57
. } . . : f 1 4 i!!E- .r , NATIONAL ADVISORY COMMITTEE FORAERONAUTICS TECHNICALNOTE3936 EXPERIMENTAL INVESTIGATION OF TEMPE&4TURE FEEDBACK CONTROL SYSTEMS APPLICABLE TO TURBOJET-ENGINE CONTROL By C. E. Hart, L. M. Wenzel, and R. T. Craig Lewis Flight Propulsion Laboratory Cleveland, Ohio LIBRARY 00PY MAR191957 MN(REY AMOUAIJtiCAL LABORATORY UBRA.W,NAGA UWJGLEYrts. u. vIHUINIA Washington Marchi957 MYc

NATIONALADVISORYCOMMITTEE FORAERONAUTICS/67531/metadc56816/m2/1/high... · NACA’IN3936 * Thebiasvoltageof’therelaytriggeringcircuitwasadjustedso thattherelayclosedwhentheinputsignaltotheareaservomotorcontrol

Embed Size (px)

Citation preview

.

}

.

.

:f

1 4 i!!E-.r ,

NATIONALADVISORYCOMMITTEEFORAERONAUTICS

TECHNICALNOTE3936

EXPERIMENTAL INVESTIGATION OF TEMPE&4TURE FEEDBACK

CONTROL SYSTEMS APPLICABLE TO

TURBOJET-ENGINE CONTROL

By C. E. Hart, L. M. Wenzel, and R. T. Craig

Lewis Flight Propulsion LaboratoryCleveland, Ohio

LIBRARY00PYMAR191957

MN(REYAMOUAIJtiCALLABORATORYUBRA.W,NAGA

UWJGLEYrts. u. vIHUINIA

Washington

Marchi957MYc

IIlrlllll!llilllllll[lllllllllllll31176014340872—.

NATIONALADVISORYCOWTTEE FOR AERONAUTICS.

TECHNICALNOTE3936.. z

EXPERIMENTALINVESTIGATIONOF TEMPERATURE

.

FEEDBACKCONTROL

SYSTEMSAPPLICABLETO TURBOJT?I-ENGINECONTROL

By C. E. Hsrt,L. M. Wenzel,andR. T. Craig

SUMMARY

Twobasictemperate feedbackcontrolsystemswereinvestigatedasmeansof controllingtail.pipegastemperatureof a turbojetengineduringtransientoperationin thehigh-speedregion.

A proportional-plus-integralcontrolin a temperature- fuel-flowcontrolsystemprovidedsatisfactorytransientresponseto a desiredstepincreasein temperature.For a temperature- exhaust-nozzle-areacontrolsystem,itwasnecessaryto addnonlinearcomponentsto thebasic

q proportional-plus-integralcontrolto providesatisfactorytemperatureEl0. responseduringtransients.

Severalcriteriafor selectingcontrol-loopparametersforoptimumtransientresponsewereinvestigated.For thetemperature- fuel-flowcontrolsystem,minimizationof timeintegralsof eitherthe squareorabsolutevaluesof temperatureerrorseemedto be moreselectivethanothercriteriain determiningoptimumcontrol-loopparameters.For thetemperature-areacontrolsystem,none-ofthe criteriaprovedadequateinselectingoptimumloopgain,buttheydidindicatea choiceof controlintegraltimeconstant.

Enginedynamicsin thehigh-speedregionweredeterminedby synthe-sizingtransferfunctionsto matchexperimentalfrequency-responsedata.Overthe controloperatingregioninvestigated,enginetemperature- fuel-flowdynamicscouldbe satisfactorilyrepresentedbyanda deadtime. Similarly,enginetemperature-arearepresentedby”first-ordertermsanda deadtime.

INTRODUCTION

first-ordertermsdymmics couldbe

M&t controlsystemsforturbojetenginesarebasedon useof enginespeedas theprimarycontrolledvariable.Enginetemperatureshavebe-

. comeimportantmainlythroughuseas damage-preventionlimitsandin ac-celerationschedules.Emphasison speedcontrolis,inpsrt,dueto theeaseof measuringspeedandthereliabilityof speedmeasuringdevices.

2 NACATN 3936—.

In orderto providesatisfactorycontrolin thehigh-epeed.operatingregion,it hasusuallybeennecessaryto adda temperature-limitingdeviceto the speedcontrolsystemto prevent–damageto turbinecomponents.In-steadof usingtemperaturelimitingas an auxiliaryto a speedcontrolsystem,it is possibleto usetemperatureas theprimarycontrolledvar-iable. Thisreportis concernedwiththeexperimentalinvestigationoftwobasictemperaturefeedbackcontrolsystems,one–usingfuelflowtocontroltemperatureandtheotherusingexhaust-nozzleareato controltemperature.Althougha temperature-meacontrolwouldnotbe feasibleas theprimaryenginecontrolsystem,it wouldhaveapplicationas partof a two-loopsystemwhichincludesspeed- fuel-flowcontrol.

Theobjectof thisinvestigationwasto deterulinesomeof thechar-acteristicsandcapabilitiesof temperaturefeedbackcontrolsystemsforturbojetengines.The abilityof thecontrolsystemto controltempera-tureduringtransientoperationwas evaluatedby consideringtimeinte-gralsof functionsof temperatureerroras wellas gvershoot-ratiosand

responsetimes. —

APPARATUS

Engine -.

A turbojetenginewithan axial-flowcompressor,vaporizing-.type

r.

fuelinjectors,anda two-stageturbinewas ifistalledin a sea-levelstatictestfacilityforthisinvestigation.

FuelSystem

Theoriginalfuelsystemof theengine,withtheexceptionof theflowdividersandinjectors,was supplantedby a research-facilityfuelcontrolwhichwasdesignedforveryrapidfuel-flowchanges.Thiscontrol,describedin reference1, consistedof a reducing-typedifferential-pressureregulatorthatmaintaineda constantpressuredropacrossathrottlevalve. An electr~hydraulicservosystem;as usedto varythe””throttle-valvepositionlinearlywithinput–signal.Throttleareavariedlinearlywiththrottle-valvepositionand”thusfuelflowwasproportionalto inputsignal.

——.

Frequency-”responseof throttle-valvepositionto inputsignal,givenin reference1, showsthatthistypeof fuelcentralwouldnot contributesignificantdynamicsto thecontrol.systemwithinthefrequencyrangeinvestigated.

.

NACATN 3936 3

Vaxiable-AreaExhaust-NozzleSystem

Nt-lN

A sketchof thevariable-areaexhaust-nozzlesystemis shownin fig-ure1. It consistedof dualbutterflyvalvesmountedin thetailpipeabout9 feetdownstreamof theturbine.The shaftsof thetwovalveswereconnectedby a mechanicalcrossarm-typelinkage.Theuppershaftwasdrivenby thepowerstageof an electrohydraulicservosystem.Areavar-iationsfrom73 to 13.3percentof ratedareawereobtainablewiththissystem.Thisexhaust-nozzlesystemwas designedforfastresponsewith-outconsiderationof goodthrustcharacteristics.

+Figure2

positionto a10percentof

showsthefrequencyresponseof the lowerbutterfly-valvesinusoidalinputsignalfora totalareaexcursionof aboutratedsrea.

Instrumentalion

~ Enginespeed.- To measureenginespeed,a magneticpickupwas in-2 stalledin the compressorhousingoppositea rowof steelcompressorrotorl-l blades. Eachbladepassingthepickupproduceda voltagepulsewhichwasA fedto an electroniccircuitwhoseoutputwas a voltageproportionalto.0 thenumberof pulsesper unittime. Thisvoltageprovideda goodindica-

tionof instantaneousenginespeedduringtransients,sincethepickupandelectroniccircuithadno measurabledynamicsin thefrequencyrange.of interest.

For steady-statespeedmeasur~ent,thepulsesfromthemagneticpickupwerefedto a digitalcounterwhichdeterminedanddisplayedactu-al enginerpmwhenthepropertimeintervalwas selectedforthe countingcycle.

Tailpipetemperature.- Fouxrakes,eachconsistingof fourchromel-alumelthermocouples,wereusedto measuretailpipegastemperatureduringtransients.Adjacentthermocoupleson eachrskewereconnectedin seriesto formeightpafrs. Fromoneto eightpairswereparalleledto providethe inputsignalto thetemperaturepreamplifier.

As a compromisebetweenfastresponseanddurability,22-gaugewirewas usedforthesethermocouples.Withthissizewire,thetimeconstantof thethermocoupleswas approximately0.3secondin theregionof opera-tionselectedforthe controlstudy.

Thermocoupleson twoadditionalrakes,similarto the onesjustde-scribed,wereconnectedto a self-balancingpotentiometerfor steady-statetemperaturemeasurement.

4 .L - NACATN 3936.

Fuelflow.- T& positiono~the throttlevalvein thefuelcontrolwasmeasuredby meansof a linearvariabledifferentialtransformer.Theresultingpositionsignalwasthebestobtainabl%lndicationof fuelflowduringtransients.Actualfuelflowintotheengineis affectedby thedynamicsof thefuelmanifoldandflowdividersbetweenthefuelvalveandtheengine.

A rotameterwa~ usedforsteady-statefuel-flowmeasurement.

Exhaust-=nozzlearea.- A rotaryvariabledifferentialtransformerwas usedto measurethepositionof the lowerbutterflyvalve. The sig-nalobtainedwasusedas an indicationof exhaust-nozzleareaduringtransients,althoughactualareadidnotvaryexactlylinearlywithposi-tionof thebutterflyvalves.

i%PM

For steady-stateareameasurementthepositionof the lowerbutter-flyvalvewas indicatedby a precisiondirect-currentmeterwhichmeas-uredthevoltageon the armof a linesrwire-woundpotentiometercon-nectedto the lowershaft. Accwrate&ureadeterminationcouldbe madebyusingthemeterreadingandan areacalibrationcurve.

Recording’equipment.- Transientdatawererecordedon a direct-writingsix-channeloscillographrecorder.Therecorderpens,whenusedwithequalizinga~lifiers,hada frequencyresponseessentiallyflatto100cyclesper second.A recorderchsr%peed of 25 millimetersper sec-ondwas used.

For sinusoidaldataa galvanometriclight-beamoscillographrecorderwas used. Flatfrequencyresponsebeyond100cyclesper second,highsensitivities,andhighchartspeedswereobtainablewiththisequipment.

Analogcomputing-eqgi~ent.- CircuitsforcalculatingtimeIntegralsof thesquareandabsolutevalueof-temperatureeirorwerasetup usinglinearandnonlinearelementsof anelectronicanalogcomputer.These.circuitsareshownin figure3. A two-stageR-Cfilterwas usedto re-ducenoisein thetemperature-errorsignal.An electronicmultiplierper-formedthe squaringoperation.The integralvaluesobtainedwereusedinevaluatingtransientresponseof controlledtemperature,as willbe dis-cussedin the sectionControlledEngineData.

CONTROLSYSTEMS

A blockdiagramrepresentativeof thebasictemperaturefeedbackcon-trolsystemsusedforthisinvestigationis shownin figure4. In these .systemstheindicatedtemperaturesignalwas comparedwiththedesiredtemperaturereferencelevel,andthedifferenceor ~ror signalwas appliedto theinputof thecontrol.The controlmodifiedthe errorsignalac- *cordingto thecontroltransferfunction.Theresultingcontrolsignal

NACATN 3936 5

was appliedto the inputof thefuelor sreaservosystem,whichchangedfuelflowor areauntilthetemperature-errorsignalbecamezero. Pro-visionfor stepchangein temperaturereferencelevelwas includedfortransientoperation.

Temperature- Fuel-FlowControl

Thetemperaturesummingnetworkandcontrolcomponentsforthetemperature- fuel-flowcontrolsystemwereset--upon an electronicana-logcomputeras shownin the circuitdiagramof figure5(a). Controlgainandintegraltimeconstantcouldbe variedseparately.Alsoshownin figure5(a)is a rate–limitingcircuitthatwas insertedat pointBin the controlloopto limittherateof changeof fuelflow. The ef-fectsof slowerfuel-valveactionon control-loop-parameterselection ,willhe discussedin the section“Rate-limitedfuelcontrol.”

Temperature-AreaControl

FigureS(b)showsthe computercircuitdiagramof thetemperaturesummingnetworkandcontrolcomponentsusedforthetemperature-areacontrolsystem.The controlcircuitryforthissystemwasmorecom-plexthanthatof thetemperature- fuel-flowcontrolsystem.Becauseof resultsencounteredin a previousspeed-areacontrol-systemstudy(ref.2),it was foundnecesssrytoaddnonlinesrcomponentsto the con-trol. Thesecomponentswerea diodelimiteron the inputto the areaservocontrol,anda relayandrelaytriggeringcircuit.

Duringthepreviousspeed-areacontrol-systemstudy(ref.2),it wasfoundthat,whenthe areabutterflyvalvesopenedto a positioncorre-spondingto approximately113percentof ratedarea,furtherincreaseininputsignalto theareaservosystemdidnot increasearea. Thiswasdueto the limitationon maximumareaobtainablewiththebutterflyvalvesfullyopen. Thus,whenoperatingwitha closed-loopsystemandaproportional-plus-integralcontrol,thecontroloutputsignalat timeswouldexceedthe areaservo-systeminputlevelcorrespondingto the satu-rationlimit(113percentratedarea). Whenthishappened,an excessivechargewouldbuildup on the integralcomponentof the control,whichdelayedthe closingof theareavalvewhenthe errorsignaldecreased,.Thisproducedpoorcontrolperformance,thatis, largeovershoots.

Forthetemperature-areacontrol-systemstudy,thebiasvoltagesofthe limiterdiodeswereadjustedto limit---theinputsignalto the areaservosystemto valuescorrespondingto approximately85 and 113percentof ratedarea. Themaximumareawas determinedby theparticulararea-valvedesignandtailpipethatwereused. Theminimumareawas arbitrar-ilychosen.

NACA’IN3936 *

Thebiasvoltageof’the relaytriggeringcircuitwasadjustedsothattherelayclosedwhentheinputsignalto theareaservomotorcontrol -decreasedbelowthevaluecorrespondingto 85 percentof ratedsrea.Closingtherelay,in effect,stoppedtheintegralactionof thecontrolby addingan equalbut opposite-signerrorsignalto the inputof thein-tegrator.A similartriggeringcircuitcouldhavebeenaddedto oneratetherelayat themaximumareastudybecausethe initialandtowardthe closedposition.

The experimentalprogram

limit-butwasnotdeemednecessaryf& thismaximumexcursionof theareavalveswas

PROCEDURE

consistedof (1]a determinationdynamicsin thehigh-speedregionof%perationand (2}a study

of engineof con-

trolledenginetransientresponseandcontrolstabilitylimitforthetwobasictemperaturefeedbackcontrolsystems.

Enginedynamicswereobtainedfromfrequency-responsedata. Sinu-soidalinputsignalswereappliedto thefuelcontrolandareacontrol,andresponsesof enginevariableswererecorded.Frequency-responseplotsweremadeandanalyticaltransferfunctions,madeup of engineandinstrumentationdynamics,werefittedto theseplots. .

The enginewas operatedon controlusingthesystemsshownin fig-ures4 and5. Stepinputswereappliedto increasethetemperatureref- .

erencelevelan amountequalto approximately7 percentof ratedtempera-ture. Controlgainandintegral_timeconstantwerevariedQvera rangeof values,andresponsesof enginevariableswere--recorded.Timeint%-gralsof the squareandabsolutevalueof.temperatureerrorwerecalcu-latedandrecorded.A rate-limitingcircuitwas addedto thetemperature- fuel-flowcontrolsystem,-andthe sae procedurefollowed.The stabilitylimitforbothcontrolsystemswasinvestigatedby increas-ingcontrolgainuntilthe systembecsmeandremainedoscillatory.

RESULTSANDDISCUSSION

EngineDynamics

Responseof temperatureto fuelflow.- Experimentaldatarepresent-ingthe frequencyresponseof indicatedtailpipegastemperatureto indi-catedfuelflowat constantareaareshownin figu& 6. Thesedataweretakenin the ssmeregionof engineoperationas selectedforthecontrQlstudy. Thedatashownin figure6(a)andallsubsequentamplitude-ratio .datahavebeennortilized(thatis,theproductof allconstantgaintermshavebeensetequalto unity). .

NACATN 3936

Thenormalizedtemperature- fuel-flowtransf’eringto thedataof figure6 canbe representedby

7

functioncorrespond-

1where 1 + ‘c~s representsthethermocoupledynamics(symbolsarede-

‘td,fs:Q finedin appendixA),G(s)e representsthefuel-distribution-system* andcombustiondynsmics,andtheremainingtermsme includedin the actu-

al temperature- fuel-flowenginedynsmics.Combustiondynamics,usuallyconsideredpsrtof enginedynamics,couldnot easilybe separatedfromfuel-distribution-systemdynamicsbecauseof the difficultyof measuring

1 + Tlsactualfuelflowintothe engineduringtransients.Theterms ~ + =9E

&

wereincludedto representa longtime-constantphenomenonbelieveddueto a heating-expansioneffectin theturbinesection.Thisphenomenonhasusuallybeenneglectedinpreviousdynamicstudies.

.

.

.

In figure6 areshowncalculatedfrequency-responsecurvesof equa-tion(1). Numericalvaluesforthevsrioustermswereobtainedby graph-icalmethodsdescribedin appendixB.

Responseof temperatureto area.- Figure7 showsdtiarepresentingthefrequencyresponseof indicatedtailpipegastemperatureto exhaust-nozzleareaat constantfuelflow. Theseexperimentaldatawerealsotakeninthe sameregionof engineoperationas selectedforthe controlstudy.

Thenormalizedtemperature-areatransferfunctioncorrespondingtothe dataof figure7 canbe representedby

(2)

Lwhere 1 -(-Tts representsthethermocoupledynamicsandthe remaining

termsrepresenttheactualtemperature-meaenginedynamics.Alsoin-cludedin thistransferfunctionarethetwo longtime-constanttermspreviouslymentioned.

Calculatedfrequency-responsecurvesof equation(2)arealsoshownin figure7. Numericalvaluesusedforthevsrioustermswerealsoob-tainedby graphicalmethodsdescribedin appendixB.

8 NACATN 3936.

Stability-limitcheck.- Fromthefrequency-responseplots,predic-tionsof stabilitylimitsforthebasictemperaturefeedbackcontrolsys- -ternscanbe made. For thetemperature- fuel-flowcontrolsystem,thedatapresentedin figure6(b)indicatethata 170°to 180°phaseshiftoc-cursin the-frequencyrangeof 2.0to 2.2cycles~er second.Consideringnegligible.phaseshiftin thefuelsystemandlesg.than10°phaseshiftin the control(for ‘rC~ 0.5 see),a totalopen-loopphaseshiftof 180°wouldoccurin thissamefrequencyrange,2.0to 2.2cyclesper second.Fromtheamplitude-ratiodatapresentedin figure6(a),the loopgainatinstabilityshouldbe in therangeof 5.7to 6.9. For thisreport,loopgainis definedas theproductof allthefrequencyinvariantgainsaroundthe loop.

,-

itPN

Recordingsof enginespeedandtailpipegastemperaturetakenduring .experimentaldeterminationof stabilitylimitfor.atemperature- fuel-flowcontrolareshownin figure8. The loopgainnecessaryforsustainedoscillationwas 6.3andthe oscillationfrequency,determinedfromthetemperaturetrace,was approximately2.2cyclesper second.Thusthestability-limitpredictionsfromopen-loopfrequency-responsedataaresubstantiatedverywellby experimental”measuremetis.

Similarpredictionscanbe madefromthetemperature-areafrequency-responsedat=jbnwever,thearea-systemdynamicsmustalsobe considered. &For thiscontrolsystem,loopgainat instabilityshouldbe 40 andos-cillationfrequencyshouldbe 7 to 10 cyclesper second.Experimentaldeterminationof stabilitylimitforthissystemwas unobtainableduetonoiselimitationsof thetemperaturesignalat thehighloopgainsrequired.

ControlledEngineData

Temperature- fuel-flowcontrol.- Goodcontrolperformanceduringtransientsdependson properselectionof control-loopparameters(that1s,in thiscase,loopgainandcontrol.integraltimeconstant).Twooften-usedcriteriafor evaluatingtransientresponseareovershootratioandti~-to first-zero.Figure9 showsplotsof thesecriteria(definedon fig.10(a))obtainedfromtransient-responserecordingswhenoperatingwitha temperature- fuel-flowcontrol.It is oftendifficultto selectthebestcombinationof control-loopparametersusingthesecriteria.Thisisborneoutby examinationof thetransient-responserecordingspresentedin figure10.

Figure10 showstransientresponsesof fuel-valveposition,tempera-tureerror,andenginespeedto stepchangesin desiredtemperat~e. The .transientof figure10(a)wasobtainedusinga controlintegraltimecon-stant Zc of 0.25secondanda loopgain KL of 1.14= Thiscombinationof control-loopparametersgavea temperatureovershootratioof 1.12and ,.

NAM TN 3936 9

.

.

a timeto firstzeroof 0.46second.Thetimeto firstzerocouldbereducedby increasingthe loopgain;however,thiswas accomplishedonlyat theexpenseof greaterovershootratio,as shownin figure10(b).Forthistransient,Zc waskeptat 0.25secondand KL was increasedto3.03. Thetimeto firstzerowasreducedto 0.23second,but theover-shootratiowas increasedto 1.58. Thisovershootis consideredtoogreatandtheresponsetoooscillatoryforgoodcontrolperformance.

Figure9 indicatesthatat a constantloopgain(greaterthan2.5)the overshootratiocanbe decreasedwithoutgreatlytifectingthetimeto firstzeroby increasingZc. Figure10[c)showsthetransientre-sponsesfor Zc of 4.0 secondsand KL of 3.03. Theovershootratiowas decreasedto 1.10andthetimeto firstzerowas increasedslightlyto 0.26second.Accordingto theplotsof figure9, thesecriteriaval-ueswouldindicategoodcontrolperformance.However,a closerlookatthetemperatureresponsein figure1O(C)showsa longdrift-inor set-tlingtime. For manycontrolsystemsthiswouldbe consideredundesir-able. Thus,thisexampleshowsa shortcomingof usingthe overshootratioandthetimeto firstzeroas criteriaforselectingcontrol-loopparametersforgoodcontrolperformance.

A discussionandevaluationof criteriaforoptimizingtransientresponseof controlsystemsaregivenin reference3. Twoof the cri-teriadiscussedin thisreferencewereusedin thistemperaturecontrol-systeminvestigation.Thesewerethetimeintegralsof thesquareandabsolutevalueof temperatureerror. Circuitsforautomaticallycalculat-ingtheseintegralsduringtransientsweresetup on an electronicanalogcomputer,as shownin the diagramin figure3.

Shownin figure11 areplotsof theintegralcriteriavaluesobtainedduringtransientoperationwitha temperature- fuel-flowcontrolsystem.The curveswhichgivethe leastvaluesforthe integralsindicatethe ap-proximatevaluesof controlintegraltimeconstantandloopgainto use

foroptimumtransientresponse.The criterionJ

‘T2 dt indicatesaOe

rangeof ‘rCfrom0.75to 1.0secondandof KL from2.5to 3.5as giv-

ingoptimumtransientresponse.TheothercriterionJ

‘[Teldt indi-0

catesa rangeof Zc from0.5to 0.75secondandof KL from2.0to 3.0.

Althoughthesetwo criteriaindicateslightlydifferentrangesofcontrol-loopparametersforoptimumtransientresponse,bothchoicesofoptimumresponsearecharacterizedby a satisfactorycompromisebetweenovershootratioandtimeto firstzero.

10

Transient

etersselected

shootratiois

NACATN 3936

responsesfor ‘rC of 0.75secondand KL of 2.65~param- .

byJ

*2Te dt criterion)areshownIn figure12(a). Over-0

1.21andtimeto firstzerois 0.27”second.Figure12(b)showstransientresponsesfor ‘CC of 0.5secondand KL Of’2.27(ptiSm-

metersselectedby J’1 ITe dt criterion).Hereovershootratiois 1.15

0andtimeto firstzerois 0.30second.Settlingtimeforbothof thesetransientsismuchshorterthanforthetransientof figure1O(C).

An analysisof optimumcontrolsforlinearfeedbackcontrolsys-temswasmadeandis present%din reference. One-”ofthecontrolsys-temsconsideredin thisanalysiswas a speed- fuel-flowcontrolforaturbojetengine.Linearizedenginedynamicswererepresentedby a fi.rst-orderlag term, andthefuelsystemwas consideredas havingonlydeadtime. The controlactionof theoptimumcontrolforthissystemwasshownt-obe essentiallyproportional-plus-integral.Optimlzatlonofcontrol-loopparameterswasbasedon minimizationof theintegralofspeederrorsquared.

Thetemperature- fuel-flowcontrolsystemcanbe consideredin thelightof thisanalysisiflcertainsimplifyingassumptionsaremadere-

--

gardingthe systemdynamics.An approximationof thefreqhency-responsedatapresentedin figure6 canbe madewitha first-orderlagtermhavinga timeconstant-o~approximately0.4secondanda deadti”meof approxi-mately0.115second.“Byusingthese”simplified&namLcs,thi&control””systemis comparablewiththe speed- fuel-flowcontrolsystemof ref-erence4. .-

Accordingly,theoptimumloopgainshouldbe tbesystemtimecon-stant,0.4second,dividedby thedeadtime,0.1L5second,or

‘L,opt= 0“4 = 3.5. Also,theoptimumcontrolintegraltimeconstant0.115shouldequalthe systemtimeconstant,or ~c,opt= 0.4second.Compar-ingthesetheoreticaloptimumparameterswithther@ngeof parameters(’cCfrom0.75to 1.0secondand KL from2.5to 325)obtainedfromthe

experimentalintegralcurvesof figuren(a) showsgoodagreementin spiteof thesimplifiedapproximationof thesystemdyaamlcs.

Rate-limitedfuelcontrol.- Sincetheresearch-facilityfuelcontrolwas considerablyfasterthananypracticalfuelcontrolnowin useon tur-bojetengines,a controlstudysimilarto thatdisc~sedin previoussec-tionswasmadewitha rate-limitedfuelcontrol.A rate-lhd.tingcircuitwas insertedbetweenthe“controlandthefuelservosyst-em.Thiscircuitlimitedthemaximumrateof changeof fuelflowto approximately140

9s’m

NACATN 3936 11.

.percentof ratedfuelflowin 0.1second.Althoughthisratemaybegreaterthanthatof a practicalfuelcontrol,it was consideredsuffi-cientlylessthanthe originalrateto showtheeffectson controlper-fotianceof a slowerfuelcontrol.

Figure13 showsplotscouparingintegrals,overshootratios,andtimesto firstzerofortheoriginalandrate-limitedfuelcontrol.Inte-gralcriteriavalueswerehigherfortherate-limitedfuelcontrol,butminimumsindicatedaboutthe samechoiceof controlintegraltimecon-stant’andloopgainforoptimumtransientresponse.Therate-limitedfuelcontrolgaveslightlygreatertimesto firstzerothanthe originalcontrol.At smallvaluesof %C therate-limitedcontrolgavemoretem-peratureovershootthanthe originalcontrol,andat largevaluesof Zctherate-limitedcontrolgavelesstemperatureovershootthanthe originalcontrol.The optimumtransientresponsefortherate-limitedfuelcontrolstillindicateda satisfactorycompromisebetweenovershootratioandtimeto firstzero.

Temperature-areacontrol.- Fourcriteriaforevaluatingtransienttemperatureresponseforthetemperature-areacontrolsystemareshowninfigure14. Threeof thesecriteriaarethe sameas usedforthetemperature- fuel-flowcontrolsystem.Sincetherewasno temperatureovershootformanyof thetransientstakenwiththetemperature-sreacon-trolsystem,anothercriterion,timefor Te to reach10percentof itsinitialvalue,wasusedinsteadof timeto firstzero.

The integralcriteriacurvesof figures14(a)and (b)showno defi-niteminimums,in contrastwiththe integralcriteriacurvesforthetemperature- fuel-flowcontrolsystem(fig.11). Thesecurvesindicatethata small Zc shouldbe usedbutarenotveryselectiveas to loopgainforoptimumtransientresponse.

Theovershoot-ratiocurvesof figure14(c)showa reversetrendtothatusuallyfoundin controlsystems.Overshootratiodecreaseswithincreasingloopgain. Thesecurvesarenotveryhelpfulin selectingcontrol-loopparametersforoptimumtransientresponseotherthanindi-catingthatloopgainshouldprobablybe >3 and %C? 0.25second.

Thefourthcriterion,presentedin figure14(d),alsoindicatesthata small ‘c shouldbe used,at leastfor loopgainslessthan6. Athigherloopgainsthesecurvessrenotveryselectiveas to Zc. Thesecurvesshowthattheminimum10-percentresponsetimeobtainablewiththetemperature-areacontrolsystemwas aboutthreetimestheminimumtime tofirst zero obtainable with the temperature- fuel-flow control system(fig.9).

.

12 -. NACATN 3936

In figure15 areshowntransientresponsesof engine-speed,exhaust-valveposition,andtemperatureerrorforthetemperature-areacontrolsystem.To obtainthedesiredincreasein temperature,thecontrolclosedtheareavalves;butin thiscasethespeeddecreasedinsteadofincreasingas i&did withthetemperature- fuel-flowcontrolsystem(fig.12).

Figure15(a)showsthetransientresponsesfo~zc of 0.25secondand KL of 3.74. Thiscombinationof control-loopparametersgaveveryslighttemperatureandspeedovershoots.Thetimefor Te tu reach10perce~tof.itsinitialvalu~.was approximately0.66second.Theexhaust-valve-positiontraceshows“thatthesreaclosedquicklyandremainedatthe limitingposition(85percentof ratedarea)forapproximately0.4secondandthenopenedslowlyto the steady-statepositioncorrespondingto thefinaldesiredtemperature.

Transientresponsesfor ‘CC of 0.25secondand KL of 9.96areshownin figure15(b). Therewasno temperatureovershootandveryslightspeedovershoot.Thetimefor Te to reach10percentof itsinitialvaluewas apjioximately0.63second.Duri@ thistransient,theexhaustvalvesremainedat thelimitingpositionforapproximately0.58secondandthenvery“quicklyopenedto thefinalsteady-stateposition.

The10-percentresponsetimesobtainedfromthetransientdataoffigure15 do notclearlyindicatea choice‘ofiloopgain;bu~consideringthe-sreatraces,it wouldbe preferableto usethelowervalueof loopgain. At thehigherloopgaintheareavalveismoresensitiveto thenoisein the–temperaturesignal.

CONCLUDINGREMARK6

In thehigh-speedoperatingregion,tailpipegastemperaturecouldbe satisfactorilycontrolledduringsmalltransientsby usingtemperaturefeedbackcontrolsystemswhichvariedeitherfuelflowor exhaust-nozzlearea. A proportional-plus-integralcontrolin a temperature- fuel-flowcontrolsystemprovidedsatisfactorytransientresponseto a desiredstepincreasein temperature.For a temperature-areacontrolsystem,it wasnecessaryto addnonlinearcomponentsto thebasicproportional-plus-integralcontrolto providesatisfactorytemperatureresponseduringtransients.

For theessentially

errorfunctionintegrals

is thetemperatureerror

lineartemperature- fuel-flowcontrolsystem,

J’ Jll

w

suchas = T: dt and Te dt (whereTeo 0

and t is time)appearedto be bettercriteria

NACATN 3936 13

thanovershootratioandtimeto firstzerofor selectingcontrol-loopparametersforoptimumtransienttemperatureresponse.Control-loopparametersselectedon thebasisof theseintegralcriteriaagreedverywellwith‘optimumpredictionsof a previousanalysis..

Limitingtherateof changeof fuelflowdidnotappreciablyalterthe selectionof control-loopparametersforoptimumtransienttempera-tureresponse.

Forthetemperature-areacontrolsystem,whichis nonlinearbecauseof areasaturationlimits,theintegralcriteria,theovershootratio,andthetimefor Te to reach10percentof itsinitialvalueweresome-whatinadequatefor selectingloopgainforoptimumtransienttemperatureresponse.However,thesecriteriadid indicate that a small control inte-gral time constant shouldbe used.

Thetransferfunctionsgivenby equations(1)and (2)providedasatisfactorydescriptionof engineandinstrumentationdynamicsin thehigh-speedoperatingregion.

LewisFlightPropulsionLaboratoryNationalAdvisoryCommitteeforAeronautics

Cleveland,Ohio,January18,1957

14 — IW3ATN3936

APPENDIXA

SYMBOLS

A

a

b

E

G(s)

KL

‘L,opt

N

s

Te

Ti

t

‘d,a

‘d,f

Wf

‘c

‘C,opt

‘e

Tt

T1

‘C2

exhaust-nozzlearea,sq In.

initialriseratioof temperatureto stepchangein fuelflowat constantarea

initialriseratioof temperatureto stepchangein areaatconstantfuelflow

voltage .

transferfunction

loopgain,productof-frequencyinvariantgainsaround10UP

optimumloopgain

enginespeed,rpm

complexvariableusedin Laplacetransformationmethods

errorbetween.indicatedandreferencet~mperaturesl‘F

indicatedtailpipegastemperature,W

time,sec

deadtimeof temperatureor speedto area,sec

deadtimeof temperatureor speedto fuelflow,sec

indicatedfuelflow(afuel-valveposition),lb/hr

controlintegraltimeconstant>sec

optimumcontrolintegraltimeconstant,sec

enginetimeconstant,sec

thermocotipletimeconstant,sec

timeconstantof a leadtermof enginedynsmics,sec

timeconstantofa lagtermof enginedynamics,sec

NMATN3936 15

APP~IX B

MRTHODOF OBTAININGENGINE

FREQUENCY-RESPONSE

DYNAMICSFROM

DATA

Graphicalmethodscanbe appliedto the speedandtemperaturefrequency-responsedatato evaluatethevarioustimeconstants,deadtimes,andinitialriseratiosof equations(1)and (.2).Thesemethods,whichwillbe describedin thisappendix,arebaseduponthemanipulationof varioustransferfunctions.Derivationof transferfunctionsdescrib-ingenginedynamicbehaviorcanbe foundin reference5.

The enginetimeconstantcanbe obtainedfromthe speed-areafrequency-r=sponsefunction-ofe&inecanbe represented

datashownin figure16. Thenormali&dtransferspeedto exhaust-nozzleareaat constantfuelflowby

~ (s)e-td,as

a Wf = l+zes(Bl)

By fittinga first-orderresponsecurveto the experimentaldatain fig-ure16(a),an enginetimeconstantof 0.83secondwas determined.Also,by consideringthedifferencebetweenthe e~erimentaldataandthefirst-orderphase-shiftcurvein figure16(b),a speed-areadeadtimeof 0.021secondwas determined.

‘Thenormalizedtransferfunctionof enginespeedto indicatedfuelflowat constantareacanbe representedby

I-t~,&

~— (s] = G(s)eAwf A 1 + Tes

Experimentaldatarepresentingthe speed- fuel-flowfrequencyresponseareshownin figure17. Alsoshownin thisfigurearecalculatedfirst-

.Lorderresponsecurvesof 1 + ‘res with Ze = 0.83second.The differ-

encebetweentheseresponsecurvesandthe experimentaldatarepresents-t s

G(s)e “f , thefuel-distribution-systemandcombustiondynamics.Plotsof thesedynamicsareshownin figureU3.

.

ture“

Thenormalizedtransferfunctionof indicatedtailpipegastempera-to indicatedfuelflowat constantareacanbe representedby

16

Dividingequation:

. NAUA ‘XN3YJb -—.

-%,+(1 + a~es)(l + Tls)G(s)e-~ (s) ~= (1 + Tes)(l 1-72s )(1+Tts}

(1) -

equation(1)by equation(B2)resultsin thefollowing

(1 + a~es)(1 + ‘rls)~ (s) =

A (1 + Tts)(l +“T2S)

Datacorrespondingto equation(B3)canbe calculatedfromthe experi-mentaldataof figures6 and17. Plotsof thesecalculateddataareshownin figure19. Alsoshownin figure19 are_@culatedfrequency-responsecurvesrepresentingequation(B3). Numericalvaluesfortheriseratioandtimeconstantswerechosento make‘theresponsecurvesfitthe datawithreasonableaccuracy.Thusvaluesforinitialriseratio a of 1.3andforthermocoupletimeconstaiit~t of 0.3secondweredetermined.Timeconstantsof 9 andl.Gsecotidawereusedfortheotherleadandlagtermsof theenginedynamics.

Thenormalizedtransferfunctionof indicatedtailpipe gastempera-tureto exhaust-nozzleareaat constantfuelflowcanbe representidby .

(2) -

The deadtimeandallthetimeconstantsof thistransferfunctionhavebeendeterminedby themethodsdescribedin thep&cedingparagraphs.Thus,by extractingtheproducto~all thetermsexcept 1 + b~es fromthe datacorrespondingto thistransferfunction(fig.7),plotsof1 + b~es wereobtained.Theseplot=areshownin figure20. By fittinga first-orderresponsecurveto thesecalculateddata,a valuefortheinitialriseratio b of approximately0.4was determined.

Thenumericalvalues of thetimeconstants, deadtime, and initialrise ratios determinedby the methodsdescribedin this appendixarevalid in the range of operationwherethe frequewy-~esponsedata wereobtained. Since these values vsry with operatingrange, a morecompletedescription of enginedynamicscould be obtainedfromfrequency-responsedata taken at several operatingpoints.

.NACATN 3936 17

1.

2.

3.

4.

5.

REFERENCES

Otto,EdwardW., Gold,Harold,and.Hiller,Hrby W.: Designformanceof Throttle-TypeFuelControlsforEngineDynamicNACATN 3445,1955.

Wenzel,L. M.,Hart,C. E., andCraig, R. T.: comparison of’

Fuel-FlowandSpeed-&eaControlson a TurbojetEngineforStepDisturbances.NACATN 3926,1957.

andPer-Studies.

Speed-Small

Graham,FrankD.,andLatbrop,RichsrdC.: Synthesisof “Optimum”TransientResponse- CriteriaandStandardForms. WAIXTech.Rep.No. 53-66,WrightAirDev.Center,~r Res.andDev.Co_nd,Wright-PattersonAirForceBase,Aug.1953. @lONO. 206-11.)

Boksenbom,AaronS.,Novik,David,andHeppler,Herbert:OptimumControllersforLinearClosed-LoopSystems.NACATN 2939,1953.

Delio,GeneJ.: Raluationof ThreeMethodsforDeterminingDynamicCharacteristicsof a TurbojetEngine.NACATN 2634,1952.

.

.

-. . .— .

Cro6sarmllnksge

HydraulicpmerUpperbutterflyvalva

~’it’o”’en’orFi@re 1. - Schematicof variable-areaexhaust-nozzlesystem.

, .2-R* ‘ ‘

$31’-3baok 4212 , ,

FigureZ. - FrequencyCentOf rSted =eaj

Frequency,Cpa

(a)Amplituderatio.

respmse of exhaust-valmpositionto 6inusoldSliUpUtEi@. Mea ~iation, A Per-operatingpoint,103percentof ratedarea.

.- .—

.

g

~-

:

0

i-

.1 .2 .4 .6 .8 1 2 4 6 s 10 20 40 60Requency,CPM

(b)Ea.%@.shift.

F@ra 2.- Cmmluded . Frequmcyrmpmne ofexkmt-mlvepaitkm b sinui30iMinplt0iE8sl.Areamrti-,tiotl,& plwmt ofr@ellm; upmmingpint,1C4)peraentofIwt&larea.

, m!%’ t *,!

,4212 , ,

r —— —— ——— —0.01 0.01

II5 (!!5

-“1 1

Te j 0,5 Electronic 0“5

r“’”-multiplier

inputL__ –-zIEeL––_- .,J 1

Figure3. - Diagramofcomputercapacitanceinmlcrofarads.

~..—— — +————.I

I

22 I 1

12

1

*

*

1

11

IAbsOlute-value

0.2 II

2

‘Cfrcutt1-

-200v——— ——— —— —— 1

circuitusedto obtainerrorIntegrals.Resistanceinmegohms,

.

IvN)

===’(

I

Temperature-error signal *

Indicatedtailpipe gas temperature Temperaturesensor

I I I

Fuel flow or

variablearea

LIhgim

Stepinput

Figure 4. - Block diagram of temperaturefeedback control By-stem.

. ,

, , ,4212 , ,

1Indicatedtemperaturesignal~ B

10 0-1o R1 s

fi~

Q

!Cemperature10 w

referencelevel ;

~0.5

Step input =

___— ——— ——— —— ——— — —— 1

Figure 5. - Computerin microfarads.

O-&

I

1

-’l -

(e) Temperature- fuel-flow controlsystem.

circuitdiagramof aummlngnetworkand control. ResistanceIn megohms, capacitance

A--- Indicatedtemperaturesigoal10

10 Temperature

Te referencelevel

El0.5 ~

.L

_d ‘

rRetiy A-’

R 11

R

Figure5. - Concluded. Computercapacitsmcein mlcrofarads.

.

0-1o

DA&-l Al

1 To area

servosystem

I +El -E2-.—— ——— ——— ——— ——

I IRelay triggeringcticuit

L——— ———— ——. . . -J

(b) Tam~ature-area control.syatem.

circuitdiagramof sting networkand control. Resistancein megohms,

I

W4

Q *# .+

.8 b n n xI==e=GW ~ — ‘ — –

\

.6Calculatedtransferfunction,

t1

i

.4

FH

g! (s)

f

(1+ aTeE](I.+~ls)@s)e-td)fB

A= (1+ Te6)(l+ ~2s)(l+~~d

a n 1,3~s E 0.63sec m,+ - 0.5sec

.2 - # = 9 sec / ‘Z=losec

~(s)e-td,faobtainedfromcurvesof fig.17/

.1

,09

,06

.04.01 .02 .C-4 .C6.ml.1 .2 .4 .6

4212 ‘ ‘

Frequency,CPE

(a)Ar@ituderatio.

Figure6. - Frequencyre6pon8eof indicatedtailpipegastemperatureto indicatedfuelflowat condantarea.Temperaturevariation,&.5 percentof ratedteraperaturejoperatingpoint,79 percentof ratedtemperature.

tom

.—

-3(

-6(

~ -9[

$■

~ -~,

-m

-MO

-210

1 t ZRV , .

, (h-4 baok 4212 I .

.01 .02 .W .0s.m .1 .2 .4 .6 .8 1 2 4 6 8 10Frequancy, CPB

(a)Amplltuderatio.

[email protected] fiequenc~rtqome ml indicatedtailpipsgastemperaturetiexhaust-nozzl.aareaat conetantfuelflnw,l@er&3UY V’Uiatinn,M.7 peroentof rated t~rU~j opsratingpnint,78,5percent,tirated~eratll~.

, , , I 1

0

-3

-E

-ls

?requency,Wdl

(b)Phasesbifr“

Figure7. - C0nclude3.Frequencyre.swseof indicatedtailpipegast~ture toexhaunt-nomleareaat [email protected] varifltion,H.7 percentofratedtempsratum;operatingpoint,78.5percent of mted temperature.

. r

, 1

.-

, ,

t--l see-l

Figure El.- Stability-1imitcheckfortemperature- f’uel-flovcontrol.Loopgain,6.3;con-trolIntegralttieconstaut,0.5seccmd.

NACATN 3936

2.0.

G3ntrolintegraltimeconstant,

1.8.,.5

~c)sec /1.0

.0.25 2.04.0

~‘P 1.6 /6!.!

/

+0

3 /m / /

i 1.4 / /

/

/

/

1.2

/

1.o-

11.0 8 1Central Integraltimeconstant,

sec

.8

I

.6

\

.4\

\

.2

0 1 2 3 4 5 6 i’Loopgain,KL

.

.

.

.

.Figure 9. - Criteriaforevaluatingtransienttemperatureresponsefortemperature-fuel-flowcontrol.

NACATN 3936 31

.

mlA2

(a)ControlIntegral.the wnstant,0.25second;loopgain,1.14.

I!lgure10.- !&armientresponsestostepIncreaaeinreferencetemperaturefortemperature- fuel-flowcontrolsystem.

32 NACATN 3936.

Fi&yre10.- Continued.Transientre~eee tostepinfreaseinreferencetemperaturefortemperature-fuel-flowcontrolsystem.

.

.

NACATN 3936 33

.

03d$

Figure 10.- Ccm?huied. !3Ycankientresponsesta stapincrease5nreferencetemperaturefortemperature-fuel-flowcontrolsystem.

. .

2R

I,

Controlintsgral 4.0

Z4- time constat, 6

Te,

Sec /1

: 0.25 2.0 /

cdHal 20 \ / f io .75

\o

1.0,5, /

\ //

16./\

/

12:0 1 2 3 4 5 6 7

LOOP gain,KL

(a)J

‘~ dt.

Figure11.- Criteriaforewluatingtraneienttemperatureresponsefortemperature-fuel-flowcontrolByatem.

Z-R? *,

CJl

$m

NACATN 3936 35

.

36

4.0!

32

28\

24

Controlinte~altimeconetant, t / ‘

~c)

/1.0

/ :/.?

/ ‘

I.25\ I \l \l I 1/1 I 7r/ /

20 sec I \l /1 II I I I 1

Figure11.- Concluded.Criteriaforevaluatingtranaienttemperatureresponsefortemperature- fuel-flowcontrolsystem.

36 NACATN 3936.

(a)Control-integral.timeconetant-,0.75second;loopgain,2.65.

FYgure12.- Transientresponeeetostepincreaseinreferencetemperat&efortemperature- fueLflowcontrolsystem.

.

.

.

NACATN 3936 37

Cul-lNd+

(b)Controlintegralthusconstant,0.5~tij loop gain, 2.27.

i?lgureE. - Concluded.mansientreeponeestostepincreaseinreferencetemperaturefortemperature- fuel-flowcontrolsystem.

38 NACATN 3936

;ak

II Puel valve ]m — Original‘—— Rate-limitedI

2.2

df

1.8/ 8

/

1.44‘

y /

1.00 2 4 6

.

Imp gain,KL

(a)ControlIntegraltimeconstant;-0.25second.

Figure13.-Cornparlsouoftransient-temperature-responsecriteriaforrate-llmitedand originalfuel-flowcontrol,eysteme.

NACATN 3936 39

28

24

C.-l-la)

<

200

16

.7

c1IJm

sF+v .5-N

g

$ .3’E

\

z ~

.10 2 4 6

1--t-iFuel valve

uriginal——— Rete-llmitea

20

i

16

4‘

II //‘12 /

\. /~t

8

2.2

/,1.8

/v

1.4

////

1.00 2 4 6LCIOpgain,KL

(b)Controlintegralthe constant,0.5.eecond.

Figure175.- Continued.Comparisonof transient-temperature-res~nsecriteriaforrate-limitedandoriginalfuel-flowcontrolsystems.

.

.

40 NACATN 3936.

24

Fuelvalve

— Original

\——— Rate-limited

20\

/1

\ / /16. /

12-

U .5-al <m \~N

\

\\

g “3’ \.

i

\

H.1.

c1 2 4 6

22

18 \ A

\

\\

14 /T

10

I-.8

/

1.4/ ‘/

/

1.00 2 4 f

.

ICOPgain,KL

(c) Controlintegraltimeconstan&l.Osecond.

Figure13.- Continued.Comparisonof transient-temperature-responsecriteriaforrate-limited andoriginalfuel-flowcontrolsystems.

t 1 423.2

26

Fueltin— 01’lginal‘—— Rute-llmlted

24

\ .‘I

\ t

\ /20

\ \ /

\. /

\ /

* \. /16

w ~ -— H

u

1.8

//

/

1.4 /

/

// /

/ L --1.0

2 4 6 8 10 12

IODP win, KL

(d)C0nt301i.te~ltl= mrwt.ant,2.0.ecende.

Figugumu. - Concluded. Cmparimn of tmnnlent-teqperatwm-mnpmse criteria for rate-limitd and original fuel-flow control

42 NACATN3936.

.—

i

!

I

Controlintegraltimeconstant,

sec

- .5

0 2. 4 6 8 10Loopgain, KL

(a)rl IT=dt.o

Figure14.- Criteriaforevaluatingtransienttemperatureresponeefortemperature-areacontrolsystem.Lower-areaexcursionlimit,85percentof-ratedarea.

.

.

.

NACATN 3936 43

.

.

12

10

8

6

4

1.4

1.2

1.(3

Controlintegraltimeconstant,

‘c

sec

‘0.25-2.0

\!

(b)J

‘T2 ato e“

Controlintegral0.25 timeconstant,

Tc>sec

.5

. \

\—.- 0 2 ~ 6 8 10

Loopgain,KL

(c)Overshootratio.

Figure14.- Continued.Criteriafor evaluatingtransienttem-peratureresponsefortemperature-areacontrolsystem.Lower-areaexcursionlimit,85 percentof ratedarea.

44 NACATN 3936

2.E

2.4

2.0

1.6

1.2

.8

~ontrol integra~timeconstant,

‘cc,sec

2.0

1.0\

.5 >25

\\

\— ~ ~

.4 0 2 4 6 8 10Loopgain,KL

(d) Timeto reach 10 percent of initial temperatureerror.

Figure 14. - Concluded. Criteria for evaluating transienttemperatureresponsefor temperature-areacontrol system.Lower-area excursion limit, 85 percent of rated area.

.

.

.

1—

4212, -,”* t ,

1--1 see-d

Figure I-5.- Emnsientrespo~esto stepinereaBeinreferencetemperaturefortemperature-areacontrolsystem.Controlinte~altimeconstant,0.25second.

----- — .—

1---1 see-+-l

(b) LOOP &in, 9.96.

Figure 15. - Concluded, Transient responses to etep increase In reference temperature fortemperature-area control system. Control integral time constant, 0,25 second.

,, , 4 1

z-m

* ,

1(

.0

.6

.4

.2

.1

.0%

.%

.04

.02

.01 .02 .04 .ffi .@ .1

t ,4C.LL 1

, #

.2 .4 .6 .8 1 2 4 61Frequency, cpr.

(a)Amplitudemtio.

Figure 16. - Frequency respmse o!? engine WSW3 to mhawt-nozzle area at constant fuel flow. Spee6 WriatiOn, M Per-centofratedspee6joperating~int, 95.5 percent of ratul aped.

Frequen~,cps

(b)Fhaseshift.

.6 .8 1 2 4 6 8:

,.,ZZz? ‘

,

1

.8

.6

,4

.2

.1

.

“-I=D=l= =?Ill

I 7== T=+

.02

.01 0Frequency, CP

(a) Amplituderatio.

Figure 17. . h3qUeII~ iY8pOIMe Of .31giD9 BpOd tn iII&iCat.d fid fbW .9t COIIBtiUt EUWR. Bpd ~TiatiOU, & wXC,Ut *w

of rated speea~ operating pint, 95.5 percent ur ratecl Bwa,

mo

g

iism

!

sFrequemy, Cpa c

(b) hm shift. . ~

Figura 17. - Cmcluded. RuqwrIcy reapoma of en@ne speei to icdicated fuel flov at conatmt UEU. _ **, ~+S WC* 03?TWtUd.Ep8dj mtiUE Wtik, 95.5 ~mt & mtd UPWd. u

m

.“ “ ZL3 .

, W-7 back 4212 . *

.

Frequency,CN

(a) Amplitude ratio.

Figure 18.-t@

- hsqueney response of fual-distribution-systemad ccmbuationdynamics G(s)e .

I

.— .

c ZTZV ● *

.

t 1

4

2

1

.8

.6.01 .02 .04 .06 .06.1 .2 .4 .6 .8 1 2 4

Frequency,cps

(a)Amplituderatio.

Figure19. - Frequencyresponseofindicatedtailpipegastemperalmretoenginespeedat constantarea.

(n(J!

-. — —. —.

/

—/

.04 .06 .06 .1 .2 .4 .6 .8 1 2 4Frequency,cps

(b)Phaseshift.

Figure19.- Concluded.Frequencyresponseof indica~edtailpipegastemperatureto enginespeedat constantarea.

● I

I * 1 ,

4Llii -1

“ ,

10

8

6E

r\

.02 .04 .00 .06 .1 .2 .4 .6 .E 1 z 4 6

Frequency,.CPS

(a)@utuae ratio.

Figure20. - Cal,culatdfrequencyrespmse of engine leadterm 1 + b’c~.

r.)1

$m

I

mm

i!!

.1 .2 .4Frequency, cpe

I

(b) Fhaae shifi.

Q

/r

F@re 20. - Concln&d. Calculated freqnency response of engine 1.4 term 1 + b’reB.

‘6

.

8 10

r, , . #