34
Asep Bayu Dani Nandiyanto Departemen Kimia Universitas Pendidikan Indonesia – Indonesia Email: [email protected] Creating Particles with Controllable Porous Structure Annual Applied Science and Engineering 2019 Bali, Indonesia April 24, 2019

Creating Particles with Controllable Porous Structure - Universitas Pendidikan …aasec.conference.upi.edu/2019/wp-content/uploads/2019/04/... · 2019-04-25 · Asep Bayu Dani Nandiyanto

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Asep Bayu Dani Nandiyanto

Departemen KimiaUniversitas Pendidikan Indonesia – Indonesia

Email: [email protected]

Creating Particles with ControllablePorous Structure

Annual Applied Science and Engineering 2019Bali, IndonesiaApril 24, 2019

Brief Curriculum Vitae

2000 Graduated from SMUN 7 Bandung & Entering Chem. Eng. ITB - Indonesia

2001-2002 Lecture at SMUN 7 Bandung

2005 S.T. in Chem. Eng. ITB - Indonesia

2005-2006 Research Student in Chem. Eng. Hiroshima University - Japan

2008 M.Eng. in Chemistry and Chem. Eng. Hiroshima University - Japan

2011 Dr.Eng. in Chemistry and Chem. Eng. Hiroshima University - Japan

2011 Visiting Professor, in CENT, King Fahd Univ. Petroleum & Minerals - Saudi Arabia

2011-2013 Visiting Special Researcher under JSPS

2013-2014 Assist. Prof. in Chemistry and Chem. Eng., Hiroshima University – Japan

2018 Visiting Assist. Prof. in Trans. Sci. Eng., Tokyo Institute of Technology – Japan

2018 Visiting Scholar under Fulbright-Ristek DIKTIVirginia Commonwealth University - US

2012-2018 Assist. Prof. in Chemistry, Universitas Pendidikan Indonesia

2018-present Assoc. Prof. in Chemistry, Universitas Pendidikan Indonesia

1. Introduction1. Introduction

2. Progress in the Synthesis ofPorous-structured Material

Contents1

2.1. Ex-situ Technique of Colloidal Template Method

2.2. In-situ Technique of Colloidal Template Method

3. Industrial Applications ofPorous-structured Particles

4. Summary, On Going Research, and Plan

Main topic

Definition of porous material:Special kind of material consisting pore

1. Introduction 2

Mesoporous(pore = 2-50nm)

Microporous(pore < 2nm)

Macroporous(pore > 50nm)

Classificationof pores

Higher surface area, lower density, and lowerdielectric constant compared with dense material

250nm250nm

Drugs

Photoluminescence

Filler, strong andultralight material

Pigment,Adsorbent,Catalyst

High surface materialDefinition:Special kind of particleconsisting pore

1. Introduction 3

How to createporous material

2. Progress in the Synthesis ofPorous-structured Material

4

MCM-seriesSBA-seriesMOF-series

Organicmoleculestemplating

method

From micro- tomeso-porous

Colloidaltemplating

method

Ex-situ technique(i.e. spraymethod)

In-situ technique(i.e. sol-gel

method)

From micro-, meso-, to macro-porous

2.1. Organic Molecules Template Method5

Indones. J. Sci. Tech (2019) in press

2.1. Organic Molecules Template Method6

Indones. J. Sci. Tech (2019) in press

We successfully synthesized:MIL-10(Fe)HKUST-1(Cu),Cu-TPA,MOF-5(Zn)

Ligand+

Metal ion

Composite Porous

Dropletgenerator

(i.e. ultrasonicnebulizer,two-fluidnozzle)

High temp. zoneLow temp. zone

Drying

Porous particle

Evaporating

Spraying Drying

-

-

-

-

-

-

--

- -

-

-

Host material-

Template-Composite

2.2. Ex-situ Technique of Colloidal Template MethodExperimental Method and Mechanism

7

12

3 4

87

65

12

3 4

87

65

Carriergas

AIChE J. 60, 41 (2014)

Acta Biomater.5, 1027 (2009)

2.2. Ex-situ Technique of Colloidal Template MethodFactors Affecting Porous Structurization

Langmuir 29, 13152 (2013)

8

Factors affecting porous structurizationcan be described:1. Size, charge, and type of host and

template2. Charge and size of droplet3. Composition ratio of host and template

Raw material used is importantRaw material used is important

2.2. Ex-situ Technique of Colloidal Template MethodRaw Material

9

+50-50Zeta potential (mV)

Freq

uenc

y(-)

0

Cat. PS(AIBA=40ppm)

Anion. PS(KPS= 400ppm)

Cat. PS(AIBA=400ppm)

Anion. PS(KPS=40ppm)

Synthesis of Polystyrene (PS) Particles withControllable Size and Charge for Template Applications

Colloid Surf. A 396, 96 (2012)

150nm150nm150nm

2.2. Ex-situ Technique of Colloidal Template MethodRaw Material

9

5-nmsilica

16-nmsilica

25-nmsilica

45-nmsilica

90-nmsilica

Langmuir 29, 6262 (2013)Commercially Available Host Nanoparticles

2.2. Ex-situ Technique of Colloidal Template MethodRaw Material

9

Ni

BET : 13.0m2/g

DBET : 50nm

Cu

BET : 13.0 m2/gDBET : 50 nm

Ag

BET : 94.2 m2/g

DBET : 18.7 nm

Ni-W

BET : 12.8 m2/gDBET : 49.9 nm

Y2O3

BET : 115.7 m2/gDBET : 10.8 nm

WO3

BET : 118.0 m2/g

DBET : 7.1 nm

BET : 67.3 m2/g

DBET : 28nm

CaF2

TiN

BET : 43.8 m2/g

DBET : 25.2 nm

TiC

BET : 51m2/g

DBET :25.0nm

Adv. Powder Technol. in press (2014)Commercially Available Host Nanoparticles

92.2. Ex-situ Technique of Colloidal Template MethodVarious Porous-structured Particles

Effect of Template Concentration 9

Amount of template changesnumber pore in the particleAdv. Mater. 19, 1408 (2007)Acta Biomater. 5, 1027 (2009)Chem. Eng. J., 152, 293 (2009)Langmuir 29, 6262 (2013)Chem. Eng. Sci. 101, 523 (2013)

No templateOptimumtemplateamount

Excess template

Dense Porous Brittle

Charge of templateaffects structure of poreChem. Lett. 38, 1076 (2009)Colloid Surf. A, 396, 96 (2012)Langmuir 29, 6262 (2013)Langmuir 29, 13152 (2013)

Effect of Host and Template Charges 9

Highlyopposite charge Opposite charge Same charge

Porous withkissingpore

Porouswithoutkissingpore

Hollowparticle

Size ratio of host and templatehas impact to external structureLangmuir 29, 6262 (2013)Langmuir 29, 13152 (2013)Chem. Eng. Sci. 101, 523 (2013)

Effect of Host and Template Sizes 9

9

Adv. Powder Technol. 22, 1 (2011)

WO3 TiO2ZrO2

100nm

Y2O3

2.2. Ex-situ Technique of Colloidal Template MethodVarious Nanostructured Particles

10

Adv. Powder Technol. 22, 1 (2011)

1. Restricted pore size (> 30 nm)2. Restricted outer diameter (> submicron)3. Broad size distribution (not monodispersed)4. Low production rate

How to solve this problem?

In-situ technique ofcolloidal template methodDeveloping New Spherical Mesoporous Nanoparticles

(HMM) with Nanometer-size Controllable Pores andOuter Diameters and Their Applications Micropor. Mesopor. Mater.

120, 447 (2009)

2.2. Ex-situ Technique of Colloidal Template MethodLimitation of Spray Method

11

Heatingmantle

Reactantinlet

Magneticstirrer

Solution

Tempcontroller

Cooling inlet

Coolingoutlet

Condenser

Gas outlet

2.3. In-situ Technique of Colloidal Template MethodExperimental Method and Mechanism

Droplet(micelle)

PorousParticle

CompositeParticle

Nucleation Growth

Growth andself-assembly

TemplateremovalPolystyrene

Silica nanoclusterSurfactant

nanocluster

Silica wall(black)

Pore(white)

0 60 120

Freq

uenc

y (-)

Particle Size (nm)

Dav= 43 nm = 6 nm

20 nm

100 nm

TEM

20 nm

100 nm

SEM

20 nm

Spherical, uniform,porous structure

Porous structureinside particle

Sphericalshape

122.3. In-situ Technique of Colloidal Template MethodElectron Microscope Results

2.3. In-situ Technique of Colloidal Template MethodControl of Pore Size

13

Dpore = Pore size

Dp = Particle outer diameter

20 nm

20 nm 20 nm

0 20 40 600

10

20

30

40

Octane/H2O = 0.32

Styrene concentration (mg/L)

Pore

siz

e (n

m)

20

40

60

80

100

Particle size (nm)

Pore sizeParticle size

Styrene=0.50 g/mL Styrene=10 g/mL

Styrene=60 g/mL

Dp/Dpore=43/5.5 nm Dp/Dpore=58/9.5 nm

Dp/Dpore=63/15 nm

142.3. In-situ Technique of Colloidal Template MethodControl of Particle Outer Diameter

100 nm

50nm

0 0.2 0.4 0.620

40

60

80

100

Part

icle

siz

e(n

m)

Oil/H2O

0 60 120

Freq

uenc

y (-)

Size (nm)

Dv=76nm =18nm

0 60 120

Freq

uenc

y (-)

Size (nm)

Dv=28nm =5nm

0 60 120

Freq

uenc

y (-)

Size (nm)

Dv=20nm =4nm

Porousstructure

Octane/H2O=0.05

Octane/H2O=0.80

Octane/H2O=0.20

Result : Increases in octane amount resultin the production of larger particles

Result : Increases in octane amount resultin the production of larger particles

Octane’s role:(i) homogenization ofthe hydrophobic molecules(ii) slight retardation of theelectrostatic interactionbetween silicate species(iii) protonation of the aminogroups

50nm

50nm

152.4. In-situ Technique of Colloidal Template Method

162.4. In-situ Technique of Colloidal Template Method

Successful procedure:MgF2 dan SiO2

172.5. Combination Technique of Organic Moleculesand Colloidal Template Method

3. Industrial Applications ofPorous-structured Particles

18

(DP=15nm)

TiO2: Adv. Mater. 19, 1408 (2007)Chem. Eng. J. 152, 293 (2009)

(DP=600nm)

(DP=600nm)

Photocatalytic Particles

0

0.2

0.4

0.6

0.8

1

C/C

0

25 50 75 100Photodegradation time (min)

0

k=0.0123min-1

k=0.0442min-1

Degradation of Rhodamine

0m 100m

k=0.0303min-1

Dense

PorousNano

Nano

Porous

DenseWO3: Chem. Eng. Sci. 101, 523 (2013)

Nanoparticle’s Photocatalytic Performance in Submicron

Acta Biomater. 5, 1027 (2009)

Drug Delivery System

• Low density• Low impaction factor• Deep inhalation to alveolar region• Reduce Van der Wals Force

High Efficiency Particles for DrugDelivery System via Inhalation

Porous-structuredHyaluronic AcidParticles

3. Industrial Applications ofPorous-structured Particles

18

500nm

500nm

Adsorbent

Rem

aine

d dy

e (%

)

Adsorption time (min)0 20 40 60 80 100

70

80

90

100Denseparticles

HMM

Hollowparticles

dense

HMM

Hollow

10nm 10nm

10nm

3. Industrial Applications ofPorous-structured Particles

Langmuir 28, 8616 (2012)J. Colloid Interf. Sci. 389, 134 (2013)

19

High Efficiency for Adsorbing Large Molecules (e.g. dye)

Visible image

100m 17h0m

Porous-structured particles have beensuccessfully created using both organic, colloidal,and combination process.

4. Summary20

4. Summary21

Porous particles are excellent for industrialapplications:- Improve material performance- Reduce the amounts of raw materials

Several applications have been reported:CatalystPhotoluminescenceDrug deliveryAdsorbent

4. Plan

Hierarchical porous structure in the particle isprospective for various applications because of

its correlation with final material properties.

Hierarchical porous structure in the particle isprospective for various applications because of

its correlation with final material properties.

1. How to create new structure material2. How to find and use alternative material3. Why don’t we reuse material

19

Comprehensive inter-diciplineImprovement and finding advanced materialChemical Engineer plays important role inachieving and improving advanced material

2008 Best Master Student Award (Kawamura Foundation)

2008 Research Development Award(Hosokawa Micron Foundation)

2011 JSPS Postdoctoral Fellowship

2013 Outstanding Paper Award 2012 in J. Chem. Eng. Jpn. (SCEJ)

2013 Best presentation award (SCEJ in Chugoku-Shikoku)

2013 The Society of Chemical Engineers Japan Awardfor Outstanding Young Researcher in 2013 (SCEJ)

2014 2013 Best Contributed Reviewer in Advanced Powder Technology (SPTJ)

2014 The George Klinzing Best PhD Award in 2013 (AIChE)

2014 The Most Cited Paper in Advanced Powder Technology (SPTJ)

2015, 2016, 2017 The Best Scientist in Universitas Pendidikan Indonesia

2017 Best presentation award, 6th ICMSET 2017, Seoul, Korea

2017 Fulbright RISTEK DIKTI

2018 Grants for World Class Researcher, RISTEK DIKTI

2018 Best Poster DRPM, LPPM UPI

2018 Best Research (Peneltian Terbaik Peringkat 3), LPPM, UPI

2018 Best Research Innovation (Anugerah Inovasi Hasil Riset Penelitian),LPPM UPI

My achievements

34

Thank you very muchfor your attention