62
Module 01 Module 01 Nuclear Engineering Nuclear Engineering Overview Overview Prof.Dr Prof.Dr . . H. H. B B ö ö ck ck Vienna University of Vienna University of Technology /Austria Technology /Austria Atominstitute Atominstitute Stadionallee Stadionallee 2, 2, 1020 Vienna, Austria 1020 Vienna, Austria [email protected] [email protected]

Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Module 01Module 01Nuclear EngineeringNuclear Engineering

OverviewOverview

Prof.DrProf.Dr. . H. H. BBööckckVienna University ofVienna University ofTechnology /AustriaTechnology /AustriaAtominstituteAtominstituteStadionalleeStadionallee 2, 2, 1020 Vienna, Austria1020 Vienna, [email protected]@ati.ac.at

Page 2: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

• Research reactors: use neutrons for basic and applied research (normally no power production)

• Nuclear power plants (NPP): use thermal energyproduced by fission process to produce electricity(process heat, district heating is also possible)

• Propulsion reactors: Aircraft carriers, submarines, ice breakers, satellites(see www.world-nuclear.org/info/info.htm)

ApplicationApplication of Nuclear of Nuclear ReactorsReactors

Page 3: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Short Short ReactorReactor

PhysicsPhysics RepetitionRepetition

Page 4: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

One Generation of NeutronsOne Generation of Neutrons

Page 5: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

MassMass Distribution of Fission Distribution of Fission ProductsProducts

Page 6: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

•• Thermal Thermal fissionfission of Uof U--235 235 resultsresults in ca. 2.5 fast in ca. 2.5 fast neutronsneutronsand ca. 207 MeV of thermal and ca. 207 MeV of thermal energyenergy per per fissionfission

•• (1 MeV=3.2x10(1 MeV=3.2x10--1111J J → 1g U1g U--235 235 approxapprox. 1 . 1 MWdMWd))–– 167 MeV 167 MeV fissionfission productsproducts–– 5 MeV prompt 5 MeV prompt gammagamma radiationradiation–– 5 MeV prompt 5 MeV prompt neutronsneutrons (99.36%)(99.36%)–– 13 MeV 13 MeV betabeta and and gammagamma decaydecay–– 10 MeV 10 MeV neutrinosneutrinos–– 7 MeV 7 MeV delayeddelayed neutronsneutrons (0.64%)(0.64%)

Energy Release per FissionEnergy Release per Fission

Page 7: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

•• Prompt Prompt neutronsneutrons: : ProductionProduction withinwithin 1010--12 12 s s afterafter fissionfission. . TheyThey areareslowedslowed down down byby collisioncollision withwith (light) (light) moderatormoderator nucleinuclei (H(H22O, DO, D22O, O, C), diffuse and C), diffuse and somesome neutronsneutrons areare absorbedabsorbed againagain in Uin U--235235

•• Such a Such a cyclecycle isis describeddescribed withwith thethe four factor equation:four factor equation: kk∞∞ = = εε..p.fp.f..ηηεε ... fast fission factor... fast fission factorp ... resonance escape probabilityp ... resonance escape probabilityf ... thermal utilization factorf ... thermal utilization factorηη …… reproduction factorreproduction factor

•• Delayed neutronsDelayed neutrons: Production time after fission from seconds to : Production time after fission from seconds to about one minute, only 0.64% of all neutrons are delayed but verabout one minute, only 0.64% of all neutrons are delayed but very y important for the time behaviour of a reactor. A reactor is sligimportant for the time behaviour of a reactor. A reactor is slightly htly subcritical with fast neutrons and only delayed neutrons add up subcritical with fast neutrons and only delayed neutrons add up to to criticality. criticality.

Prompt Prompt vsvs DelayedDelayed NeutronsNeutrons

Page 8: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

• Natural Uranium : 99.28% U-238, 0.72% U-235• Depleted Uranium: U-235 < 0.72%• Low enriched Uranium (LEU): 0.72% < U-235 < 20%• Medium enriched Uranium (MEU): 20% <U-235 <70%• High enriched Uranium (HEU): 70% <U-235 <93%• Nuclear Power Plants use Unat or LEU or sometimes MOX

(mixed UO2 and PuO2)• German NPP consumed 25 to of Pu between 1966 to

2005 in MOX fuel (Atomwirtschaft 12/06)• Research Reactors use LEU to HEU, gradual conversion

from HEU to LEU to prevent proliferation• Nuclear weapons use HEU or weapons grade Pu

UraniumUranium as as ReactorReactor FuelFuel

Page 9: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

UU--Pu Pu ProductionProduction

Page 10: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

• Reactor grade Plutonium: NPP produce Pu nuclidesthrough neutron capture in U-238 (approx 290kg per year), composition: 75% Pu-239, >19% Pu-240, <6% Pu-241+Pu-242, this is called reactor grade Pu. It isextracted from fuel elements during reprocessing and re-used as fuel for NPP (=MOX fuel),35 NPP in Europe useMOX, it is not usable for nuclear weapons due to high content of Pu-240

• Weapons grade Plutonium (WPG): composition: > 90% Pu-239, minimum mass about 10 kg pure Pu-239. It can be produced in NPP (fuel only about 3 month in the NPP) with on-load refuelling using Unat as fuel (→CANDU, RBMK), about 200 tons of WPG from militarywarheads available to be diluted with U-238 to produceNPP MOX fuel in France and UK

Plutonium Plutonium CompositionComposition

Page 11: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

•• Target of reactor designers: To design a Target of reactor designers: To design a safe and efficientsafe and efficient reactor reactor under given nuclearunder given nuclear-- and material conditions. and material conditions.

•• Safe:Safe: The reactor must have negative temperature coefficients The reactor must have negative temperature coefficients during in any operational state (= increasing temperature reduceduring in any operational state (= increasing temperature reduces s fission process fission process -- self stabilizing), negative example: Chernobylself stabilizing), negative example: Chernobyl

•• Efficient:Efficient: Minimum of material and maximum of neutron flux Minimum of material and maximum of neutron flux densitydensity

•• About 6% of heat originates from fission products and About 6% of heat originates from fission products and transuranictransuranicelements (elements (i.ei.e 3000 3000 MWMWthth NPP power after shut down 180 NPP power after shut down 180 MWMWththresidual power), therefore heat generation continues after shut residual power), therefore heat generation continues after shut down, after core cooling is necessary for an extended period to down, after core cooling is necessary for an extended period to prevent damage to the fuel or emergency core cooling (ECCS) in prevent damage to the fuel or emergency core cooling (ECCS) in case of loss of coolant accident (LOCA)case of loss of coolant accident (LOCA)

Target of Target of ReactorReactor DesignersDesigners

Page 12: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

OperatingOperating TemperaturesTemperatures of of NPPsNPPs

Page 13: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

TypesTypes of of NPPNPP‘‘ss

Main NPP Main NPP ComponentsComponents

ReactorReactor MaterialsMaterials

Page 14: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Thermal reactors Fast reactors

Moderator Graphite Water Heavy Water no

Coolant MoltenSalt CO2 H2O He H2O H2O H2O D2O

Hydro-carbon CO2 Sodium/NaK

NaturalUranium

Magnox

CANDU

DCR

EnrichedUranium

AGR RBMK HTGR PWR BWR SGHWAtucha

KKN-EL4

Thorium -Uranium

MSBR THTR

Plutonium -Uranium

LMFBR

Fuel

ReactorReactor TypesTypes

Page 15: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

REACTOR TYPE EN COOLANT FUEL – FERTILE MATERIAL MODERATOR

FISSILE FERTILE FUEL GEOMETRY

PRESSURIZED WATER REACTOR (PWR) H2O UENR -- UO2 PIN H2O

BOILING WATER REACTOR (BWR) H2O UENR -- UO2 PIN H2O

GAS COOLED GRAPHITE REACTOR (GCR) CO2 UNAT -- U-METALL PIN GRAPHITE

ADVANCED GAS COOLED GRAPHITE REACTOR (AGR) CO2 UENR UO2 PIN GRAPHITE

HIGH TEMPERATURE GAS COOLED REACTOR (HTR) He UENR TH UO2+THC2

COATED PARTICLES GRAPHITE

LIQUID METAL COOLED FAST BREEDER REACTOR (LMFBR) Na U+PU UDEPL (U+PU)O2 PIN --

thermal

fast

TypesTypes and Materials of and Materials of NPPsNPPs

Page 16: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Fuel UO2 U-Metal

Density at 20 °C (g/cm3) 10.96 19.05

Metal density at (g/cm3) 9.66 ---

Melting point (°C) 2800 1132

Max. operation temperature (°C) 2800 660

Burn up achievable GWd/ton of metal 55 (thermal reactor) 60 (fast reactor)

5 (thermal reactor) 20 (fast reactor)

Physical Properties of Fuel MaterialsPhysical Properties of Fuel Materials

Page 17: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Temp. Press. Spec. heat Density Heat conduct. ΔT + Σa th

oC bar J oC-1g-1 g cm-3 J s-1cm-1 oC-1 oC cm-1

He 400 50 5.23 .00364 2.7 · 10-3 380 0

CO2 400 50 1.14 .03859 0.5 · 10-3 380 2.08 · 10-6

H2O (liqu) 300 150 5.48 .726 6.3 · 10-3 30 1.6 · 10-2

D2O (liqu) 300 150 30 2.2 · 10-5

Na (liqu) 400 1 1.28 .857 .71 180 1.19 · 10-2

Physical Properties of Coolants Physical Properties of Coolants

Page 18: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Material Magnox Zircaloy-2 Stainless steelAGR

Stainless steelLMFBR

Composition

.25 - .4% Al .02 – .4% Ca .002 - .1% Be balance Mg

1.5% Sn .1 % Cr .15% Fe.05% Ni

balance Zr

14.5 -15.5% Cr14.5 – 15.5% Ni 1.0 – 1.4% Mo

3 - .55% Tibalance Fe

2.9

8

1440

ca. 780 in gas

15.5 – 17.5% Cr 12.5 -14.5% Ni

1.5% Mo≥1. % Nb ≤ .85% V

Absorption cross section for nth

(E-24cm2).0072 .0023 2.9

Density g/cm3 1.74 6.6 8

Melting point oC 680 1850 1440

Max. operational temp. oC ca. 480 ca. 360 750 in sodium

Physical PropertiesPhysical Properties of of CladdingCladding MaterialsMaterials

Page 19: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Research Reactors : MWth = thermal power productionNuclear Power Plants: MWe = electric power

production

MWe = η. MWth

η = thermodynamic efficiency for LWR approx. 0.34 or34%

MWe gross = overall electric power productionMWe net = gross power production less internal power

consumption for pumps, heaters etc. difference isabout 5-6%

Energy Energy DefinitionsDefinitions

Page 20: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

• NPP operates about 8000h/y with an availability of up to 90%

• Burn-up: Measure of thermal energy released by nuclear fuel relative to its mass, typically Gigawatt days per ton (GWd/tU)

• Availabilty: The time a reactor spends on-line (=operating) in a period (usually a year) expressed in percentage of total period ( 8760 h), presently the availabilty factor for modern LWR is about 85-90%

• Fissile material: Uranium and Plutonium nuclides which are fissionedby thermal neutrons (U-235,Pu-239, Pu-241) – U and Pu nuclides withuneven mass number

• Fertile material: Thorium and Uranium nuclides which aretransformed into fissile material (Th-232, U-238) – Th and U nuclideswith even mass number

CapacityCapacity -- AvailabilityAvailability –– Power Power ProductionProduction

Page 21: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

•• FuelFuel:: UsuallyUsually pelletspellets of of uraniumuranium dioxidedioxide (UO(UO22) ) containedcontained in in tubestubes to form to form fuelfuel rodsrods. For . For easiereasier handlinghandlingthesethese rodsrods areare arrangedarranged to to fuelfuel assembliesassemblies. .

•• Moderator:Moderator: TheThe moderatormoderator thermalizesthermalizes thethe fast fast neutronsneutrons ((aboutabout 2 MeV) 2 MeV) producedproduced byby fissionfission down to down to thermal thermal energyenergy (0.025 (0.025 eVeV). ). TypicalTypical moderatormoderator materialsmaterialsareare light light waterwater, , heavyheavy waterwater, , oror graphitegraphite. .

•• ControlControl rodsrods:: TheyThey containcontain neutronneutron--absorbingabsorbing material material (such as (such as cadmiumcadmium, , hafniumhafnium oror boratedborated steelsteel), ), theythey cancanbebe movedmoved electricallyelectrically oror pneumaticallypneumatically intointo and out and out fromfromthethe corecore to to controlcontrol thethe fissionfission processprocess. .

Main Reactor ComponentsMain Reactor Components

Page 22: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

•• CoolantCoolant:: A liquid (HA liquid (H22O, DO, D22O), gas (COO), gas (CO22, He) , He) oror liquid metal (Na) liquid metal (Na) isiscirculatedcirculated throughthrough thethe corecore to to transfertransfer thethe heatheat fromfrom thethe fuelfuelassembliesassemblies to a to a steamsteam generatorgenerator oror sometimessometimes directlydirectly to to thetheturbineturbine

•• PressurePressure vesselvessel oror pressurepressure tubestubes:: EitherEither a a steelsteel vesselvessel oror a a seriesseries of of pressurepressure tubestubes containgcontaing thethe fuelfuel and and thethe primaryprimary coolantcoolant

•• SteamSteam generatorgenerator:: ComponentComponent wherewhere thethe thermal thermal energyenergy isistransferedtransfered fromfrom thethe primariyprimariy circuitcircuit to to thethe secondarysecondary circuitcircuit wherewheresteamsteam isis producedproduced and and drieddried to to bebe transferedtransfered thethe turbineturbine

•• Containment:Containment: A A metermeter--thickthick concreteconcrete and and steelsteel structurestructure to to preventprevent thethe releaserelease of of radioactivityradioactivity to to thethe environementenvironement in in casecase of of a a seriousserious reactorreactor accidentaccident and to and to protectprotect thethe reactorreactor fromfrom externalexternalinfluencesinfluences such as such as earthquakeearthquake, , airair plane plane crashcrash, , tornadostornados etc.etc.

Main Reactor ComponentsMain Reactor Components

Page 23: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Status of NPP Status of NPP WorldwideWorldwide

Page 24: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Reactor typeMain

CountiesNumber

GWenet

Fuel Coolant Moderator

PressurisedWater reactor (PWR)

US, FranceJapan, Russia 268 244,8 Enriched UO2 water water

BoilingWater reactor (BWR)

US, Japan,Sweden 93 83,9 Enriched UO2 water water

Gas-cooled Reactor(Magnox & AGR)

UK 18 9,7 Enriched UO2 CO2 graphite

Pressurised HeavyWater reactor‘CANDU‘ (PHWR)

Canada 42 21,5 Enriched UO2 Heavy water Heavy water

Light WaterGraphit reactor(RBMK) Russia 16 11,4 Enriched UO2 Water graphite

Liquid Metal Fast BreederReactor (LMFBR)

FranceJapan, Russia 2 0,7 PuO2 & UO2 Liquid sodium none

Total 439 372

Survey of Survey of NPPsNPPs

Status 31.12.2007, IAEA Nuclear Technology Review 2008

Page 25: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

REACTORS OPERABLE

REACTORS UNDER CONSTRUCTION

REACTORS PLANNED

REACTORS PROPOSED

UraniumReqiured

May 2005 May 2005 May 2005 May 2005 2005

billion kWh % e No. MWe No. MWe No. MWe No. MWe tonnes U

Argentina 7 8.6 2 935 1 692 0 0 0 0 140

Armenia 1.8 35 1 376 0 0 0 0 0 0 55

Belgium 44.6 55 7 5728 0 0 0 0 0 0 1163

Brazil 13.3 3.7 2 1901 0 0 1 1245 0 0 311

Bulgaria 16 38 4 2722 0 0 0 0 1 1000 345

Canada* 70.3 12.5 17 12080 1 515 4 2570 0 0 1796

China** 79 ** 15 11471 4 4500 8 8000 19 15000 2307

Czech Republic 25.9 31 6 3472 0 0 0 0 2 1900 474

Egypt 0 0 0 0 0 0 0 0 1 600 0

Finland 21.8 27 4 2656 0 0 1 1600 0 0 540

France 420.7 78 59 63473 0 0 0 0 1 1600 10431

Germany 157.4 28 17 20303 0 0 0 0 0 0 3708

Hungary 11 33 4 1755 0 0 0 0 0 0 274

India 16.4 3.3 14 2493 9 4128 0 0 24 13160 351

Indonesia 0 0 0 0 0 0 0 0 2 2000 0

Iran 0 0 0 0 1 950 1 950 3 2850 125

Israel 0 0 0 0 0 0 0 0 1 1200 0

Japan 230.8 25 54 46342 2 2224 12 14782 0 0 8184

Korea DPR (North) 0 0 0 0 1 950 1 950 0 0 0

NUCLEAR ELECTRICITY GENERATION

2003 Country

on Taiwan (2600 MWe). on Taiwan (2600 MWe). EightEight reactorsreactors areare on order on on order on thethe mainlandmainland (8,000 MWe). (8,000 MWe). UraniumUranium requiredrequired includesincludes 1352 t 1352 t forfor mainlandmainland and 955 t and 955 t forfor Taiwan.Taiwan.

MWe) MWe) generatinggenerating 37.4 37.4 billionbillion kWh kWh -- 2.2% and 22% of total 2.2% and 22% of total respectivelyrespectively. . ReactorsReactors underunder constructionconstruction includeinclude 2 on 2 on thethe mainlandmainland (1900 MWe) and 2(1900 MWe) and 2

** China: ** China: TheThe operatingoperating capacitycapacity forfor China China includesincludes 9 9 reactorsreactors on on thethe mainlandmainland (6587 MWe) (6587 MWe) generatinggenerating 41.6 41.6 billionbillion kWh, and 6 on Taiwan (4884kWh, and 6 on Taiwan (4884

* In Canada, '* In Canada, 'plannedplanned' ' figurefigure isis 2 2 laidlaid--upup Pickering A Pickering A reactorsreactors and 2 Bruce A and 2 Bruce A unitsunits..

Present State of Present State of NPPsNPPs WorldwideWorldwide

Page 26: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

REACTORS OPERABLE REACTORS UNDER CONSTRUCTION REACTORS PLANNED REACTORS PROPOSED URANIUM

REQUIRED

May 2005 May 2005 May 2005 May 2005 2005

billion kWh % e No. MWe No. MWe No. MWe No. MWe tonnes U

Korea RO (South) 123.3 40 20 16840 0 0 8 9200 0 0 3011

Lithuania 14.3 80 1 1185 0 0 0 0 0 0 290

Mexico 10.5 5.2 2 1310 0 0 0 0 0 0 237

Netherlands 3.8 4.5 1 452 0 0 0 0 0 0 112

Pakistan 1.8 2.4 2 425 0 0 1 300 0 0 57

Romania 4.5 9.3 1 655 1 655 0 0 3 1995 90

Russia 138.4 17 31 21743 4 3600 1 925 8 9375 3409

Slovakia 17.9 57 6 2472 0 0 0 0 2 840 373

Slovenia 5 40 1 676 0 0 0 0 0 0 128

South Africa 12.7 6.1 2 1842 0 0 0 0 1 125 356

Spain 59.4 24 9 7584 0 0 0 0 0 0 1622

Sweden 65.5 50 11 9459 0 0 0 0 0 0 1536

Switzerland 25.9 40 5 3220 0 0 0 0 0 0 595

Turkey 0 0 0 0 0 0 0 0 3 4500 0

Ukraine 76.7 46 15 13168 0 0 1 950 0 0 1531

United Kingdom 85.3 24 23 11852 0 0 0 0 0 0 2409

USA 763.7 19.9 103 97587 1 1065 0 0 0 0 22397

Vietnam 0 0 0 0 0 0 0 0 2 2000 0

WORLD 2525 16 439 372682 18 23,641 39 41,472 73 58,145 68,357

Country

NUCLEAR ELECTRICITY

GENERATION 2003

Present State of Present State of NPPsNPPs WorldwideWorldwide

Status 31.12.2008, IAEA Nuclear Technology Review 2008

Page 27: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Updated State of Updated State of NPPsNPPs WorldwideWorldwideStatus 31.12.2007Status 31.12.2007

NPP in NPP in operationoperation : 439 in 31 : 439 in 31 countriescountriesNet power: Net power: 372372 GWeGWeNPP NPP newnew: 3 : 3 unitsunits in in IndiaIndia, China, , China, RomaniaRomaniaNPP NPP restartedrestarted: 1 : 1 unitunit in Canadain CanadaNPP NPP shutshut down: 2 down: 2 unitsunits in Germany and in Germany and SwedenSwedenNet Net energyenergy productionproduction: 2 565 : 2 565 TWhTWhNPP NPP underunder constructionconstruction: 33 : 33 withwith 27 27 GWeGWe netnetNPP NPP underunder detaileddetailed planningplanning: 4 : 4 withwith 3.500 3.500 MWeMWeNNPP Projects: 40NNPP Projects: 40

IAEA Nuclear Technology IAEA Nuclear Technology ReviewReview 2008 p.52008 p.5Atomwirtschaft 4/2008 Atomwirtschaft 4/2008

Page 28: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Plans Plans forfor newnew ReactorsReactorsStart Operation Organisation REACTOR TYPE MWe (net)

2005 Japan, Tohoku Higashidori 1 (Tohoku) BWR 1067

2005 India, NPCIL Tarapur 4 PHWR 490

2005 China, CNNC Tianwan 1 PWR 950

2006 Iran, AEOI Bushehr 1 PWR 950

2006 Japan, Hokuriku Shika-2 ABWR 1315

2006 India, NPCIL Tarapur 3 PHWR 490

2006 China, CNNC Tianwan 2 PWR 950

2006 China, Taipower Lungmen 1 ABWR 1300

2007 India, NPCIL Rawatbhata 5 PHWR 202

2007 Romania, SNN Cernavoda 2 PHWR 650

2007 India, NPCIL Kudankulam 1 PWR 950

2007 India, NPCIL Kaiga 3 PHWR 202

2007 India, NPCIL Kaiga 4 PHWR 202

2007 USA, TVA Browns Ferry 1 BWR 1065

2007 China, Taipower Lungmen 2 ABWR 1300

Page 29: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Start Operation Organisation REACTOR TYPE MWe (net)

2008 India, NPCIL Kudankulam 2 PWR 950

2008 India, NPCIL Rawatbhata 6 PHWR 202

2008 Russia, Rosenergoatom Volgodonsk-2 PWR 950

2008 Korea, KHNP Shin Kori 1 PWR 950

2009 Finland, TVO Olkiluoto 3 PWR 1600

2009 Japan, Hokkaido Tomari 3 PWR 912

2009 Korea, KHNP Shin Kori 2 PWR 950

2009 Korea, KHNP Shin Wolsong 1 PWR 950

2010 Russia, Rosenergoatom Balakovo 5 PWR 950

2010 Russia, Rosenergoatom Kalinin 4 PWR 950

2010 India, NPCIL Kalpakkam FBR 440

2010 Pakistan, PAEC Chashma 2 PWR 300

2010 Korea, KHNP Shin Wolsong 2 PWR 950

2010?? North Korea, KEDO Sinpo 1 PWR (KSNP) 950

2010 China, Guangdong Lingao 3 PWR 950

2010 Russia, Rosenergoatom Beloyarsk 4 FBR 750

2011 China, Guangdong Lingao 4 PWR 950

2011 China, CNNC Sanmen 1 & 2 PWR ?

2011 China, CNNC Yangjiang 1 & 2 PWR ?

Plans Plans forfor newnew ReactorsReactors

Page 30: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Present State of Present State of NPPsNPPs WorldwideWorldwide

Page 31: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Present State of Present State of NPPsNPPs in Europein Europe

Page 32: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute
Page 33: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Nuclear Nuclear ElectricityElectricity Share in Share in OECD 2004OECD 2004

Page 34: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

ElectricityElectricity GeneratingGenerating CostsCostsof of

Different Energy Different Energy SourcesSources

SensitivitySensitivity AnalysisAnalysis

Page 35: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

13,8

5,3 7,610,2

13,0

40,17,2

3,5

7,46,5

8,2

10,0

2,717,9

25,6

46,850,1

17,9

22,414,9

22,8

27,3

35,3

23,7

31,232,9

34,7

0

10

20

30

40

50

60

Elspot

2000

Elspot

2001

Elspot

2002

Elspot

2003

Nuclear Gas Coal Peat Wood Wind

euro/MWh Fuel costs

O&M costs

Capital costs

Operating hours 8000 hours/year

Operating hours2200 hours/year

13,8

5,3 7,610,2

13,0

40,17,2

3,5

7,46,5

8,2

10,0

2,717,9

25,6

46,850,1

17,9

22,414,9

22,8

27,3

35,3

23,7

31,232,9

34,7

0

10

20

30

40

50

60

Elspot

2000

Elspot

2001

Elspot

2002

Elspot

2003

Nuclear Gas Coal Peat Wood Wind

euro/MWh Fuel costs

O&M costs

Capital costs

Operating hours 8000 hours/year

Operating hours2200 hours/year

ElectricityElectricity CostsCosts forfor different Energy different Energy SourcesSources

Page 36: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

ElectricityElectricity generatinggenerating costscostswithoutwithout emissionemission tradingtrading

Page 37: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

In 2006, the approx. US $ cost to get 1 kg of 3% enriched UO2reactor fuel:

U3O8 : 8 kg x $45 360

conversion: 7 kg U x $9 60

enrichment: 4.3 SWU x $105 450

fuel fabrication: per kg 240

total, approx: US$ 1110

This yields 3400 GJ thermal which gives 315,000 kWh,hence fuel cost:

0.35 c/kWh

Fuel Fuel CostsCosts 20062006

Page 38: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Energy Energy CostsCosts EstimationEstimation forfor 20102010country nuclear coal gas

Finland 2.76 3.64 -

France 2.54 3.33 3.92

Germany 2.86 3.52 4.90

Switzerland 2.88 - 4.36

Netherlands 3.58 - 6.04

Czech Rep 2.30 2.94 4.97

Slovakia 3.13 4.78 5.59

Romania 3.06 4.55 -

Japan 4.80 4.95 5.21

Korea 2.34 2.16 4.65

USA 3.01 2.71 4.67

Canada 2.60 3.11 4.00

2003, US cents/kWh, Discount rate 5%, 40 year lifetime, 85% load factorSource: OECD/IEA NEA 2005.

Page 39: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

EfficiencyEfficiency and and CostsCosts of different of different Energy Energy SourcesSources

Page 40: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Impact of Impact of InvestementInvestement CostsCosts on on Power Generation Power Generation CostsCosts

Page 41: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Impact of Impact of ChangesChanges in in FuelFuel CostsCostson Power Generation on Power Generation CostsCosts

Page 42: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Impact of Emission Price of Impact of Emission Price of Power Generation Power Generation CostsCosts

Page 43: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Impact of Real Impact of Real InterestInterest Rate on Rate on Power Generation Power Generation CostsCosts

Page 44: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Impact of Impact of EconomicEconomic LifetimeLifetime on on Power Generation Power Generation CostsCosts

Page 45: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Power Power CapacityCapacity FactorFactor vs. Power vs. Power Generation Generation CostsCosts

Page 46: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

FuelFuel Prices Prices

Page 47: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Uranium Situation Worldwide

•• UraniumUranium demanddemand approxapprox. 68 000 . 68 000 tons/yeartons/year•• PrimaryPrimary uraniumuranium ((aboutabout 35 000 35 000 tonstons) ) fromfrom minesmines in Canada (30,5%), in Canada (30,5%),

Australia (22,2%), Kasachstan, Niger, Australia (22,2%), Kasachstan, Niger, RussianRussian FoederationFoederation, Namibia, Namibia•• SecondarySecondary uraniumuranium fromfrom disassembleddisassembled weaponsweapons, , thisthis partpart will will deacreasedeacrease in in

futurefuture•• NPP will NPP will increaseincrease, , thereforetherefore uraniumuranium priceprice will will increaseincrease in in futurefuture•• SinceSince 2003 2003 increaseincrease of of primaryprimary U U productionproduction (40 200 (40 200 tonstons producedproduced in in

2004)2004)•• UU33OO88 ((„„yellowyellow cakecake““) ) producedproduced fromfrom uraniumuranium mineral, 2.6 mineral, 2.6 lblb UU33OO88= 1kg = 1kg

U=26 US$ (10/2005)U=26 US$ (10/2005)•• WithoutWithout U U recylingrecyling oror inputinput fromfrom weaponsweapons U U reservesreserves forfor aboutabout 70 70 yearsyears•• USA USA releasedreleased recentlyrecently 9 9 tonstons of of weaponsweapons grade Pu grade Pu forfor MOXMOX•• In Europe 35 In Europe 35 NPPNPP‘‘ss areare operatingoperating on MOXon MOX•• MOX = MOX = DepletedDepleted UraniumUranium fromfrom enrichmentenrichment mixedmixed withwith 5% Pu (5% Pu (weaponsweapons

grade) grade) isis equivivalentequivivalent to 4,5% to 4,5% enrichedenriched uraniumuranium forfor NPP NPP useuse

Page 48: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

World MOX Panorama

Page 49: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

ConvertingConverting weaponsweapons material material intointoNPP NPP fuelfuel

WP Pu is blended with depleteduranium, thus 500 to

(equivalent to 20 000 bombs)WG Pu will supply300.000 to of LEU NPP fuel, US+Russianstockpiles of WG Pu about2000 to

Page 50: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

FuelFuel Price Price includingincluding Emission Emission PricePrice

Page 51: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

AnnualAnnual EfficienciesEfficiencies of Power of Power PlantsPlants

Page 52: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

SpecificSpecific Investment Investment CostsCosts of of Power Power PlantsPlants ((€€/kWh)/kWh)

Page 53: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Operation and Operation and MaintenanceMaintenance CostsCosts

Page 54: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Mining:Mining: 20 000 20 000 tonnestonnes of 1% of 1% uraniumuranium oreore

MillingMilling:: 230 tonnes of uranium oxide 230 tonnes of uranium oxide concentrate (with 195 t U)concentrate (with 195 t U)

ConversionConversion 288 288 tonnestonnes UF6 (UF6 (withwith 195 t U)195 t U)

EnrichmentEnrichment 35 35 tonnestonnes UF6 (UF6 (withwith 24 t 24 t enrichedenriched U) U) ––balancebalance isis ''tailstails''

Fuel Fuel fabricationfabrication 27 27 tonnestonnes UOUO22 ((withwith 24 t 24 t enrichedenriched U)U)

ReactorReactor operationoperation 7000 7000 millionmillion kWh kWh oror 7 7 TWhTWh of of electricityelectricity

SpentSpent fuelfuel27 27 tonnestonnes containingcontaining 240kg 240kg plutoniumplutonium, ,

23 t 23 t uraniumuranium (0.8% U(0.8% U--235), 720kg 235), 720kg fissionfission productsproducts, also , also transuranicstransuranics

TypicalTypical Fuel Fuel RequirementRequirement forfor a 1000 MWa 1000 MWee PWR per PWR per YearYear

Page 55: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Evolution of Nuclear Power Evolution of Nuclear Power PlantsPlants

Page 56: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

• 1990: 415 NPPs, capacity 338 375 MWe, producing in 1990 1 737 000 GWh (ATW 90/143)

• 2004: 441 NPPs, capacity 385 854 MWe, producing in 2004 2 738 000 GWh (ATW 05/264)

• Δ = +1 000 000 GWh or 1000 TWh• One 1000 MWe NPP produces appr. 7 TWh per year →

26 additional NPP produce approx. 182 TWh

LookingLooking backwardsbackwards and and forewardsforewards

Higher availbility, higher licensed power, longer fuel cycle, extended life time

Where do the remaining 818 TWh (= 116 NPP!!!) come from?

Page 57: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

•• AverageAverage availabiltyavailabilty increasedincreased betweenbetween 1991 and 1991 and 2007 2007 fromfrom 75.7% to 85.3%75.7% to 85.3%

•• Good Good experienceexperience allowedallowed life time life time extensionextension of of NPPsNPPs fromfrom 40 to 60 40 to 60 yearsyears

•• ManyMany NPPsNPPs uprateduprated thethe powerpower fromfrom 100% up to 100% up to 108%108%

•• Fuel Fuel cyclescycles increasedincreased byby optimizationoptimization fromfrom 12 12 monthsmonths up to 24 up to 24 monthsmonths

LookingLooking backwardsbackwards and and forewardsforewards

Page 58: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

•• Where:Where: OkloOklo in Gabonin Gabon•• When:When: 2 billion years ago2 billion years ago•• How many reactors:How many reactors: at least 17at least 17•• How long:How long: 2 million years of operation2 million years of operation•• Power: Power: approx.approx. 20 20 kWkWthth•• Natural reactor requirements:Natural reactor requirements:

–– higher enrichment of U: Uhigher enrichment of U: U--235 concentration in 235 concentration in UUnatnat at that at that time was 3.7 percent (today 0.7)time was 3.7 percent (today 0.7)

–– low concentration of neutron absorberslow concentration of neutron absorbers–– high concentration of a moderator: clean waterhigh concentration of a moderator: clean water–– penetrated Uranium mine penetrated Uranium mine –– critical size to sustain the fission reactioncritical size to sustain the fission reaction–– at least 4 tons of Uat least 4 tons of U--235 235 fissionedfissioned–– Approx. 100 billion of kWh produced (= 3 years production of Approx. 100 billion of kWh produced (= 3 years production of

a 1300 a 1300 MWeMWe NPP)NPP)•• Fission products:Fission products: 5.4 tons plus 1.5 tons Plutonium produced5.4 tons plus 1.5 tons Plutonium produced

World World OldestOldest Nuclear Nuclear ReactorReactor

Page 59: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

• www.curtin.edu.au/curtin/centre/waisrc/OKLO/index.shtml

World World OldestOldest Nuclear Nuclear ReactorReactor

Page 60: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

Nuclear Power Plants World WideAugust 2007

Nordamerika120 - -

Westeuropa 135 1 1

Süadamerika6 1 1 Afrika

2 - 1

Zentral- & Osteuropa 70 8 5

Asien105 5 29

in operationunder constructionplanned

Page 61: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute
Page 62: Module 01 - ATIati.ac.at/.../ssnm/nmkt/01_Nuclear_Energy_Overview.pdf · Module 01 Nuclear Engineering Overview Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute

ReferencesReferences

•• www.isiswww.isis--online.orgonline.org•• www.worldwww.world--nuclear.org>Informationnuclear.org>Information and and

IssueIssue BriefsBriefs