GA 6Q

    , I I Ao 10 20 30 40 50

    Thermal-shockcycle

    (f)StelUte6.

    Figure4.- Concluded.DeformationproducedInppecimensby thermalghock.

  • .- .

    .036 0.039 nt.,. 96.33

    .“

    .052,

    .-/ ‘

    . /.

    .-/ / ‘

    /.

    .OBB/ ‘

    .’.-=

    .~ / ‘

    /“

    .024 / ‘/

    //

    .-/

    / /.-

    5 .m. /

    ~ /z

    E/

    .016/

    :/ / - --- —

    /

    a/

    / “/ -

    . --/

    / -

    e - --- -

    / / / “ . --/

    .ma/

    / //

    6’ -. Alloy

    /

    / -#-.— S-816

    Ckn3/

    ---- S-593/ 4 — - Vltnllltlm

    / / . .- -— =--: y4;lQ/ b’ / / “ ! !

    / ——- Stellite.9

    {/ “ 0

    Araqe sy.lesto rdhm

    W4 / 1. ; :: I

    jI 1

    I: P:, ,:

    - “ -=iii#;

  • NACATN 2037 23

    .

    d

    (a) S-616. Alloy matrix coateddag (b)S-560. Auoy maiwhContalldngpri-maryosxbidesin~lttlc-t~ disper-eiczlandfinepreoipltate. X150.

    (0)‘ritalllura.Geneml.cexbidepre-dpltaticm end pferenthl. po@i-tation along(sryeitsxkgraphiuplenea.Xso.

    (d)422-19.Primarycarbideewithheavyagglomeratedprecipitate.X250.

    C-2483212-6-49

    Figure6.-Mcrostruotlly2q0?alloysinvicinityofCraolm. (vE&ylngmagawfoationeusedtorevealnatureofaaok propagation.) Eleotrolytloallyetchedin10-peroentI@roahbrioaoidinetil@aloohol.

  • .

  • :mld

    NACATN 2037

    (e)X-43. ~ carbidesuithheaw aggkmeratetlprec-ipitate.xlml .

    vC.2483312-6-49

    F@z’e6.-Conclwid. Microaticturescf811OYSinvi~inityofcraolm.(Vexylngmaglll-ficatlonawed torevealnatureC&crawpro~etfon.) ElectroQtLcallyetchedin10-percenthydrochloricadd inethrlalcohol.

  • .

    r

    u.

  • moo900Boo700

    600

    500

    400

    m.

    W

    200

    10090so70

    60

    EO

    40

    30

    20

    10

    toow--l

    Cycles to f allure, nFigure 7. - Relation of reciprocalof elongationat failure to thermal-crackingresistance.

  • +$

    .

    .

    .

    .

    .

    .

    .

    .

    .

    Cycloa to failure,n .

    Figure S. . Relation of reciprocal of elongation and thermal properties to thermal-crackln&FeSiathnca.

    !s

    -1z

    gw4

  • 1224Pi

    Mow4

    t&