40
2013 YEAR IN REVIEW LEADING NEUROSCIENCES

Houston Methodist Neurosciences Annual Reports 2013

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Houston Methodist Neurosciences Annual Reports 2013

2013 Year in review

Leading neurosciences

Page 2: Houston Methodist Neurosciences Annual Reports 2013

A proud trAdition of excellence, with A new nAme.The Methodist Hospital is now Houston Methodist Hospital. This new name reflects the pride in who we are and where we are from. our commitment to advancing medicine with global impact begins in Houston, Texas, where we pioneer a better tomorrow through research, cutting-edge innovation and breakthroughs to rewrite the future of health.

thAt’s the difference between prActicing medicine And leAding it.

Page 3: Houston Methodist Neurosciences Annual Reports 2013

Leading Medicine: an Overview 3

Pursuing MedicaL discOveries 9

Breaking new grOund 19

advancing TechnOLOgy 25

educaTing fOr TOMOrrOw 35

contents

10 22

12

13

Page 4: Houston Methodist Neurosciences Annual Reports 2013

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

3 Leading Neurosciences

message from the Department of neurology Chair

Dear Colleagues,

The Houston Methodist Neurological Institute was established to provide a continuum of care from the point of diagnosis through reintegration with family and the community. In 2013, we have continued to distinguish ourselves globally as a center of excellence that is enhanced by our affiliation with Weill Cornell Medical College and provides the maximum level of diagnostic and clinical care.

This year we provided meaningful translational research that broadens our understanding of the major neurological challenges of neuromuscular diseases, dementing illness and stroke.

In patients with amyotrophic lateral sclerosis (ALS), we documented for the first time that the loss of protective T-regulatory lymphocytes accelerates disease, and that T-regulatory lymphocytes also appear to influence disease progression in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Our Myasthenia Gravis Clinic participated in a trial to assess the therapeutic value of methotrexate in treatment-refractory myasthenia gravis patients and also began a trial using antibodies that target pro-inflammatory white blood cells.

The Nantz National Alzheimer Center (NNAC) continued its studies of the complexities of Alzheimer’s disease, where evidence of certain preclinical biomarkers provides encouraging potential for the early detection and prevention of disease. In addition, the NNAC is partnering with our Concussion Center to achieve a better understanding of the relationships of traumatic brain injury, concussion and dementia.

Our Eddy Scurlock Stroke Center has continued its legacy of leading clinical research with the first multicenter trial of stem cell therapy in acute ischemic stroke. We also noted that intensive medical therapy, rather than intracranial stenting, was superior at our center as well as at other leading centers.

Our national and international status is only made possible by our extraordinary physicians and medical team members and the superlative care they render our patients, as well as our outstanding residents that perpetuate our educational mission to train the nation’s most promising leaders of neurology and translational neuroscience.

Sincerely,

Stanley H. Appel, MDDirector, Houston Methodist Neurological InstituteChair, Department of NeurologyPeggy and Gary Edwards Distinguished Endowed Chair in ALS ResearchProfessor of Neurology, Weill Cornell Medical College

Page 5: Houston Methodist Neurosciences Annual Reports 2013

message from the Department of neurosurgery Chair

Dear Colleagues, As the chair of the Department of Neurosurgery, it is my pleasure and privilege to work with this outstanding group of surgeons and describe our activities and accomplishments for 2013. We are one of the busiest neurosurgical programs in the nation. I’m pleased to report that we performed over 4,000 open operative cases, including treatments for cerebrovascular disorders, brain tumors, spinal disorders and functional neurosurgery.

Our new Cerebrovascular Center offers patients access to a multidisciplinary team of specialists, subspecialists and health professionals who are trained in the provision of care for all diseases of the cerebrovascular system, including brain aneurysms, brain arteriovenous malformations, spinal vascular malformations, moyamoya disease, cavernous malformations, carotid disease and stroke. Our team members have a track record of excellence in novel research and multicenter trials of cerebrovascular disease as well as many ongoing protocols. This year, we were first in the region to perform subcortical surgery and remove a deep brain lesion through an opening that was smaller than a dime. This center has also seen expansion in research with the opening of the Cerebrovascular Research Laboratory, which will evaluate the basic underlying mechanisms of these diseases.

Our new Spine Center also offers patients access to a multidisciplinary team of specialists, subspecialists and health professionals who are trained in the provision of all key spinal care services. Our surgeons are experts in using new, advanced image-guided, minimally-invasive spine procedures, which allows them to do intricate, complicated surgeries with better reliability and outcomes.

In 2013, the Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research continued to grow and expand. Researchers at the Peak Center have developed a way to deliver chemotherapy directly and selectively into the mitochondria — the energy source for all cells — of glioblastoma cells. In collaboration with Rice University’s Center for Nanoscale Science, researchers have invented a novel nanosyringe made from single wall carbon nanotubes that selectively kills these brain cancer cells by the delivery of chemotherapy directly into the mitochondrial DNA of these individual tumor cells.

We continue to operate one of the busiest, functional neurosurgery programs in the world, providing surgical options for Parkinson’s disease, movement disorders and chronic pain. This year, as in years previous, we maintained our commitment to training the next generation of neurosurgeons. Our outstanding neurosurgery residency program is accomplished by instruction in the highest standards of care, which is integrated throughout with our top-level research and leading-edge technology. The Department of Neurosurgery is truly leading medicine in regards to clinical care, research and education.

Yours Sincerely,

Gavin Britz, MBBCh, MPH, FAANSChair, Department of NeurosurgeryCo-Director, Houston Methodist Neurological InstituteProfessor of Neurosurgery, Weill Cornell Medical College

Page 6: Houston Methodist Neurosciences Annual Reports 2013

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

5 Leading Neurosciences

PIONEERING THE PATH: THE HOUSTON METHODIST NEUROLOGICAL INSTITUTE

The staff at the Neurological Institute offers unparalleled inpatient and outpatient care for

neurological disorders. Our physicians are among the finest specialists in the nation in

multiple aspects of neurological care. Both general and subspecialty expertise is provided

in state-of-the-art facilities.

The Neurological Institute is recognized as a research leader. Our teams are dedicated to

the development of new treatments and therapies for such neurological challenges as stroke,

Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), myasthenia

gravis, brain tumors, concussion, spinal disorders, brain aneurysms, brain arteriovenous

malformations, moyamoya disease, stuttering, Tourette’s syndrome and chronic inflammatory

demyelinating polyneuropathy (CIDP).

Through collaboration with Weill Cornell Medical College, the Neurological Institute

operates fully accredited neurology and neurosurgery residency programs to train our

future brightest and best neuroscientists, neurologists and neurosurgeons.

We are committed to our patients and to treat their neurological disorders with highly

skilled, compassionate care. Through the integration of neurological specialties, we are able to

provide the utmost in personalized care for complex neurological disorders, from diagnosis

to treatment to rehabilitation. This type of excellence in patient care is at the forefront

of all we do and all we strive to achieve.

The Houston Methodist Neurological Institute continues to be regarded as one of the leading neuroscience centers in the nation. In 2013, the institute was ranked No. 11 by U.S. News & World Report out of 1,370 hospitals and maintained its position as the top-ranked program in Texas for neurology and neurosurgery.

houston methoDist neurlogiCal institute 2013 at a glanCe

4,000open operative Cases

overover 75 physiCians anD neurosCientists

Countries representeD in patients treateD at houston methoDist neurologiCal institute

subspeCialities are representeD within the institute27

75209

CliniCal programs

Page 7: Houston Methodist Neurosciences Annual Reports 2013

Neurologystanley h. appel, Md Chair, Dept. of NeurologyMohammad al Baeer, Mddavid r. Beers, Phdigor cherches, Mddavid chiu, Mdhoward s. derman, Mdeverton edmondson, Mdrandolph evans, Mdstanley P. fisher, Mdsantosh a. helekar, Md, PhdJulia Jones, Mdeugene c. Lai, Md, PhdBrian Loftus, Mdsteven Lovitt, MdJoseph c. Masdeu, Md, Phdgreg McLauchlin, MdBelen Pascual, Phd Milvia y. Pleitez, Mdkenneth Podell, Phdgustavo c. román, Mddavid B. rosenfield, MdPankja satija, Mdericka P. simpson, MdBryan M. spann, dO, Phdabraham P. Thomas, Mdron Tintner, Mdamit verma, Mdaparajitha verma, MdJohn volpi, MdOlga waln, Mdweihua Zhao, Md, Phd

Neuroradiologydavid carrier, Mdsteve fung, Mdhani haykal, Mddavid king, MdJonathan Levine, MdMarlin sandlin, Mdsanjay singh, MdJohn surratt, Md

Neuropathologysuzanne Powell, Mdandreana rivera, Mdhidehiro Takei, Md

Neurosurgerygavin w. Britz, MBBch, MPh, faans Chair, Dept. of Neurosurgeryalfonso aldama-Luebbert Mddavid s. Baskin, MdJ. Bob Blacklock, Mddavid cech, MdMario dulay, Phdrichard g. federley, Phdeugene v. golanov, Md, Phdrobert g. grossman, Mdrichard harper, MdPaul holman, Mdchristof karmonik, PhdTanvi kumar, Msedward Murphy, MdPamela new, Mdwarren Parker, Mdrob g. Parrish, Md, Phdandrew c. roeser, MdMartyn sharpe, Phdrichard simpson Jr., Md, Phdhanna Tang, MdTodd Trask, MdJonathan Zhang, Mdg. alexander west, Md, Phd

Interventional NeuroradiologyOrlando diaz, Mdrichard klucznik, Md

Neuropsychiatryranjit chacko, Mdalric d. hawkins, Md

NeurorehabilitationMonika s. ayyar, MdPurvi desai, MdTeresa d. kaldis, MdJenny M. Lai, MdLawrence h. nguyen, Md

Neurological Intensive Carerichard day, Mddrew Ludwig, dOanakara sukumaran, MdMichael Zwillman, Md

Neuro-ophthalmologyandrew g. Lee, Mdsushma yalamanchili, Md

houston methoDist neurlogiCal institute meDiCal staff

6 Leading Neurosciences

Page 8: Houston Methodist Neurosciences Annual Reports 2013

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

7 Leading Neurosciences

NEw HIRES

Gavin W. Britz, MBBCh, MPH, FaanS, was named chair of the Department of Neurosurgery at Houston Methodist Hospital and co-director of the Houston Methodist Neurological Institute. Dr. Britz is one of the most experienced cerebrovascular surgeons in the United States in the treatment of aneurysms using microsurgical and endovascular techniques. His clinical practice largely focuses on the treatment of disorders of the cerebrovascular system and brain tumors including the skull base. Dr. Britz’s research focuses on understanding the cerebral microcirculation and in the evaluation of novel tools to treat a wide variety of problems such as brain aneurysm and skull base tumors. Prior to joining Houston Methodist, Dr. Britz served as director of the Cerebrovascular Center and associate professor of neurosurgery at Duke University Medical Center in Durham, North Carolina.

JoSePH C. MaSdeu, Md, Phd, the first physician-scientist to detect an early imaging feature of Alzheimer’s disease, joined as director of the Nantz National Alzheimer Center. Dr. Masdeu brings more than 30 years of experience as a clinician, researcher and leader in Alzheimer’s and neuroimaging, having led neurology departments in New York and his native Spain. He comes from the National Institutes of Health, where he served the past six years as a senior staff physician and scientist in the Section of Integrative Neuroimaging of the Clinical Brain Disorders Branch. Dr. Masdeu’s vision for the Nantz National Alzheimer Center is its elevation in status to become the preeminent center in the United States in the prevention of Alzheimer’s disease, while also conducting research to bring better therapeutic approaches to patients who already experience symptoms from this disease.

euGene v. Golanov, Md, Phd, was named director of Cerebrovascular Research Laboratory. Dr. Golanov is a neuroscientist and physiologist experienced in in vivo and in vitro experimental and clinical research. He has extensive firsthand experience and expertise in multidisciplinary and integrative research in various areas of neurophysiology in animals and humans: He previously served as program manager of neuroscience and subject matter expert in neuroscience/neurotrauma at the Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Material Command/Tunnell Governmental Services, Bethesda, MD. Included among the nationwide initiatives he has launched are the biology of vascular malformations of the brain and multidisciplinary translational research in critical care.

riCHard G. Federley, Phd, joined the Department of Neurosurgery as research scientist. Dr. Federley has served as a chemistry instructor and invited lecturer. As a research investigator, he has special interests in DNA replication, enzyme kinetics, site specific DNA modification and purification, mass spectrometry, methods development, surface plasmon resonance and in vitro microscopy and will be evaluating cerebral microcirculation.

Page 9: Houston Methodist Neurosciences Annual Reports 2013

aBraHaM tHoMaS, Md, vascular neurologist, joined the Eddy Scurlock Stroke Center after completing his neurovascular clinical fellowship at University of California San Francisco. Dr. Thomas’ clinical interests include the evaluation of both critically and acutely hospitalized patients with cerebro-vascular disease and outpatients with cerebrovascular disease, including the clinical sequelae of ischemic and hemorrhagic stroke. His primary research interests include: pathophysiological mechanisms of stroke, epidemiological analysis of risk factors of stroke, preventive measures of stroke and the acute treatment of stroke.

olGa Waln, Md, joined the Movement Disorders & Neuro-rehabilitation Center. Dr. Waln is a fellowship-trained movement disorders neurologist. Her primary clinical and research interests are the evaluation and management of patients with Parkinson’s disease, tremors, dystonia, chorea, tics and gait disorders, including botulinim toxin treatment, deep brain stimulation and intrathecal baclofen pump treatment.

andreW lee, Md, chair of the Department of Ophthalmology and david BaSkin, Md, director of the Department of Neurosurgery Residency Training Program and director of the Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, were invited by NASA to review scientific proposals for possible application in future space flights. The group studied the phenomenon of elevated intracranial pressure in space and possible countermeasures to treat it. This will become an important problem with longer space missions that include extended periods on the international space station and a flight to Mars, which would be a 30-month mission. Both were selected for expertise in their respective fields and experience with some of the unique neuro-ophthalmologic problems seen in NASA astronauts after long-duration space flight. The Cullen Foundation and Mission Connect, a project of the TIRR Foundation, awarded nearly $700,000 to a brain-machine interface project that University of Houston (UH) and Houston Methodist Hospital Research Institute scientists hope will someday help paraplegics walk. The funds will be used to purchase Rehab Rex, the latest version of a robotic exoskeleton that helps legs move. UH Professor of Electrical and Computer Engineering, Jose Luis Contreras-Vidal, PhD, and Houston Methodist Neurological Institute neurosurgeon, roBert G. GroSSMan, Md, are working on perfecting a non-invasive brain-machine interface technology that patients can use to operate an advanced robotics system such as the exoskeleton. The Eddy Scurlock Stroke Center, led by david CHiu, Md, was awarded the Get With the Guidelines – Stroke Gold Plus Achievement Award by the American Heart Association. riCHard kluCznik, Md, was the recipient of the Joe Niekro Foundation’s Joe Niekro Medical Humanitarian of the Year. The award was in recognition of his research advancements and treatments of cerebral aneurysms. roBert G. GroSSMan, Md, professor of neurosurgery at the Houston Methodist Hospital, received the 2013 Distinguished Service Award of The Society of University Neurosurgeons for his decades of service as a clinician, teacher and researcher. HouSton MetHodiSt neuro intenSive Care unit was recognized by the American Association of Critical-Care Nurses (AACN) with a Gold Beacon Award for Excellence. Recipients of AACN’s Gold Beacon Award demonstrate excellence in sustained unit performance and patient outcomes. The Houston Methodist Neuro ICU was the only unit in Texas and one of only four in the nation to achieve this standard. The United States Department of Defense awarded a two-year $2 million peer-reviewed grant to support the research programs of the North American Clinical Trials Network (NACTN) for Treatment of Spinal Cord Injury. NACTN is a consortium of university hospital neurosurgery departments, sponsored by the Christopher & Dana Reeve Foundation, with the goal of bringing promising therapies for spinal cord injury into clinical trials. roBert G. GroSSMan, Md, professor of neurosurgery, is the principal investigator. CHriStoF karMonik, Phd, was awarded a grant from Siemens for his research project, Evaluation of Computational Fluid Dynamics Research Platform for Analyzing Blood Flow in Aneurysms. Gavin W. Britz, MBBCh, MPH, FaanS, was the recipient of the Joe Niekro Foundation’s research grant. Jenny Henkel, Phd and dave BeerS, Phd, were awarded the 2013 Moran Foundation Publication Award by the Research Institute for their outstanding translational research paper, Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival, which was published in EMBO Molecular Medicine.

ACCOLADES

8 Leading Neurosciences

Page 10: Houston Methodist Neurosciences Annual Reports 2013

9 Leading Neurosciences

THE MANy FACETS OF ALzHEIMER’S DISEASEThe Nantz National Alzheimer Center (NNAC) continues to be in the vanguard of identification and interpretation of Alzheimer’s disease from the anatomical, biological and molecular levels. Sophisticated neuroimaging technology and unique applications of that technology provide researchers and physicians with a preclinical window into the brain.

Studies at NNAC include identification of the neurobiological precursors of Alzheimer’s

disease and ongoing attempts to understand the molecular etiology of the neuropathology

in early-stage, largely asymptomatic disease.

Positron emission tomography (PET) has shown through the use of biomarkers that abnormal

amounts of beta amyloid are evident in the brain as many as 20 years before initial symptoms

develop. NNAC researchers are now studying a new biomarker that will bind with abnormal

tau protein in the brain.

“When abnormal tau begins to increase in the brain, neurons tend to die, so we know

that the two are linked,” says Joseph Masdeu, MD, PhD. Masdeu was recruited from

the Intramural Research Program of the National Institutes of Health as director of

the Nantz National Alzheimer Center. He will lead research on Alzheimer’s disease and

neuroimaging at the NNAC.

Masdeu and others hypothesize that removal of harmful proteins before irreversible

damage occurs may affect the progression of the disease. However, Alzheimer’s is not

caused by an overabundance of amyloid or tau alone.

“We know these are two of many potential causative factors. Inflammation may also play

a significant role. We are developing biomarkers for the inflammatory response in Alzheimer’s

pathology, investigating potential dysfunction within the blood-brain barrier and T cell

infiltration of the brain. Alzheimer’s disease is complex, and we do not yet have a complete

understanding of its neurobiology,” says Masdeu.

PET scans administered with a radioactive tracer known as fludeoxyglucose (PET-FDG)

provide NNAC researchers with a live picture of metabolic brain activity. “These technologies

allow us to study the neurobiology of the brain and gain insight into the presymptomatic

stages of the disease. Ultimately, these technologies may have an impact on our current

therapeutic approach, changing it from a symptomatic track to a preclinical one,” says Masdeu.

Researchers at NNAC are also looking at the role of the temporal pole in Alzheimer’s disease

and related frontal temporal dementias. The temporal pole is a large area of the brain

that has historically been regarded as “enigmatic” due to its unknown function.

Belen Pascual, PhD, a research scientist at NNAC, recently published a landmark study

in Cerebral Cortex that used resting-state functional connectivity (RSFC) analysis to

map the topography of functional networks anchored in the temporal pole. Her study

shows that the temporal pole acts as a cortical convergence zone. This region of the brain

is specifically affected by the frontotemporal dementias, another set of diseases which,

like Alzheimer’s, causes cognitive impairment in older adults.

Gustavo Roman, MD, and Brian Spann, DO, PhD, are expanding their clinical efforts at the

NNAC to help define epidemiological factors initiating and amplifying disease progression.

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

PET scans administered with a radioactive tracer known as fludeoxyglucose (PET-FDG) allows NNAC researchers and physicians to study metabolic activity of the brain.

Page 11: Houston Methodist Neurosciences Annual Reports 2013

“when abnormal tau begins to increase in the brain, neurons tend to die. so we know that the two are linked.”

Joseph masdeu, mD, phD Director, nantz national alzheimer Center

Director, Department of neuroimaging graham family Distinguished endowed Chair in neurological sciences

Page 12: Houston Methodist Neurosciences Annual Reports 2013

Leading Neurosciences11

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

One focus is augmenting the individual’s manual control

of the exoskeleton through a non-invasive EEG-based

brain-machine interface (BMI). The BMI is equipped with

algorithms used to extract information from the EEG that

signals motor intent, such as “start”, “stop”, “turn right”,

and “turn left.”

“Our research is focused on understanding the organization

of motor circuits for walking in humans. We know that

central pattern generators in the lumbosacral spinal cord

are important, but equally vital are the brainstem, cerebellum

and motor cortex,” says Robert Grossman, MD, professor

of neurosurgery and co-founder of the Houston

Methodist Neurological Institute.

“Neuroimaging studies indicate that cortical areas play

an important role in the generation of bipedal gait,

although, it is still not understood how the brain initiates

walking and anticipates foot placement,” says Grossman.

The feasibility of BMI technology has been demonstrated in

primates and humans. BMI decoding of human gait has been

demonstrated in studies by the UH co-investigators in

this trial.

“The hope is that this study can pave the way for Rex to

safely bring mobility and independence to paraparetic

and paraplegic individuals and thereby improve quality

of life,” says Grossman.

REX: THE RObOTIC EXOSkELETON

The BMi is equipped with algorithms that are used to extract information from the individuals’ eeg that signal motor intent such as “start”, “stop”, “turn right”, and “turn left.”

Through a research grant from the Cullen Foundation and Mission Connect, a project of the TIRR Foundation, University of Houston (UH) Professor of Electrical and Computer Engineering, Jose Luis Contreras-Vidal, PhD, and Houston Methodist Neurological Institute neurosurgeon, Robert G. Grossman, MD, are studying the use of a robotic exoskeleton, Rex, that may someday help paraplegics walk after spinal cord injuries.

Page 13: Houston Methodist Neurosciences Annual Reports 2013

“The hope is that this study can pave the way for Rex to safely bring mobility and independence to paraparetic and paraplegic individuals and thereby improve quality of life.”

robert grossman, Md co-founder, houston Methodist neurological institute Professor of neurosurgery, weill cornell Medical college

12Leading Neurosciences

Page 14: Houston Methodist Neurosciences Annual Reports 2013

Leading Neurosciences13

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

AMyOTROPHIC LATERAL SCLEROSIS: FORGING A PATH TO TREATMENTThe Houston Methodist MDA/ALS Center is the first multidisciplinary care center in the U.S. for individuals afflicted with amyotrophic lateral sclerosis (ALS). Here, patients with ALS benefit from the most progressive diagnostic approaches, innovative treatments and compassionate support for themselves and their family.

researchers at the Peggy and gary edwards aLs Laboratory in memory of Jeannette M. (sonja) edwards

Page 15: Houston Methodist Neurosciences Annual Reports 2013

The MDA/ALS team of researchers and physicians aggressively

search for clues to this enigmatic disease through their

participation in several promising research trials. One recent

study investigated translating data gained from the immune system

of ALS mice and replicating it in individuals with sporadic ALS.

“What the study showed was that during the slow phase of the

disease, mice had a number of protective immune parameters,”

says Stanley Appel, MD, director of the Houston Methodist

Neurological Institute and chair of the Department of Neurology.

Neuroprotection in the slow phase of disease in ALS mice is

mediated by anti-inflammatory innate immune M2 microglia

and both Th2 lymphocytes and regulatory T-lymphocytes with

high FoxP3, a transcription factor required for T-regulatory

function. “Studies led by Dr.David Beers have shown that as the

disease becomes more aggressive, the microglia shift to a

proinflammatory M1 phenotype and the T cells shift to a Th1

phenotype with the release of toxic free radicals, cytokines,

and chemokines. When T-regulatory cells are injected into

affected mice, the mice live 88 percent longer,” says Appel.

Human replication of this immunological response in the

ALS mice was confirmed in our laboratory with a study led

by Jenny Henkel, PhD, and published in EMBO Molecular

Medicine. “Our ALS studies documented for the first time

that patients with decreased numbers of T-regulatory cells

had faster disease progression and decreased survival. Thus

the loss of protective T-regulatory lymphocytes shortens

survival; the therapeutic goal is to enhance these

neuroprotective cells” says Appel.

Houston Methodist is a participating site in a multicenter trial

that is testing for benefit of fingolimod in the promotion of T cells

in ALS. Fingolimod (Gilenya®) is an immuno-modulating

agent that is FDA-approved for use in multiple sclerosis.

“Fingolimod is helpful in MS; we are also looking at this as a

phase I trial – a very short study – to look for safety with the

hope of initiating our own multicenter, placebo-controlled

trial,” says Ericka Simpson, MD, director of the ALS Clinical

Research Division and co-director of the MDA/

Neuromuscular Clinic.

“Dr. Weihua Zhao has been investigating the protective

effects of regulatory T-lymphocytes on proinflammatory

microglia. Her work has demonstrated that during the early

injury stage of the disease, neurons signal the microglia

to be neuroprotective and T-regulatory cells help promote

the neuroprotective functions of microglia,” says Appel.

With further neuronal injury, microglia shift to a

proinflammatory toxic phenotype; T-regulatory cells

are no longer available to modulate the microglia, and

toxic signals are released that kill the damaged neurons.

“As we put all of this together, we can now say that

a prominent role for T-regulatory cells in ALS models

and possibly in human ALS itself, is to modulate

microglial functions and thereby promote neuronal

protection and repair. This important discovery will

contribute to our overall understanding of this

devastating disease,” says Appel.

“Our aLs studies documented for the first time that patients with decreased numbers of T-regulatory cells had faster disease progression and decreased survival. Thus the loss of protective T-regulatory lymphocytes shortens survival; the therapeutic goal is to enhance these neuroprotective cells.”

stanley appel, mD Director, houston methodist neurological institute Chair, Department of neurology peggy and gary edwards Distinguished endowed Chair in als research

professor of neurology, weill Cornell medical College

14Leading Neurosciences

Page 16: Houston Methodist Neurosciences Annual Reports 2013

Leading Neurosciences15

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

The Houston Methodist MDA/Neuromuscular Clinic is home to the Myasthenia Gravis Clinic - a state-of-the-

art care and research center for myasthenia gravis, an autoimmune disease that causes weakness and fatigue of

muscles under voluntary control. Myasthenia gravis currently has no cure, however, immune-modulating

treatment has proven to stabilize the disease.

Recently, the clinic participated in a trial to assess the viability of methotrexate, a well-established immunosuppressive

agent, as a therapeutic option for treatment-refractory myasthenia gravis patients. Results of the phase II tests were positive.

Currently, the clinic is participating in two studies investigating the use of bleimumab (Benlysta®) and eculizumab

(Soliris®) as treatment options for myasthenia gravis. “These monoclonal antibodies that target white cells have also

been used as treatment for patients who have not responded well to standard therapies, such as steroids, intravenous

immunoglobulin (IVIG) and plasmapheresis. We are looking to expand our research in this area,” says Ericka Simpson,

MD, director of the ALS Clinical Research Division and co-director of the MDA/Neuromuscular Clinic.

In addition to these research efforts, Houston Methodist launched a patient-supported education conference to assist

patients and their families in coping with the chronicity of living with myasthenia gravis. In its fourth year, the conference

hosts guest speakers who are leaders in the field of myasthenia gravis care and research. “We provide education about

the disease to patients and health care professionals, including how to avoid exacerbating factors,” says Simpson.

The Houston Methodist MDA/Neuromuscular Clinic continues to lead in the research of chronic inflammatory

demyelinating polyneuropathy, or CIDP. CIDP is an immune-mediated neuropathy that causes weakness, falls,

numbness, and lack of balance. Similar to myasthenia gravis, CIDP is routinely treated with intravenous

immunoglobulin (IVIG) and steroids.

A trial initiated at the Neuromuscular Clinic attempts to look at biomarkers, specifically T-regulatory cells. “There is

evidence that T-regulatory cells decrease when disease activity is high and increase with the administration of IVIG,

showing correlation with improvement,” says Simpson.

Although IVIG is already FDA-approved for the treatment of CIDP, another study at the clinic is evaluating subcutaneous

administration. “There is an impetus to find a way to administer immunoglobulin subcutaneously since it is currently

given intravenously, which requires a nurse, often an infusion center and the drug itself is quite expensive,” says Simpson.

STAbILIzING THE INSTAbILITy OF MyASTHENIA GRAvIS

DEMyELINATING POLyNEUROPATHy

“There is evidence that T-regulatory cells decrease when disease activity is high and increase with the administration of ivig, showing correlation with improvement.”

ericka simpson, Md director, neurology residency Program director, neuromuscular Medicine fellowship Program co-director, Mda/neuromuscular clinic director, aLs clinical research division Professor of neurology, weill cornell Medical college

Page 17: Houston Methodist Neurosciences Annual Reports 2013

TARGETING THE SLEEPING bRAINThe Houston Methodist Neurological Institute is one of the few neurological centers that offers asleep deep brain stimulation (DBS) for patients with movement disorders such as Parkinson’s disease and dystonia. With the use of a real-time MRI scanner, neurosurgeons are able to locate the target area within the brain, see the electrodes as they enter the brain and guide the electrodes to the exact target area while the patient is asleep.

Once patients are asleep, burr holes are drilled for placement

of the electrodes and small towers are mounted that will

display markers on the MRI scanner. “Towers indicate how to

create a safe trajectory to our target. Once the scans indicate

that we’re on target, we make the final placement with the

electrode and scan to see if the electrode is properly set,” says

Richard Simpson, Jr, MD, PhD, neurosurgeon and

renowned DBS expert.

Deep brain stimulation is achieved through an implanted

pacemaker that sends electrical impulses to targeted areas

in the brain via the implanted electrodes. Although the

mechanism of action is not fully understood with DBS,

it is hypothesized that in Parkinson’s disease, for example,

the stimulation may induce chemical changes in the brain.

Long-term stimulation may actually induce DNA changes

in cellular activity.

DBS has been shown to reduce stiffness, tremors and

dyskinesia in Parkinson’s disease and other forms of dystonia.

Parkinson’s disease and dystonia are the only two movement

disorders that have received FDA approval for DBS treatment.

“The potential for asleep DBS, especially deep-seated brain

procedures, is substantial. This would include tumor biopsies,

epilepsy surgery, lesionectomies and the removal of deep

hematomas,” says Simpson.

“The potential for asleep dBs, especially deep-seated brain procedures, is substantial.

This would include tumor biopsies, epilepsy surgery, lesionectomies and the removal of deep hematomas.”

richard simpson, Jr, Md, Phd Professor of neurosurgery, weill cornell Medical college

Leading Neurosciences16

Page 18: Houston Methodist Neurosciences Annual Reports 2013

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

Leading Neurosciences17

stem cells And stroke therApy

Using a biologic product that is manufactured from human stem cells, scientists and physicians are conducting a

Phase II study on the safety and efficacy of stem cells and stroke.

The success of any stroke therapy is predicated on the time lapse between the occurrence of stroke and start of medical care.

Tissue plasminogen activator (TPA) therapy must be administered within the first 4.5 hours after stroke onset. Outcomes are

better the earlier TPA is given. Statistics show that only approximately 15 percent of patients arrive in time for treatment

within 4.5 hours of their stroke.

“This trial is enrolling patients up to 48 hours post ischemic stroke, regardless of TPA administration. The aim of our study,

the first multicenter stem cell trial for stroke, is to find a signal that stem cell therapy improves long-term neurological

outcomes for the patient with acute ischemic stroke,” says David Chiu, MD, professor of neurology and medical director

of the Eddy Scurlock Stroke Center.

“The stem cells seem to work at blocking an inflammatory response that worsens ischemic injury to the brain,” says

John Volpi, MD, director of the Cerebral Blood Flow Lab and co-director of the Eddy Scurlock Stroke Center.

“Stem cells may work through a combination of cellular mechanisms: production of growth factors, reduction of inflammation,

improvement of local circulation through angiogenesis, protection of neurons that are at risk in stroke, and enhancing recovery

of damaged cells. This is how we think stem cell treatments will potentially benefit the patient with stroke,” says Chiu.

intrAcrAniAl stenting“Over the last decade, Houston Methodist has been

defining the role of carotid and intracranial stenting,”

says Chiu. Physicians at Houston Methodist helped

lead the Stenting and Aggressive Medical Management

for Preventing Recurrent stroke in Intracranial Stenosis

(SAMMPRIS) trial, which evaluated stenting treatments

versus aggressive medical therapy for stroke prevention in

patients with symptomatic intracranial arterial stenosis.

“We were surprised to discover that it was the outcomes

of the intensive medical therapy arm rather than the

outcomes of intracranial stenting that were superior at

the more experienced centers. The novel finding in

SAMMPRIS turns out to be the medical protocol for

treating this population of patients. This protocol is

now referred to as the SAMMPRIS medical management

regimen for stroke prevention,” says Chiu. “It’s interesting

that experienced comprehensive stroke centers such as

our Eddy Scurlock Stroke Center can offer value beyond

cutting-edge surgical and endovascular interventions.”

DISCOvERING INNOvATIONS IN STROkE THERAPyThe Eddy Scurlock Stroke Center continues its legacy of leading clinical research with the first multicenter, double-blind, randomized, placebo-controlled trial that tests the efficacy of stem cell therapy and stroke.

Page 19: Houston Methodist Neurosciences Annual Reports 2013

“we were surprised to discover that it was the outcomes of the intensive medical therapy arm rather than the outcomes of intracranial stenting that were superior at the more experienced centers.”

david chiu, Md Medical director, eddy scurlock stroke center

Professor of neurology, weill cornell Medical college

Page 20: Houston Methodist Neurosciences Annual Reports 2013

Leading Neurosciences19

ADvANCING CEREbROvASCULAR CARE2013 marked the creation of the Houston Methodist Cerebrovascular Center. Led by Dr. Gavin Britz, MBBCh, MPH, FAANS, chair of the Department of Neurosurgery and co-director of the Houston Methodist Neurological Institute, the strength of the center lies in the years of experience and unique skills of its physicians, including Richard Klucznik, MD, Jonathan Zhang, MD, and Orlando Diaz, MD. “The combined experience of our team is unsurpassed. Beyond brain aneurysms, we offer expertise in arteriovenous malformations, dural and spinal fistulas, and many additional areas of neurosurgical services and research efforts. I feel we are virtually untouchable in what we can offer patients.” says Britz.

neuronAvigAtion: minimizing brAin injury Within the Cerebrovascular Center, specialists are advancing

surgical techniques during operative procedures in order to

reduce the potential of brain injury that can result in speech,

visual or motor dysfunction. When tumors lie close to what

neurologists refer to as the “eloquent cortex,” conscious patient

response is vital. “I believe that the best way to minimize brain

injury is to, first, use neuronavigation to delineate the tumor,

then use cortical and subcortical mapping and sometimes,

when indicated, perform the operation while the patient is

awake, which allows us to stimulate and observe the patient

neurologically,” says Britz.

Awake craniotomies are not standard neurosurgical procedures.

“We use an electrophysiological probe to stimulate different areas of

the brain to determine exactly where speech or motor movement

activity is located. Then we resect the tumor. With this technique,

we are able to give our patients the best technology and skills

available and achieve optimal results,” says Britz.

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

Page 21: Houston Methodist Neurosciences Annual Reports 2013

stAte-of-the–Art endovAsculAr therApy for intrAcrAniAl AneurysmsIntracranial aneurysm patients at the Cerebrovascular

Center receive the most sophisticated endovascular and

microvascular therapy available.

“In endovascular therapy, we offer patients simple coiling,

balloon-assisted coiling, stent-assisted coiling and flow

diversion,” says Britz. Microsurgical options for treatment of

brain aneurysms include simple clipping, clip reconstruction,

adenosine-induced transient asystole and cerebral bypasses.

“We are creating a state-of-the-art cerebrovascular laboratory

now to investigate causes of poor outcomes post aneurysm

rupture. We will be exploring not only the clinical side of

treatment, but also the basic science of stroke and post

subarachnoid hemorrhage,” says Britz.

20Leading Neurosciences

Page 22: Houston Methodist Neurosciences Annual Reports 2013

Leading Neurosciences21

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

THE MINIMALLy-INvASIvE PATH OF THE FUTUREPioneering the use of new techniques and state-of-the-art, sophisticated technology, the Cerebrovascular Center is furthering the evolution of surgery within the brain toward more minimally-invasive procedures. With leading-edge applications, neurosurgeons are now able to practice what is termed a “six-pillared approach” for the minimally-invasive removal of deep subcortical tumors and lesions.

“The six-pillared approach encompasses mapping of

the brain, often with three-dimensional replication,

to plan the trajectory of entry. We make a small opening

no larger than a dime into the sulcus, which is a natural

cleft in the brain. We maneuver safely through the folds

and delicate fibers of the brain using GPS navigation

and high-end optics. We can then successfully remove the

tumor or resect the lesion with a tool that is about the size

of a pencil without harm to the tissues around the abnormal

area. Targeted therapy can also be delivered in this fashion,”

says Gavin Britz, MBBCh, MPH, FAANS, chair of the

Department of Neurosurgery and co-director of the

Houston Methodist Neurological Institute.

“This is going to be a game-changer for brain surgery

that involves subcortical structures. Abnormalities below

the surface of the brain are going to be very easily accessible

using this technology to remove the lesions without

damaging the normal brain structures,” says Britz.

Patients who undergo this type of surgery can anticipate

going home the next day with a mild headache. “This is

a much safer procedure that can be done more elegantly

than we’ve done before. The length of stay will be shorter,

the patient will do better and there should be fewer

complications,” says Britz.

“The six-pillared approach encompasses mapping of

the brain, often with three-dimensional replication, to plan the trajectory of entry. we make a small opening

– no larger than a dime – into the sulcus and maneuver

safely through the folds and delicate fibers of the brain using gPs navigation and

high-end optics. we can then successfully remove the tumor or resect the lesion without harm to the tissues

around the abnormal area.”

gavin britz, mmbCh, mph, faans Chair, Department of neurosurgery Co-Director, houston methodist

neurological institute professor of neurosurgery,

weill Cornell medical College

Page 23: Houston Methodist Neurosciences Annual Reports 2013
Page 24: Houston Methodist Neurosciences Annual Reports 2013

CEREbRAL bLOOD FLOw LAbInnovative use of ultrasound techniques sets the Cerebral Blood Flow Lab apart from other vascular flow labs in the country. Neuroimaging the brain under stress, similar to a stress test for the heart, allows physicians to assess for stroke risk.“We instruct patients to hold their breath. Carbon dioxide

builds up and allows their brain to react. If their brain reacts

normally, then we know patients have a good reserve and

are not at high stroke risk; a low reserve indicates blockage

or chronic small vessel disease,” says John Volpi, MD,

director of the Cerebral Blood Flow Lab and co-director

of the Eddy Scurlock Stroke Center.

Vascular dementia is also tested in the lab. “We can use

advanced ultrasound techniques to measure overall blood

flow in the brain, which we believe may be useful in

determining if memory loss is due to chronic ischemia,”

says Volpi. Physicians can then tailor therapy toward further

prevention if the memory loss is vascular in origin.

The Cerebral Blood Flow Lab works in concert with neurologists

who focus on concussions and brain trauma. “We’ve

hypothesized that blood flow in the brain changes after

concussion and that the reactivity of the brain changes after a

concussion as well. Using our ultrasound reactivity tests, we can

measure how well an athlete’s brain is responding to stimuli

and how well blood is flowing. This is an objective way to discern

whether or not an athlete is ready to go back to play,” says Volpi.

“we can use advanced ultrasound techniques to measure overall blood flow in the brain, which we believe may be useful in determining if memory loss is due to chronic ischemia.”

John J. volpi, Md co-director, eddy scurlock stroke center director, cerebral Blood flow Lab

Leading Neurosciences23

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

Page 25: Houston Methodist Neurosciences Annual Reports 2013

The Houston Methodist Concussion Center, directed by Howard Derman, MD, is a unique, state-of-the-art facility that specializes in all aspects of brain trauma with an emphasis on sports-related concussion.

“Using a multidisciplinary approach, we treat all aspects

involved in head injury, including brain, cognition, vestibular,

balance-related issues, and cervical strain and whiplash,

“says Kenneth Podell, PhD, co-director of the Houston

Methodist Concussion Center.

The center is one of only a few programs nationally that

works closely with the NFL, the NCAA, and area Division I

universities. Additionally, the center works with more than

300 high schools in the Houston area.

“We believe that involving neurologists, neuropsychologists,

neurosurgeons, otolaryngologists and sports medicine physicians

is key to treating patients as quickly as possible,” says Podell.

The center is designed to be an open access clinic. “We will

see most patients 24 to 48 hours from the time of referral.

Our goal is to work with the referral source to help optimize

recovery from concussion by addressing physical symptoms,

cognitive problems, vestibular problems and any signs

of whiplash that may occur. We coordinate the patient’s

care though the referral source, which allows them to

be integral in the care of their patient,” says Podell.

Another distinguishing attribute of the center is its large

community outreach program. “We have more than 30

full-time and part-time athletic trainers who go into the

community and assist other athletic trainers, coaches,

parents, and athletes in getting assessments or care and

education about concussions,” says Podell. In 2013, the

center reached more than 5000 people through lectures

and education programs. Baseline testing, an integral part

of community outreach, is a vital measurement tool for

the diagnosis of head injury. The center performed more

than 4,000 baseline tests in area schools in 2013.

TAkING CONCUSSION CARE TO THE COMMUNITy

“we do know that there is a direct link between a history of multiple concussions and

an increased risk of developing dementing illnesses, but we know

there is more to uncover,” says Podell.

The nantz national alzheimer center (nnac) and the houston Methodist concussion center have partnered together in order to better understand the relationship between traumatic brain injuries, concussions and dementias.

Through ongoing research, the nnac and the houston Methodist concussion center will specifically address the relationship of head

injuries to the development of dementia.

Leading Neurosciences24

Page 26: Houston Methodist Neurosciences Annual Reports 2013

Leading Neurosciences25

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

ADvANCED MAPPING OF THE bRAIN HELPS PRESERvE HUMAN FUNCTIONSIn an effort to make medicine more personalized and improve outcomes, physicians at Houston Methodist Hospital are using all the imaging data that the patient has received to make surgical and radiation therapy decisions that could lead to better outcomes and provide fewer side effects for patents.

Surgical deficits in the brain, head and neck can lead to

long-term side effects that dramatically diminish the

quality of life of the patient. It is important for physicians

to be able to visually understand where critical or eloquent

pathways exist in the brain or in the head and neck area,

and to have a predetermined idea of where blood vessels

and cranial nerves lie. Eloquent areas in the brain include

speech, visual and motor fiber tracts.

The brain and the head and neck area are the most complex

in having a three-dimensional and stereoscopic understanding

of individual patients. Using technologies integrated in a

Computer Augmented Virtual Environment (CAVE) called

Plato’s CAVE, surgeons and radiation oncologists are able

to plan surgery and radiation therapy by understanding

the precise location of the safest corridors of approach

for their radiation beam or surgical scalpel.

Gavin Britz, MBBCh, MPH, FAANS, chair of the Department

of Neurosurgery and co-director of the Houston Methodist

Neurological Institute, David Baskin, MD, vice chair of the

Department of Neurosurgery and director of the Kenneth R.

Peak Center for Brain and Pituitary Tumor Treatment and

Research, Donald Donovan, MD, chair of the Department of

Otolaryngology, Mas Takashima, MD, member of the

Department of Otolaryngology, and Brian Butler, MD,

chair of the Department of Radiation Oncology, use this visual

decision-making platform to design the best and safest strategy

for the patient and to plan therapies well in advance of delivering

them. “For those of us in the neurosurgical spectrum,

Plato’s Cave provides a preoperative way to delineate the

important fiber tracts in the brain and determine the

best surgical corridor to access lesions,” says Britz. “It is

absolutely one-of-a-kind.” Houston Methodist physicians

are developing techniques that better preserve the most

important human functions – the very things that make us

who we are and enable us to communicate with our world.

By advancing the art of functional avoidance, we can

better treat patients with brain, ear, nose and throat

tumors which lie close to the eloquent pathways that

create or store memories, fetch words, make our fingers

feel and our ears hear.

Anatomic avoidance techniques are well defined, using

images of structures such as the brain stem or the spinal

cord. Functional avoidance goes several steps further,

identifying and avoiding the electronic and chemical

circuitry in the brain that brings to life essential activities

such as speech, thought process, word recall, or meaningful

gestures of a hand or an eye.

Drs. Butler, Britz, Baskin, Donovan and Takashima have

integrated a functional map of the brain that identifies “safe”

corridors through which surgeons and radiation oncologists

can navigate for the best outcome. On a case-by-case basis,

physicians use the functional map, reference markers and a

triangulating GPS-like system to safely work within

millimeters of a critical functional pathway.

The map also identifies which pathways are serial or parallel.

Serial pathways have no redundancy, so there is no recovery

if they are disrupted. This vital information further helps

determine the safest approach to a tumor.

Page 27: Houston Methodist Neurosciences Annual Reports 2013
Page 28: Houston Methodist Neurosciences Annual Reports 2013

Leading Neurosciences27

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

With the pinpoint accuracy provided by mapping functional

pathways in the brain comes the need for microsurgical technology

to help surgeons maneuver along those tiny corridors to the

tumors. Surgical microscopes magnify a ¼-inch section into

a huge visual world for a surgeon, and there has been an explosion

of surgical instrumentation such as micro-scalpels and other

micro tools. Still, many tumors can be challenging to access.

David Baskin, MD, director of the Kenneth R. Peak Center

for Brain and Pituitary Tumor Treatment and Research,

has collaborated with Rice University’s Nanoscience

Department to invent several of these tools including a

nano-syringe, which selectively kills brain cancer cells by

delivering chemotherapy drugs directly into the cells, and a

mitochondrial “smart bomb” that targets mitochondria

in glioblastoma cells and destroys mitochondrial activity.

To safely reach dangerous tumors, Dr. Baskin uses a

map for neural navigation, and manipulates a tiny 2.8

millimeter endoscope that provides a high-definition,

real-time view into the front base of the patient’s skull,

the brain stem and the spinal cord, all through the

patient’s nostril, with no incisions. He also uses a

technology called BrainPath to safely pass microscopic

tools and treatments into deep, hard-to-reach places in

the patient’s brain.

The combination of neural imaging, functional avoidance,

microsurgical tools and pinpoint radiation technology

continues to propel advancements in treatment for

tumors of the brain, ear, nose and throat. Physicians and

researchers at Houston Methodist are in the driver’s seat

on pushing these advancements forward.

SA F E Ly N Av I G AT I N G A b R A I N M A P TO D E L I v E R I N N OvAT I v E , P I N P O I N T T R E AT M E N T S

Learn more at houstonmethodist.org/peakcenter

“using fusion technology that can accurately combine multiple high-res images, we can visualize fiber tracks, arteries, veins and tiny corridors in the brain that allow us to navigate without damaging functional capacity of the patient”. we can see where we are in the brain with one millimeter accuracy.”

david s. Baskin, Md Professor, vice chair and residency director, department of neurosurgery director, kenneth r. Peak center for Brain and Pituitary Tumor Treatment and research

Page 29: Houston Methodist Neurosciences Annual Reports 2013

Under the direction of David Rosenfield, MD, researchers at the Speech and Language Center have developed a revolutionary new device that provides portable transcranial magnetic stimulation (TMS).

THE AMAzING CAP: PORTAbLE TRANSCRANIAL MAGNETIC STIMULATION

“We have been able to create a TMS device in the form of a cap that the patient wears.

This flexible, portable, and variable device delivers magnetic stimuli to multiple sites on

the brain, allowing the patient to use it for in-home treatment,” says Santosh Helekar,

MD, PhD, associate research professor of neuroscience and director of the Songbird

Neurophysiology Laboratory.

The cap can also be used as a diagnostic tool for certain motor-related diseases such as ALS.

Stimuli from TMS measure the function of the motor pathway from the primary motor

cortex and brainstem out through the spinal cord and peripheral nerves.

“Using TMS methods, we can actually measure the integrity of that pathway. In ALS, the

pathway doesn’t function because the motor neurons in the brain degenerate. We can

establish how badly these neurons are damaged in this condition,” says Helekar.

The Speech and Language Center is involved in a small clinical trial to determine efficacy of

the TMS cap in Tourette’s syndrome. The trial is being done in collaboration with

neurologists at Children’s Mercy Hospital in Kansas City.

“There is a substantial reduction in tics from standard TMS. The conventional TMS

treatment for that patient requires him or her to come every day of the week for about

two to three weeks. But in our case, we can actually give the cap to patients and let them

receive their stimuli at home. Instead of drug therapy, this is a way to calm down the

areas of the brain that produce these tics,” says Helekar.

Other potential applications of the portable TMS include depression, stroke rehabilitation

and Parkinson’s disease. “Brain stimulation is an important research tool, just as

brain imaging is. Right now, any scientist or physician who conducts neuroscience

research can use this tool to stimulate a particular part of the brain and study the

effects of that stimulation. As it exists now it is a research tool, but has great potential

for use in diagnosis and therapy,” says Helekar.

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

Leading Neurosciences28

Page 30: Houston Methodist Neurosciences Annual Reports 2013

Leading Neurosciences29

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

Houston Methodist Neurological Institute continued its innovative approach to therapy with the establishment of the new Houston Methodist Spine Center. Here, a multidisciplinary culture offers patients the latest innovations in the treatment for spinal disorders.

The center is comprised of leading neurosurgeons,

including J. Bob Blacklock, MD, Paul Holman, MD,

Rob Parrish, MD, Todd Trask, MD, Alfonso Aldama-

Luebbert, MD, David Cech, MD, Richard Harper, MD,

Warren Parker, MD and Andrew C. Roeser, MD, as well as

neurologists, physical therapists, physiologists and

rehabilitation specialists. The center’s philosophy of total

care, coupled with state-of-the-art technology, provides

patients with the maximum in medical treatment,

resulting in better outcomes and shorter recovery times.

A new wAy of looking At the spine

The Houston Methodist Neurological Institute is one

of only a handful of medical institutions worldwide

that has fully incorporated the use of new, image-guided

technology to navigate the spine in the perioperative

setting. The O-arm is a sophisticated imaging apparatus

that provides real time scans in 2-D or 3-D. Used in

combination with computer software, the O-arm

vastly improves the precision of spinal surgical

techniques and the correct placement of reparative

hardware, such as pedicle screws.

“The O-arm rotates around the spine and captures

multiple fluoroscopic images. We consistently obtain

quality intraoperative images even in challenging cases

when patients are obese, have osteoporosis, or have

previously placed spinal hardware,” says Holman,

primary user and instructor of the O-arm technology.

There is ongoing concern about the amount of

radiation used in the OR, which typically requires the

donning of lead aprons by the surgical staff. This is not

a factor with the O-arm. “Because we are using image

guidance, while the O-arm is actually taking the images

the surgeon and the operating staff actually leave the

room or stand behind a lead shield. It completely

eliminates the radiation exposure for the surgical

team,” says Holman. Although the patient is still

exposed to a similar amount of radiation that is

associated with fluoroscopy, repeat CAT scans or

imaging are no longer required.

A MULTIDISCIPLINARy APPROACH TO SPINE CARE

The O-arm is a sophisticated imaging apparatus that provides real time scans

in 2-d or 3-d. used in combination with computer software, the O-arm vastly improves the precision of spinal surgical techniques and the correct placement of reparative hardware,

such as pedicle screws.

Page 31: Houston Methodist Neurosciences Annual Reports 2013
Page 32: Houston Methodist Neurosciences Annual Reports 2013

Leading Neurosciences31

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

the eye As A window to the brAin: using AdvAnced imAging to diAgnose neurologicAl diseAseThrough collaboration with the Houston Methodist Department of Ophthalmology, the Houston Methodist Neurological Institute has unique access to top neuro-ophthalmologists. Under the direction of Andy Lee, MD, these specialists play a key role in providing integrated care for patients with visual disturbances.

At Houston Methodist Hospital, advanced applications using

magnetic resonance imaging (MRI) help ophthalmologists,

neurologists and neurosurgeons understand pathologies

of the visual system in unique ways. Magnetic resonance

imaging (MRI) is a versatile tool in the diagnosis of diseases

of the eyes and central nervous system. For example, dynamic

MRI of the orbits can be used to record movies of the eyes in

motion. As the patients are instructed to move their eyes

in certain directions, ophthalmologists are able to visualize

pathologies in extraocular muscle structure and function

to aid the diagnosis and treatment of strabismus.

Diffusion tensor imaging (DTI) provides information on

the directional motion of water, which is useful for

evaluating the integrity of structured tissues such as

white matter tracts along the visual pathway. “Pathologies

such as ischemia, demyelination and traumatic injury

can be determined along the course of the optic nerve,

optic tract and optic radiation by DTI. Tractography can

also be performed to determine if a tumor, for example,

is directly involving or displacing a white matter tract,” says

Steve Fung, MD, assistant professor and medical director

of the MRI Core at Houston Methodist Research Institute.

Functional MRI (fMRI) can be used to localize eloquent cortex

in neurosurgical cases. fMRI is frequently performed to identify

areas of the brain that are important for motor, language,

memory and vision and their proximity to the tumor or

lesion that requires resection.

“We had a case in which a patient with vision change was

found to have an arteriovenous malformation, or AVM,

close to the anterior occipital lobe. fMRI was performed to

test the visual system which demonstrated the AVM nidus was

close to the anterior tip but not involving the primary

visual cortex. Endovascular embolization of the AVM resulted

in correction of the visual symptoms,” says Dr. Fung.

Frequently, neurological disease first presents as a visual

disorder. Ophthalmologists, neurologists, neurosurgeons

and radiologists at Houston Methodist are dedicated to

the sophisticated application of technology to ensure

accurate diagnosis for planning the most efficacious

treatment. “Most people see an ophthalmologist for

problems of their eyes which are really part of the

central nervous system,” says Fung. “The eye is a

window to the brain.”

Page 33: Houston Methodist Neurosciences Annual Reports 2013

“we had a case in which a patient with vision change was found to have an arteriovenous malformation, or avM, close to the anterior occipital lobe. fMri was performed to test the visual system which demonstrated the avM nidus was close to the anterior tip but not involving the primary visual cortex. endovascular embolization of the avM resulted in correction of the visual symptoms.”

Page 34: Houston Methodist Neurosciences Annual Reports 2013

Leading Neurosciences33

A holistic ApproAch to neurorehAbilitAtionAt the Houston Methodist Neurological Institute, we have paired exemplary collaboration with the best in progressive technology for the care of patients with impaired neurological function. This combination of medical teamwork and the newest advances in medical science culminates in one of the top neurorehabilitation programs in the nation.

A variety of neurological impairments can result through events such as stroke, traumatic

brain injury, or development of a brain tumor and from progressive neurodegenerative

disorders such as multiple sclerosis or Parkinson’s disease. Our neurorehabilitation program

takes a comprehensive approach to individuals who have sustained a neurological deficit.

“One of our newest advancements is the ability to address vision and motor deficits with the

Dynavision D2. It is a visuomotor and cognitive training system that is designed to benefit

such problems as visual field loss, inefficient scanning, motor processing and reaction times,”

says Jenny M. Lai, MD, physiatrist and section chief of Physical Medicine and Rehabilitation.

“We’re also able to help patients who suffer from spasticity with the most current applications

of the intrathecal baclofen pump, which places the catheter tip at top of the cervical vertebrae,”

says Lai.

This year saw the institution of transitional living center rooms to help patients integrate

back into daily routines. “It is like apartment-style living, although physicians and nursing

staff are there for hands-on assistance. We provide a simulated trial of how patients would

do if they were in their own environment,” says Lai.

“As a physician, you look at a person holistically. With our neurorehabilitation program

we are able to do this. We can direct a tier of medical professionals to specific areas of

patient need and help these individuals return to functionality,” says Lai.

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

“One of our newest advancements is the ability to address vision and motor deficits with the Dynavision D2, a visuomotor and cognitive training system that is designed to benefit such problems as visual field loss, inefficient scanning, motor processing and reaction times.”

Jenny M. Lai, Md section chief, Physical Medicine and rehabilitation

Page 35: Houston Methodist Neurosciences Annual Reports 2013

houston mitie at a glanCe

26surgiCal speCialties from aCross the worlD

square feet of eDuCation anD researCh spaCe

40,000

20,000more than

learners sinCe inCeption

6,300more than

learners in 2013

HOUSTON METHODIST INSTITUTE FOR TECHNOLOGy, INNOvATION & EDUCATION (MITIESM)

MITIE offers multidisciplinary, hands-on learning opportunities using advanced imaging systems and robotics.

Surgeons and other health professionals are able to continually refine and acquire new skills that allow them to

perform at optimal levels throughout their careers. Using procedural laboratories and sophisticated simulation tools,

our research programs are focused on the development and assessment of emerging technologies and technical skills

to improve the care of patients through less invasive therapies. At MITIE, the finest researchers and clinicians are

building on our legacy of ingenuity and accelerating the discovery and delivery of better care and better cures.

leAding medicine

One of the largest and most comprehensive education and research facilities in the world, MITIE is leading the practice of medicine for physicians and health care providers.

for more information, visit mitietexas.com

Leading Neurosciences34

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

Page 36: Houston Methodist Neurosciences Annual Reports 2013

Leading Neurosciences35

PREPARING THE NEXT GENERATION

Leading Medicine: an Overview Pursuing Medical discoveries Breaking new ground advancing Technology educating for Tomorrow

AcAdemic progrAms

A seven-year residency program in neurosurgery, with extensive exposure to

advanced operative techniques, neurology, neuropathology and neuroradiology.

The program includes a full year of protected research time and eight months of

focused subspecialty exposure in preparation for academic and practice careers.

A four-year accredited adult neurology residency program offers comprehensive

training in clinical neurology and mentorship in the clinical and basic sciences that

provides a strong foundation for the practicing neurologist and physician-scientist.

A one-year accredited post-graduate clinical neurophysiology fellowship program

is comprised of all aspects of clinical neurophysiology and encompasses electromyography

(EMG), electroencephalography (EEG), nerve conduction, sleep, evoked potentials,

intra-operative monitoring and additional clinical testing modalities.

A one-year accredited neuromuscular medicine fellowship focuses training on

clinical neuromuscular medicine and includes electro diagnostic medicine, neuropathology,

clinical/ translational experience and rehabilitation. The neuromuscular fellowship

provides a large and varied clinical experience with greater than 75 neuromuscular

patients evaluated each week from both the outpatient and inpatient services.

Neurology and neurosurgery grand rounds present the latest information about the

nervous system and neurological disorders. Grand rounds also provide an excellent

venue for presentations by visiting professors. World-class scientists, researchers and

neurologists and neurosurgeons present their work to the group in an environment of

collaboration and scientific inquiry.

Annual skull base, cerebrovascular and spine courses for residents and fellows

provide a hands-on cadaveric course designed to educate senior neurosurgery residents

and fellows in the latest techniques in neurosurgery. In addition to anatomy, the course

presents common microsurgical, endoscopic and endovascular approaches to the brain

and spine, indications for their use and complication avoidance.

The most talented future neurologists and neurosurgeons receive exceptional training and preparation at the Houston Methodist Neurological Institute. Through our primary academic affiliation with Weill Cornell Medical College and NewYork-Presbyterian Hospital, physicians serve as faculty members in the provision of fully accredited neurology and neurosurgery residency programs. Residents are exposed to unique and complex cases, state-of-the-art technology, and high patient volumes, all of which are designed to prepare exceptional training for prospective neurologists and neurosurgeons.

Page 37: Houston Methodist Neurosciences Annual Reports 2013

neurosurgery clinical faculty and residents

neurology residents, Program directors and visiting Professor

Page 38: Houston Methodist Neurosciences Annual Reports 2013

At Houston Methodist, we’ve built a legacy of ingenuity that spans multiple decades and disciplines. In the last 95 years, we’ve transformed from a humble 19-bed community hospital to a global leader in health care, treating patients from 90 countries in more than 8,150 visits last year. In 2004, Houston Methodist established a long-term affiliation with Weill Cornell Medical College and New York-Presbyterian Hospital in New York City. Through this affiliation, three internationally renowned institutions collaborate to bring tomorrow’s advances to our patients today. Together, we provide cutting-edge clinical and biomedical research, and education and training for future physicians and scientists. One of the nation’s top research medical schools, Weill Cornell Medical College ranked No. 15 in the 2015 U.S. News & World Report Best Medical Schools list. For Houston Methodist clinicians and researchers, “leading medicine” is a holistic call for excellence in every aspect of patient care. We consistently rank among the best hospitals in the country. In 2013, U.S. News & World Report named Houston Methodist the “Best Hospital in Texas” for the second consecutive year, with 12 specialties recognized in the Best Hospitals list. Houston Methodist is consistently recertified to Magnet status for exceptional nursing. Because of our reputation, the finest researchers and clinicians from around the world are joining us to build on our legacy of ingenuity and accelerate the discovery and delivery of better care and better cures. That’s the difference between practicing medicine and leading it.

FAST FACTS73Operating rooms

1,119Licensed Beds(824 operating beds)

1,862affiliated Physicians

6,101employees

8,150international Patient encounters (from 90 foreign countries)

36,310inpatients in 2013

61,043emergency room visits in 2013

301,478Outpatient visits in 2013

HousTon MeTHodisT HospiTaL Leading Medicine YesTerdaY, TodaY and ToMorrow

FORTUNE is a registered trademark of Time inc. and is used under license. from FORTUNE Magazine, february 3, 2014 ©2014 Time inc. FORTUNE and Time inc. are not affiliated with, and do not endorse products or services of, Licensee.

Page 39: Houston Methodist Neurosciences Annual Reports 2013

Photo courtesy of whr architects, inc. © aker/Zvonkovic Photography, houston, Texas

Accelerating discovery and delivery to patientsat houston Methodist, we are dedicated to defining the future of medicine. we engineer discoveries in the lab to become clinically useful products, channel the best innovations through early stage clinical trials and actively transition those innovations to our industry partners. Our commitment to the full cycle of discovery and delivery sets us apart as leaders who provide patients from around the world access to the latest health care advances.

LEADERS IN RESEARCH

More than 840 active clinical protocols$55m ToTaL researcH Funding in 2013

see all the ways we’re leading medicine at hmleadingmedicine.com

Leading Neurosciences38

Page 40: Houston Methodist Neurosciences Annual Reports 2013

houston Methodist hospital6565 fannin street houston Texas 77030 houstonmethodist.org/ni

Leading Medicine YesTerdaY, TodaY and ToMorrow.at houston Methodist we have a proud tradition of revolutionizing medicine. Our past achievements have built a legacy that spans multiple decades and disciplines, and that same culture of excellence inspires us to be the pioneers of tomorrow.