15
Lecture 19 OUTLINE Commong ate stage Source follower Reading: Chapter 7.37.4 EE105 Fall 2007 Lecture 19, Slide 1 Prof. Liu, UC Berkeley

Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

Embed Size (px)

Citation preview

Page 1: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

Lecture 19

OUTLINE• Common‐gate stageg g• Source follower

Reading: Chapter 7.3‐7.4

EE105 Fall 2007 Lecture 19, Slide 1 Prof. Liu, UC Berkeley

Page 2: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

Diode‐Connected MOSFETsDiode-connected NMOSFET Diode-connected PMOSFET

11

1o

mX r

gR = 2

2

1o

mY r

gR =

Small-signal analysis circuit Small-signal analysis circuit

N t th t th ll i l d l f PMOSFET i id ti l t

EE105 Fall 2007 Lecture 19, Slide 2 Prof. Liu, UC Berkeley

• Note that the small‐signal model of a PMOSFET is identical to that of an NMOSFET

Page 3: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

Common‐Gate Amplifier Stage• An increase in Vin decreases VGS and hence decreases ID.

The voltage drop across RD decreases V t increasesThe voltage drop across RD decreases  Vout increasesThe small‐signal voltage gain (Av) is positive. 

Dmv RgA =

EE105 Fall 2007 Lecture 19, Slide 3 Prof. Liu, UC Berkeley

Page 4: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

Operation in Saturation Region• For M1 to operate in saturation, Vout  cannot fall below Vb‐VTH.

Trade‐off between headroom and voltage gainTrade off between headroom and voltage gain.

EE105 Fall 2007 Lecture 19, Slide 4 Prof. Liu, UC Berkeley

Page 5: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

I/O Impedances of CG Stage (λ = 0)Small-signal analysis circuit for

determining output resistance, Rout

Small-signal analysis circuit fordetermining input resistance, Rin

Dout RR =in gR 1

=

EE105 Fall 2007 Lecture 19, Slide 5 Prof. Liu, UC Berkeley

mg

Page 6: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

CG Stage with Source Resistance

mg1

Small-signal equivalent circuit seen at input

in

mS

mX v

gR

gv 1+

=

R1For λ = 0:

S

Dv

Rg

RA+

= 111

+⋅=⋅=

SmDm

in

X

X

out

in

out

RgRg

vv

vv

vv

EE105 Fall 2007 Lecture 19, Slide 6 Prof. Liu, UC Berkeley

mg

Page 7: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

• The output impedance of a CG stage with source resistance is identical to that of CS stage with degeneration.g g

Small-signal analysis circuit fordetermining output resistance, Rout

( ) ( ) rRrgRRgrR ++=++= 11

EE105 Fall 2007 Lecture 19, Slide 7 Prof. Liu, UC Berkeley

( ) ( ) OSOmSSmOout rRrgRRgrR ++=++= 11

Page 8: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

CG Stage with Biasing• R1 and R2 establish the gate bias voltage.

• R3 provides a path for the bias current of M1 to flow.R3 provides a path for the bias current of M1 to flow.  

( )R /1||( )( ) Dm

Sm

m

in

out RgRgR

gRvv

⋅+

=/1||

/1||

3

3

EE105 Fall 2007 Lecture 19, Slide 8 Prof. Liu, UC Berkeley

Page 9: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

CG Stage with Gate Resistance• For low signal frequencies, the gate conducts no current.

Gate resistance does not affect the gain or I/O impedancesGate resistance does not affect the gain or I/O impedances.

EE105 Fall 2007 Lecture 19, Slide 9 Prof. Liu, UC Berkeley

Page 10: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

CG Stage ExampleSmall-signal equivalent

circuit seen at inputSmall-signal equivalent

circuit seen at output

( ) inSmm

in

S

mmX v

Rggv

R

ggv

21

21

11

11

11

++=

+=

12

1111

Om

SOmout rg

RrgR +⎟⎟⎠

⎞⎜⎜⎝

⎛≈

Smm

Rgg 21

+

DOSOmout RrRrgR ||||1111 ⎥⎦

⎤⎢⎣

⎡+⎟

⎞⎜⎜⎝

⎛≈( )

DmXoutv R

RgvvA 1

1 ++=⋅=

EE105 Fall 2007 Lecture 19, Slide 10 Prof. Liu, UC Berkeley

OSm

Omout g 2⎥⎦

⎢⎣ ⎠

⎜⎝( ) SmminX Rggvv 211 ++

Page 11: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

Source Follower Stage

1||<LOout RrvA 1

||1||

<+

=≡LO

m

LO

in

outv

Rrg

vA

Small-signal analysis circuit fordetermining voltage gain, Av

mg

Equivalent circuitg g g , v Equivalent circuit

( )( )( )

Lomout Rrvgv = 1outin vvv += 1

EE105 Fall 2007 Lecture 19, Slide 11 Prof. Liu, UC Berkeley

( )( )Looutinm Rrvvg −=outin 1

Page 12: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

Source Follower Example• In this example, M2 acts as a current source.

||

21

21

||1||

OO

OOv

rr

rrA+

=

EE105 Fall 2007 Lecture 19, Slide 12 Prof. Liu, UC Berkeley

211

|| OOmg

Page 13: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

Rout of Source Follower• The output impedance of a source follower is relatively low, 

whereas the input impedance is infinite (at low frequencies); p p ( q );thus, it is useful as a voltage buffer.

Small-signal analysis circuit fordetermining o tp t resistance Rdetermining output resistance, Rout

Lm

LOm

out Rg

Rrg

R ||1||||1≈=

EE105 Fall 2007 Lecture 19, Slide 13 Prof. Liu, UC Berkeley

Page 14: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

Source Follower with Biasing• RG sets the gate voltage to VDD; RS sets the drain current.

(Solve the quadratic equation to obtain the value of I )(Solve the quadratic equation to obtain the value of ID.)

Assuming λ = 0: 

( )2

21

THSDDDoxnD VRIVLWCI −−= µ

EE105 Fall 2007 Lecture 19, Slide 14 Prof. Liu, UC Berkeley

Page 15: Lecture 19 - University of California, Berkeleyee105/fa07/lectures/Lecture 19.pdf · Lecture 19 OUTLINE • Common‐gate stage • Source follower Reading: Chapter 7.3‐7.4 EE105

Supply‐Independent Biasing• If Rs is replaced by a current source, the drain current ID

becomes independent of the supply voltage VDDbecomes independent of the supply voltage VDD.  

EE105 Fall 2007 Lecture 19, Slide 15 Prof. Liu, UC Berkeley