25
Lecture 8 ANNOUNCEMENTS A summary of frequently misunderstood/missed concepts is A summary of frequently misunderstood/missed concepts is now posted on the class website, and will be updated regularly. Graded HW assignments can be picked up in lab (353 Cory). OUTLINE Please indicate your lab section on your HW assignments! OUTLINE BJT Amplifiers (cont’d) Commonemitter topology CE stage with emitter degeneration Impact of Early effect (r o ) EE105 Fall 2007 Lecture 8, Slide 1 Prof. Liu, UC Berkeley Reading: Finish Chapter 5.3.1

Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Lecture 8

ANNOUNCEMENTS• A summary of frequently misunderstood/missed concepts is• A summary of frequently misunderstood/missed concepts is 

now posted on the class website, and will be updated regularly.• Graded HW assignments can be picked up in lab (353 Cory).    

OUTLINE

Please indicate your lab section on your HW assignments!

OUTLINE• BJT Amplifiers (cont’d)

– Common‐emitter topology– CE stage with emitter degeneration– Impact of Early effect (ro)

EE105 Fall 2007 Lecture 8, Slide 1 Prof. Liu, UC Berkeley

Reading: Finish Chapter 5.3.1

Page 2: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Emitter Degeneration• By inserting a resistor in series with the emitter, we “degenerate” the CE stage.  g g

• This topology will decrease the gain of the amplifier but improve other aspects, such as linearity, and input 

dimpedance. 

EE105 Fall 2007 Lecture 8, Slide 2 Prof. Liu, UC Berkeley

Page 3: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Small‐Signal Analysis

• The gain of a degenerated CE stage = the total load resistance seen at the collector divided by 1/g plusresistance seen at the collector divided by 1/gm plus the total resistance placed in series with the emitter.   

RRg −−

Em

C

Em

Cmv

Rg

RRgRgA

+=

+= 11

mg

EE105 Fall 2007 Lecture 8, Slide 3 Prof. Liu, UC Berkeley

Page 4: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Emitter Degeneration Example 1

Note that the input impedance of Q2 is in parallel with RE. 

2||1πrR

RAE

Cv

+−=

EE105 Fall 2007 Lecture 8, Slide 4 Prof. Liu, UC Berkeley

21

|| πg Em

Page 5: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Emitter Degeneration Example 2

Note that the input impedance of Q2 is in parallel with RC.

E

Cv

R

rRA+

−= 2

1|| π

EE105 Fall 2007 Lecture 8, Slide 5 Prof. Liu, UC Berkeley

Emg 1

Page 6: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Input Impedance of Degenerated CE Stage

• With emitter degeneration, the input impedance is increased from r to r + (β+1)R ― a desirable effectincreased from rπ to rπ + (β+1)RE  a desirable effect.

A

iRiV

)1()( ∞=

β

Ex

in

xExx

RrvR

iRirv

)1(

)1(

++=≡

++=

β

β

π

π

EE105 Fall 2007 Lecture 8, Slide 6 Prof. Liu, UC Berkeley

Ex

in i)(βπ

Page 7: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Output Impedance of Degenerated CE Stage

• Emitter degeneration does not alter the output impedance if the Early effect is negligibleimpedance, if the Early effect is negligible.

A

Rv

V

⇒⎞

⎜⎜⎛

++

∞=

00

)(

π

x

Emin

RvR

vRvgr

vv =⇒⎠

⎜⎜⎝

++== 00 πππ

ππ

EE105 Fall 2007 Lecture 8, Slide 7 Prof. Liu, UC Berkeley

Cx

xout R

iR =≡

Page 8: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Degenerated CE Stage as a “Black Box”

AV ∞= )(

E

inmout Rgr

vgi++

= − )(1 1

• If gmRE >> 1, Gm is more linear.mout

m

Em

RgiG

Rgr

+≈≡

++

1

)(1 π

EE105 Fall 2007 Lecture 8, Slide 8 Prof. Liu, UC Berkeley

gm E , mEmin Rgv +1

Page 9: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Degenerated CE Stage with Base Resistance

)( ∞=AV

.=

βA

out

in

A

in

out

vv

vv

vv

)1( +++−

β

π BE

C

in

out

RRrR

vv

1++

−≈

BE

Cv RR

RA

EE105 Fall 2007 Lecture 8, Slide 9 Prof. Liu, UC Berkeley

1+++βE

m

Rg

Page 10: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Degenerated CE Stage: Input/Output ImpedancesInput/Output Impedances 

• Rin1 is more important in practice, because RB is often the output impedance of the previous stagethe output impedance of the previous stage.

AV ∞= )(

Ein

A

RRRRrR+++

++=)1(

)1(1

ββπ

Cout

EBin

RRRrRR

=+++= )1(2 βπ

EE105 Fall 2007 Lecture 8, Slide 10 Prof. Liu, UC Berkeley

Page 11: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Emitter Degeneration Example 3

2

1

1)||(RR

RRAB

Cv

++

−=

2

2

)1(1RRrR

g

Bin

m

+++=+

ββ

π

EE105 Fall 2007 Lecture 8, Slide 11 Prof. Liu, UC Berkeley

1|| RRR Cout =

Page 12: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Output Impedance of Degenerated CE Stage with VA<∞with VA

• Emitter degeneration boosts the output impedance.– This improves the gain of the amplifier and makes theThis improves the gain of the amplifier and makes the circuit a better current source. 

[ ])||)(1(

||)||(1

π

ππ

rRrgrRrRrrRgR

EOmOout

EOEmout

++=++=

EE105 Fall 2007 Lecture 8, Slide 12 Prof. Liu, UC Berkeley

[ ])||(1 π

π

rRgrR EmOout

EOmOout

+≈

Page 13: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Two Special Cases

Stage with explicit depiction of ro:

OmOoutE rrgrRrR )1( : )1 ≈+≈>> ππ β

OEE rRgRrR )1(:)2 +≈<<

EE105 Fall 2007 Lecture 8, Slide 13 Prof. Liu, UC Berkeley

OEmoutE rRgRrR )1( :)2 +≈<< π

Page 14: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Analysis by Inspection• This seemingly complicated circuit can be greatly simplified by first recognizing that the capacitor creates an AC short to ground, and gradually transforming the circuit to a known topology.

[ ][ ]EE105 Fall 2007 Lecture 8, Slide 14 Prof. Liu, UC Berkeley

[ ] 12 ||)||(1 RrrRgR Omout π+=[ ] Omout rrRgR )||(1 21 π+=11 || outout RRR =

Page 15: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Example: Degeneration by Another BJT

[ ] 1121 )||(1 OOmout rrrgR π+=

• Called a “cascode”, this circuit offers many advantages 

EE105 Fall 2007 Lecture 8, Slide 15 Prof. Liu, UC Berkeley

, y gthat we will study later...

Page 16: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Bad Input Connection

• Since the microphone has a very low resistance (connecting the base of Q1 to ground), it attenuates ( g 1 g )the base voltage and renders Q1 with a very small bias current.

EE105 Fall 2007 Lecture 8, Slide 16 Prof. Liu, UC Berkeley

Page 17: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Use of Coupling Capacitor

• A capacitor is used to isolate the DC bias network from the microphone and to short (or “couple”) thefrom the microphone , and to short (or  couple ) the microphone to the amplifier at higher frequencies. 

EE105 Fall 2007 Lecture 8, Slide 17 Prof. Liu, UC Berkeley

Page 18: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

DC and AC Analysis• The coupling capacitor is replaced with an open circuit for DC analysis, and then replaced with a shortcircuit for DC analysis, and then replaced with a short circuit for AC analysis.

Bin

OCmv

RrRrRgA

||)||(

=−=

π

OCout rRR ||=

EE105 Fall 2007 Lecture 8, Slide 18 Prof. Liu, UC Berkeley

Page 19: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Bad Output Connection• Since the speaker has an inductor with very low DC resistance, connecting it directly to the amplifier , g y pwould ~short the collector to ground, causing the BJT to go into deep saturation mode.

EE105 Fall 2007 Lecture 8, Slide 19 Prof. Liu, UC Berkeley

Page 20: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Use of Coupling Capacitor at Output• The AC coupling indeed allows for correct biasing.  However due to the speaker’s small inputHowever, due to the speaker s small input impedance, the overall gain drops considerably.

EE105 Fall 2007 Lecture 8, Slide 20 Prof. Liu, UC Berkeley

Page 21: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

CE Stage with Voltage‐Divider Biasing

OCmv rRgA )||(−=

OCout

in

rRRRRrR

|||||| 21

== π

EE105 Fall 2007 Lecture 8, Slide 21 Prof. Liu, UC Berkeley

Page 22: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

CE Stage with Robust Biasing 

∞=V ∞AV

)( ∞=AVC

v

R

RA+

−= 1

)( ∞AV

[ ]Ein

Em

RRRrR

Rg

++=

+

21 ||||)1(βπ

EE105 Fall 2007 Lecture 8, Slide 22 Prof. Liu, UC BerkeleyCout RR =

Page 23: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Elimination of Emitter Degeneration for AC Signalsfor AC Signals

• The capacitor C2 shorts out RE at higher frequencies to eliminate the emitter degenerationto eliminate the emitter degeneration.

)( ∞=AV

i

Cmv

RRrRRgA

=−=

21 ||||

)( A

Cout

in

RRRRrR

=21 ||||π

EE105 Fall 2007 Lecture 8, Slide 23 Prof. Liu, UC Berkeley

Page 24: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Complete CE Stage

ss

LCv RRR

RRRRRR

RRA+

⋅++

−=

21

21

21 ||||

||||1||

EE105 Fall 2007 Lecture 8, Slide 24 Prof. Liu, UC Berkeley

ssE

m

Rg +

++ 2121 ||1β

Page 25: Lecture 8 - University of California, Berkeleyee105/fa07/lectures...Note that the input impedance of Q2 is in parallel with RC. E C v R R r A + = − 2 1 || π EE105 Fall 2007 Lecture

Summary of CE Concepts

EE105 Fall 2007 Lecture 8, Slide 25 Prof. Liu, UC Berkeley