23
Lecture 20 ANNOUNCEMENTS HW#11 is due in 2 weeks on 11/20 HW#11 is due in 2 weeks, on 11/20. Review session: Fri. 11/9, 35PM in 306 Soda (HP Auditorium) Midterm #2 (Thursday 11/15 in Sibley Auditorium): Material of Lectures 1118 (HW# 710; Chapters 6,9,11) 4 pgs of notes (doublesided, 8.5”×11”), calculator allowed OUTLINE Review of MOSFET Amplifiers MOSFET Cascode Stage MOSFET Current Mirror EE105 Fall 2007 Lecture 20, Slide 1 Prof. Liu, UC Berkeley Reading: Chapter 9

Lecture 20 - University of California, Berkeleyee105/fa07/lectures/Lecture...Lecture 20 ANNOUNCEMENTS • HW#11 isis duedue inin 22 weeksweeks , onon 11/2011/20 . • Review session:

Embed Size (px)

Citation preview

Lecture 20

ANNOUNCEMENTS• HW#11 is due in 2 weeks on 11/20• HW#11 is due in 2 weeks, on 11/20.• Review session: Fri. 11/9, 3‐5PM in 306 Soda (HP Auditorium)• Midterm #2 (Thursday 11/15 in Sibley Auditorium):

• Material of Lectures 11‐18 (HW# 7‐10; Chapters 6,9,11)• 4 pgs of notes (double‐sided, 8.5”×11”), calculator allowed

OUTLINE• Review of MOSFET Amplifiers• MOSFET Cascode Stage• MOSFET Current Mirror

EE105 Fall 2007 Lecture 20, Slide 1 Prof. Liu, UC Berkeley

Reading: Chapter 9

Review: MOSFET Amplifier Design• A MOSFET amplifier circuit should be designed to

1. ensure that the MOSFET operates in the saturation region, p g ,2. allow the desired level of DC current to flow, and3. couple to a small‐signal input source and to an output “load”.

Proper “DC biasing” is required!(DC analysis using large‐signal MOSFET model)

• Key amplifier parameters:  (AC analysis using small‐signal MOSFET model)

Voltage gain A ≡ v /v– Voltage gain Av ≡ vout/vin– Input resistance Rin ≡ resistance seen between the input node 

and ground (with output terminal floating)O t t i t R i t b t th t t

EE105 Fall 2007 Lecture 20, Slide 2 Prof. Liu, UC Berkeley

– Output resistance Rout ≡ resistance seen between the output node and ground (with input terminal grounded)

MOSFET Models• The large‐signal model is used to determine the DC operating point (VGS, VDS, ID) of the MOSFET.p g p ( GS, DS, D)

• The small‐signal model is used to determine how the output responds to an input signal.

EE105 Fall 2007 Lecture 20, Slide 3 Prof. Liu, UC Berkeley

Comparison of Amplifier TopologiesCommon Source

L A 0

Common Gate

L A 0

Source Follower

0 A 1• Large Av < 0‐ degraded by RS

• Large Ri

• Large Av > 0‐degraded by RS

• Small Ri

• 0 < Av ≤ 1

• Large Rin– determined byLarge Rin

– determined by biasing circuitry

Small Rin‐ decreased by RS

• Rout ≅ RD

determined by biasing circuitry

• Small Rout 

• Rout ≅ RD

• ro decreases Av & Rout

• ro decreases Av & Routbut impedance seenlooking into the drain

‐ decreased by RS

• ro decreases Av & Rbut impedance seen

looking into the draincan be “boosted” by 

d ti

looking into the drain can be “boosted” by source degeneration

Rout

EE105 Fall 2007 Lecture 20, Slide 4 Prof. Liu, UC Berkeley

source degeneration

Common Source Stage

RRR ||

0=λ

S

D

Gv

Rg

RRRR

RRA+

−⋅

+=

21

21

1||||

0≠λ

in

m

RRRRR

g= 21 ||

0≠λ

( )RrgrRR +≅

EE105 Fall 2007 Lecture 20, Slide 5 Prof. Liu, UC Berkeley

Dout RR = ( )SOmODout RrgrRR +≅

Common Gate Stage

0=λ

( )mS RggRA ⋅=/1||

( ) DmGmS

v RgRgR

A+

=/1||

RR 1 0λSm

in Rg

R ≈

RR ( )RrgrRR +≅

0≠λ

EE105 Fall 2007 Lecture 20, Slide 6 Prof. Liu, UC Berkeley

Dout RR = ( )SOmODout RrgrRR +≅

Source Follower

0=λ 0≠λ

Sv

RA = 1SO

vRrA 1

||=

Sm

v

Rg

+1

RR

SOm

v

Rrg

||1+

Gin RR =Gin

RrR

RR

||||1=

=

SRR ||1=

EE105 Fall 2007 Lecture 20, Slide 7 Prof. Liu, UC Berkeley

Som

out Rrg

R ||||=Sm

out Rg

R ||

CS Stage Example 1• M1 is the amplifying device; M2 and M3 serve as the load.

Equivalent circuit for small-signal analysis, q g y ,showing resistances connected to the drain

||||||1A⎞

⎜⎛

1233

1

||||||1

|||||| OOOm

mv

rrrR

rrrg

gA⎠

⎜⎜⎝

−=

EE105 Fall 2007 Lecture 20, Slide 8 Prof. Liu, UC Berkeley

1233

|||||| OOOm

out rrrg

R =

CS Stage Example 2• M1 is the amplifying device; M3 serves as a source (degeneration) 

resistance; M2 serves as the load.  ; 2 

Equivalent circuit for small-signal analysis

01 =λ

331

2

||11O

Ov

rgg

rA+

−=

EE105 Fall 2007 Lecture 20, Slide 9 Prof. Liu, UC Berkeley

31 mm gg

CS Stage vs. CG Stage• With the input signal applied at different locations, these circuits 

behave differently, although they are identical in other aspects.

Common source amplifier Common gate amplifier

01 ≠λ

02 =λ

Ov

R

rA+

= 1

1[ ]{ }12221 ||)1( OOSOmmv rrRrggA ++−=

EE105 Fall 2007 Lecture 20, Slide 10 Prof. Liu, UC Berkeley

Sm

Rg

+2

Composite Stage Example 1• By replacing M1 and the current source with a Thevenin 

equivalent circuit, and recognizing the right side as a CG stage, q , g g g g ,the voltage gain can be easily obtained. 

0λ 0λ

11D

vRA+

=01 =λ 02 =λ

EE105 Fall 2007 Lecture 20, Slide 11 Prof. Liu, UC Berkeley

12 mm gg

Composite Stage Example 2• This example shows that by probing different nodes in a circuit, 

different output signals can be obtained.• Vout1 is a result of M1 acting as a source follower, whereas Vout2

is a result of M1 acting as a CS stage with degeneration.1

221

||11

||1O

m

in

out

r

rg

vv

+=

101 =λ

221

|| Omm

rgg

+

2

4332

||11

||||1

O

OOm

in

out

r

rrg

vv

+−=

1

EE105 Fall 2007 Lecture 20, Slide 12 Prof. Liu, UC Berkeley

221

|| Omm

rgg

+

NMOS Cascode Stage

( ) 12111 OOOt rrrgR ++= ( )211

12111

OOmout

OOOmout

rrgRrrrgR

≈++

EE105 Fall 2007 Lecture 20, Slide 13 Prof. Liu, UC Berkeley

• Unlike a BJT cascode, the output impedance is not limited by β.

PMOS Cascode Stage

( )211

12111

OO

OOOmout

rrgRrrrgR

≈++=

EE105 Fall 2007 Lecture 20, Slide 14 Prof. Liu, UC Berkeley

211 OOmout rrgR ≈

Short‐Circuit Transconductance• The short‐circuit transconductance is a measure of the 

strength of a circuit in converting an input voltage signal into g g p g gan output current signal:

i

0=

≡vin

outm v

iG0=outv

• The voltage gain of a linear circuit is outmv RGA −=

EE105 Fall 2007 Lecture 20, Slide 15 Prof. Liu, UC Berkeley

(Rout is the output resistance of the circuit)outmv

Transconductance Example

1mm gG =

EE105 Fall 2007 Lecture 20, Slide 16 Prof. Liu, UC Berkeley

1mm g

MOS Cascode Amplifier

[ ]outmv RGA −=[ ]

2211

21221 )1(

OmOmv

OOOmmv

rgrgArrrggA

−≈++−≈

EE105 Fall 2007 Lecture 20, Slide 17 Prof. Liu, UC Berkeley

PMOS Cascode Current Source as Load• A large load impedance can be achieved by using a PMOS 

cascode current source.

OOmoN

RrrgR 122≈

oPoNout

OOmoP

RRRrrgR

||433

=≈

EE105 Fall 2007 Lecture 20, Slide 18 Prof. Liu, UC Berkeley

MOS Current Mirror• The motivation behind a current mirror is to duplicate a 

(scaled version of the) “golden current” to other locations.

Current mirror concept Generation of required VGS Current Mirror Circuitry

( )221

THXoxnREF VVLWCI −⎟

⎠⎞

⎜⎝⎛= µ ( )21 2

1THXoxncopy VV

LWCI −⎟

⎠⎞

⎜⎝⎛= µ

( )( ) REFILWI / 1

1 =( ) 11/

2TH

REFX V

LWCIV +=

µ

2 REFL ⎠⎝ 12py L ⎠⎝

EE105 Fall 2007 Lecture 20, Slide 19 Prof. Liu, UC Berkeley

( ) REFREF

copy ILW

I/1( )1/oxn LWCµ

MOS Current Mirror – NOT!• This is not a current mirror, because the relationship between 

VX and IREF is not clearly defined.

• The only way to clearly define VXwith IREF is to use a diode‐

EE105 Fall 2007 Lecture 20, Slide 20 Prof. Liu, UC Berkeley

y y y X  REF connected MOS since it provides square‐law I‐V relationship. 

Example:  Current Scaling • MOS current mirrors can be used to scale IREF up or down 

– I = 0 2mA; I = 0 5mAI1 = 0.2mA; I2 = 0.5mA

:0=λ

EE105 Fall 2007 Lecture 20, Slide 21 Prof. Liu, UC Berkeley

Impact of Channel‐Length Modulation

0≠λ ( ) ( )[ ]satDDSTHXoxncopy VVVVLWCI −+−⎟

⎠⎞

⎜⎝⎛= ,1

2

11 1

21 λµ

( ) ( )[ ]THGSDSTHXoxn VVVVVLWC +−+−⎟

⎠⎞

⎜⎝⎛= 1

2

1

121 λµ

( ) ( )[ ]satDGSTHXREF

oxnREF VVVVLWCI λµ −+−⎟

⎠⎞

⎜⎝⎛= 1

21

,2

( ) [ ]THTHXREF

oxn VVVLWC λµ +−⎟

⎠⎞

⎜⎝⎛= 1

21 2

( )( )

( ) ( )( )

( )⎟⎠

⎞⎜⎜⎝

⎛+

−+=

++−+

= GSDSREF

THGSDSREFcopy V

VVILWLW

VVVVI

LWLWI

λλ

λλ

11

//

11

// 1111

1

EE105 Fall 2007 Lecture 20, Slide 22 Prof. Liu, UC Berkeley

( ) ( ) ⎠⎝ ++ THREFTHREF VLWVLW λλ 1/1/

CMOS Current Mirror

EE105 Fall 2007 Lecture 20, Slide 23 Prof. Liu, UC Berkeley