66

Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects
Page 2: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

Cover. Polarized light micrograph of the insecticide DDT.

Page 3: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

Climate Change and POP s: Predicting

the Impacts

Report of the UNEP/AMAP

Expert Group

Page 4: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects
Page 5: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

Contents

Preface 5 Acknowledgements 6 ExecutiveSummary 7

Chapter1. Introduction 9

Chapter2. ReleaseofPOPstotheenvironment 12 2.1. Environmentalreleasesfromprimarysources 12 2.2. Impactofclimatechangeonprimaryemissions 12 2.3. Conclusions 14

Chapter3. Environmentalfateandlong-rangetransportofPOPs 15 3.1. Large-scaledistributionintheenvironment 15 3.2. Impactofclimatechangeonenvironmentalfateandlong-rangetransport 16 3.3. Conclusions 20 Chapter4. ImpactofclimatechangeonexposuretoPOPsforwildlifeandhumans 21 4.1. Introduction 21 4.2. Exposureofwildlife 22 4.2.1. Changestofoodwebortrophicstructure 23 4.2.2. ChangestoPOPprocesseswithinorganisms 25 4.3. Exposureofhumanpopulations 26 4.4. Conclusions 27 4.5. Datagapsandrecommendationsforfutureresearch 28

Chapter5. ImpactofclimatechangeontoxicologicalandecotoxicologicaleffectsofPOPsexposure 29 5.1. Introduction 29 5.2. Environmentalhealthimpacts 30 5.2.1. EffectsofPOPsandclimatechangeintheenvironment 30 5.2.2. Effectsoftemperatureontoxicityandtoxicokinetics 31 5.2.3. Effectsofsalinityontoxicity 32 5.2.4. EffectsofpHontoxicity 32 5.2.5. EffectsofUV-radiationontoxicity 32 5.2.6. Effectsofeutrophicationontoxicity 33 5.2.7. EffectsofpO₂inwaterontoxicity 33 5.2.8. Effectsofnutritionalstatusontoxicity 33 5.2.9. EffectsofPOPsonadaptationtoclimatechange 33 5.2.10. Predictedcombinedeffectsonecosystemsindifferentregions 34 5.3. Humanhealthimpacts 35 5.3.1. EffectsofPOPsonhumanpopulations 36 5.3.2. Probablechangesinonsetandseverityofeffectsduetoclimatechangefactors 38 5.4. Conclusions 39 5.5. Data/knowledgegaps 41 5.5.1. Environmentalhealth 41 5.5.2. Humanhealth 41

Chapter6. Co-benefitsofmitigationactivitiesforclimatechangeandPOPsemissionreduction 42 6.1. Introduction 42 6.2. Technologicalandnon-technologicalmeasuresforemissionreductionsofgreenhouse gasesandunintentionallyproducedPOPs 43 6.3. Mitigationoptionsbyimplementationofenvironmentalregulationsandcapacitybuilding 45 6.4. Conclusions 45

Page 6: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

Chapter7. Conclusions 46 7.1. Generaltrends 46 7.2. POPsreleases 46 7.3. EnvironmentalfateofPOPs 46 7.4. ExposuretoPOPs 47 7.5. EffectsofPOPsonbiota 47 7.6. HumanhealtheffectsofPOPs 47 7.7. Mitigationco-benefits 48 7.8. Knowledgegaps 48

Chapter8. Policyrecommendations 50 8.1. ExistinginitiativesonPOPsandclimatechange 50 8.2. Science-basedpolicyrecommendations 51 8.3. Conclusions 52

Appendix 53 References 55 Acronyms 62

Page 7: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

5

Preface

Thepotentialforclimatechangetoincreasetheplanet’svulnerabilitytopersistentorganicpollutantsisofmajorconcern,multiplyingtherisksposedbyglobalenvironmentalchange.Climatechangealonepresentsseriousthreatstosocietyandtheenvironment,andinconjunctionwithotherenvironmentalstressors,increasedrisksandhighervulnerabilityofhumanpopulationsandecosystemsareforeseen.Whilethelevelofscientificunderstandingassociatedwitheachcomponentisrelativelywell-defined,assessmentofthecoupleddynamicsofmultipleenvironmentalstressorsandprocessesisassociatedwithhigheruncertaintiesandknowledgegaps.

Inthisperspective,scienceholdsthekeynotjusttoadvancingourunderstandingofthesecomplexproblems,butalsotoimprovingourabilitytoreducetheriskstheyposetotheworld.Findingappropriatesolutionstoaddresstoday’scomplex,intertwinedenvironmentalissuesrequiresstrongscientificsupportandadvice.

Tosupportinformeddecisionmaking,theSecretariatoftheStockholmConvention,incollaborationwiththeArcticCouncil’sArcticMonitoringandAssessmentProgramme(AMAP)invitedanumberofdistinguishedexpertstoreviewthemostrecentscientificfindingsonclimatechangeeffectsonpersistentorganicpollutantswithinaglobalperspective.ThiscooperationensuredthatthestudybenefitedfromtheextensiveassessmentexperienceandongoingscientificinvestigationsofthisissueintheArcticregion.

Significantclimate-inducedchangesareforeseeninrelationtofuturereleasesofpersistentorganicpollutantsintotheenvironment,theirlong-rangetransportandenvironmentalfate,andtohumanandenvironmentalexposure,subsequentlyleadingtohigherhealthrisksbothforhumanpopulationsandtheenvironment.

ThefindingsandconclusionsofthissystematicandauthoritativestudyoffertheopportunitytothePartiestotheStockholmConventiontoworkmoreeffectivelytowardsmeetingtheobjectiveoftheConventiontoprotecthumanhealthandtheenvironmentfrompersistentorganicpollutants,byconsideringaspectsofcoupleddynamicsbetweenclimateprocessesandpersistentorganicpollutants.

DOnAldCOOPer Executive Secretary of the Stockholm Convention

Page 8: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

6

Acknowledgements

ThisreporthasbeencompiledbytheSecretariatsoftheStockholmConventioninGeneva,SwitzerlandandtheArcticMonitoringandAssessmentProgrammeinOslo,Norway.ItisbasedontheworkofajointUnitedNationsEnvironmentProgramme/ArcticMonitoringandAssessmentProgramme(UneP/AMAP)ExpertGroupconvenedinJune2010.TheExpertGroupdraftedthesciencechaptersandprovidedcommentson,andrevisionsto,thescientificcontentthroughouttheprocessofdevelopingthisreport.Thesynthesisoftheinformationintoconclusionsandpolicyrecommendationstookplaceataface-to-facemeetinginGeneva,6-8October,2010andthroughteleconferencesandcorrespondence.Everyefforthasbeenmadetoprovideaccurateinformation.TheviewspresentedinthisreportarethoseoftheExpertGroupanddonotnecessarilyrepresenttheviewsofeitherUnePorAMAP.

Draftsofthisreporthavebeensignificantlyimprovedthroughtheeffortsofmanyindividualswhohaveprovidedcontentandcriticalreview.Theseindividualsaregratefullyacknowledgedbelow.

Authors:KatarinaMagulovaandAnaPriceputu(Chapter1);ChristianBogdalandMartinScheringer(Chapters2and3);IanCousins,DeguoKongandRobinVestergren(Chapter4);AndrewGilmanandBjørnMunroJenssen(Chapter5);JozefPacyna,KyrreSundsethandElisabethPacyna(Chapter6);MariannLloyd-SmithandMarioYarto(Chapter8).

Contributors:Thefollowingindividualscontributedtextandinformationtosupplementthecontentofthereport:RolandKallenborn,JianminMa,MatthewMacLeod(Chapters2and3);RicardoBarra,RobieMacdonald,HelmutSegner,GreggTomy(Chapter5);HeideloreFiedler(Chapter8).

Reviewers:Thefollowingreviewersreadandcommentedondraftsofthereport:SounkouraAdetonah,AbdouramanBary,KnutBreivik,RamonGuardans,TomHarner,IvanHoloubek,JianxinHu,RolandKallenborn,EvaKruemmel,FedeLeon,YifanLi,JianminMa,RobieMacdonald,RonaldMacFarlane,PamelaKMiller,DerekMuir,JayvanOostdam,Lars-OttoReiersen,ArnoldSchecter,HelmutSegner,RusselShearer,GreggTomy,SimonWilson,CynthiadeWit.

Organizationandprojectsupport:SpecialthanksareextendedtoFatoumataOuane(StockholmConventionSecretariat),KatarinaMagulova(StockholmConventionSecretariat),AnaPriceputu(StockholmConventionSecretariat),Lars-OttoReiersen(ArcticMonitoringandAssessmentProgramme),SimonWilson(ArcticMonitoringandAssessmentProgramme),AndrewGilman(StockholmConventionSecretariatScienceConsultant)andRonaldMacFarlane(StockholmConventionSecretariatConsultant)whohaveworkeddiligentlytosteertheprocess.

ThistechnicaldocumentwassharedwithandreviewedbythemembersoftheGlobalCoordinationGroupfortheGlobalMonitoringPlanforPersistentOrganicPollutants.ThedocumentrepresentsthetechnicalbasisofthereportonpolicyrecommendationssubmittedtothefifthmeetingoftheConferenceofthePartiestotheStockholmConvention,25-29April,2011.

Page 9: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

7

Executive Summary

ThefirstglobalmonitoringreportundertheGlobalMonitoringPlan(GMP)wasreleasedin2009andrecognizedtheimportanceofclimateeffectsonpersistentorganicpollutants(POPs).ItalsostressedtheneedtoconsiderpossibleclimateeffectswheninterpretingtemporaltrenddataforPOPsinGMPcoremedia(i.e.,humantissuesandair).ThepresentworkisbasedonthemandategiventotheGlobalCoordinationGroup(GCG)bytheConferenceofthePartiestotheStockholmConventionatitsfourthmeeting(DecisionSC-4/31)toassessclimateinfluencesonthelevelsofPOPsmeasuredintheenvironmentandinhumansandtherelevanceofhowtheseinfluencesmayinterferewithpresentandfutureevaluationsoftheeffectivenessofthemeasuresundertakenthroughtheStockholmConvention.

ThereporthighlightskeyscientificfindingsrelatedtothecomplexrelationshipsbetweenclimatechangeandabatementofPOPs.ItprovidesanoverallviewofPOPsreleasesintotheenvironment,long-rangetransportandenvironmentalfate,andhumanandenvironmentalexposureinachangingclimate,aswellaspotentialcoupledeffectsofclimateandPOPsonhumanhealthandtheenvironment.ThereportalsoaddressesthesynergiesbetweenclimatechangemitigationpoliciesandactionstoeliminateandmanagePOPs,andprovidesrecommendationsbasedonthecurrentstateofscience.

ClimatechangemayaffectprimaryemissionstoairofPOPsbychangingtheirrateofmobilizationfrommaterialsorstockpiles,orbyalteringusepatterns.ThiscouldresultinanincreaseinprimaryemissionsthatcouldoffsetsomeoftheeffortsundertakentoreduceemissionsofPOPsundertheStockholmConvention.HighertemperatureswillalsoincreasesecondaryemissionsofPOPstoairbyshiftingthepartitioningofPOPsbetweenairandsoil,andbetweenairandwater.Releasesfromenvironmentalreservoirssuchassoil,waterandicewillalsoincreaseduetotheseincreasingtemperatures.Theeffectoftemperatureonemissionsofsemi-volatilePOPsisprobablythemostimportanteffectandstrongerthananyothereffectofclimatechangeontheenvironmentalcyclingofPOPs.Theexpectedincreaseintheincidenceofvector-bornediseaseassociatedwithclimatechange,suchasmalaria,mayleadtoenhanceddemandforandreleaseofddT(dichlorodiphenyltrichloroethane)insomeregions.

ThereareseveralmainfactorsrelateddirectlytoclimatechangewhichhavepreviouslyinfluencedandwillcontinuetoinfluencetheenvironmentalfateofPOPs,includingtheirlong-rangetransport.Theseinclude:thestrengthofsecondaryre-volatilizationsources;windfieldsand

windspeed;precipitationrates;oceancurrents;meltingofpolaricecapsandmountainglaciers;higherfrequencyofextremeevents;degradationandtransformation;partitioning;and,biotictransport.

ClimatechangeisexpectedtomodulatetheimpactresultingfromexposureofhumansandwildlifetoPOPs.However,thelackofunderstandingofclimatechangeeffectsonfoodwebstructuresanddynamicsmeansthatitisnotcurrentlypossibletomakereliablepredictionsoftheextentoftheseimpacts.Norisitpossibletodetermineiftheeffectswillbefeltupordownthefoodchain,i.e.,whethertopofthefoodchainspeciesaremostaffected,causingarippledowneffecttolowertrophiclevelspecies,orwhetherchangesinlowertrophiclevelspecieswillleadtodisturbancesintheviabilityofhighertrophiclevelspecies.

Climatechange,includingincreasingclimatevariability,willalsoaffectbiodiversity,andecosystemcomposition,function,andvulnerability.Toxicityandtoxico-kineticsofPOPscouldbealteredasadirectresultofchangesintemperature.Climatechangewillalsoaltersalinity,oceanacidification,eutrophication,wateroxygenlevels,andthenutritionalstatusofspeciesandtheiradaptability.Thesechanges,eitheraloneorincombination,couldenhancethetoxiceffectsofPOPsonwildlife,increasediseaserisks,andincreasespeciesvulnerability.

Persistentorganicpollutantsareknowntohavenegativehealtheffectsonhumans,suchas

Page 10: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

8

cardiovasculardisease,immunosuppression,metabolicdisorders,cancer,andneurobehavioral,endocrineandreproductiveeffects.IfclimatechangeresultsinanincreaseinexposuretoPOPs,thiswouldincreasetherisksrelatedtotheirharmfuleffects.Thecombinedeffectofseveralclimate-relatedfactors–forexample,excessiveheatorcold,populationmigrationrelatedtotemperaturechangeandlossofarableland,increasedexposuretoinsectvectorsofdisease,andchangesintheavailabilityandqualityoftraditional/localfood–couldalsoaggravatetheeffectsofPOPsexposureonhumanpopulations.Socio-economicfactorssuchaseducationandgeneralhealthstatuscanalsocontributetohumanvulnerabilitytoPOPs.

Implementationofvariousclimatechangemitigationoptionstargetedtoreducecarbondioxideemissions,suchasimprovementofenergyefficiencyinpowerstations,replacementoffossilfuelsbyrenewablesources,andimprovementofcombustion,industrialandtransportationtechnologies,islikelytohaveapositiveimpactonthereductionofreleasesofunintentionallyproducedPOPs(i.e.,mainlypolychlorinateddibenzo-p-dioxins/polychlorinateddibenzofurans,hexachlorobenzene,polychlorinatedbiphenyls).Thesemeasurescouldalsoreducetheemissionsofseveralnon-POPscontaminantsofconcern(e.g.,nitrogenandsulfuroxidesandothergases,particulates,mercuryandothermetals).Thereare,however,somepotentialnegativeimpactsthatneedtobetakenintoaccountwhenconsideringmitigationoptions.Forexample,increaseduseofbiomassfuelcouldincreaseemissionsofunintentionallyproducedPOPs.

Thisreportidentifiesseveralkeyareaswhereknowledgegapsexistandprovidesrecommendationstoaddressthesegaps.

Page 11: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

InTrOdUCTiOn 9

Chapter 1. Introduction KATArinAMAGUlOVAandAnAPriCePUTU

TheStockholmConventiononPersistentOrganicPollutantsaimstoprotecthumanhealthandtheenvironmentfromthenegativeeffectsofPOPs,byrestrictingandultimatelyeliminatingtheirproduction,use,releaseandunsafedisposal.Thesearechemicalsubstancesthathavetoxicproperties,resistdegradationintheenvironment,bioaccumulatethroughfoodchainsandaretransportedlongdistancesthroughmovingairmasses,watercurrentsandmigratoryspecies,withinandacrossinternationalboundaries.TheStockholmConventionwasadoptedon22May2001andenteredintoforceon17May2004.Itinitiallylistedtwelvechemicals(showninboldfontinfootnotes1-3below).Ingeneral,these‘legacy’POPswerefirstproducedand/orusedseveraldecadesago,theirpersistence,bioaccumulativepropertiesandpotentialforlong-rangetransportarewellstudied,andtheyhavebeengloballybannedorrestrictedsince2004.In2009,ninemoresubstanceswereaddedtotheConvention(chemicalswithanasteriskinfootnotes1-3).The21POPsbelongtothreegroups:

• pesticidesusedinagriculturalapplications,forfunguscontrolorforinsectcontrol1

• industrialchemicalsusedinvariousapplications2

• chemicalsgeneratedunintentionallyasaresultofincompletecombustionand/orchemicalreactions3.

Someofthechemicalsfitintomorethanoneofthesethreegeneralcategories,forexample,hexachlorobenzene(HCB),pentachlorobenzene(PeCB),polychlorinatedbiphenyls(PCBs)(seefootnotes1-3).WhilesomechemicalsaregroupedtogetherintheeliminationorcontrolAnnexesoftheConvention,forexample,penta-andtetrabrominateddiphenylethersrepresentonelistingforeliminationofcommercialpentabrominateddiphenylether(seefootnote2).

TheprovisionsoftheStockholmConventionareaimedtoaddresshealthandenvironmentalconcernsatthegloballevel,whilefocusingoneffectsresultingfromlocalorregionalexposurestoPOPs.SpecificattentionisplacedontheimpactsofPOPsuponthemostvulnerablehumanpopulationgroups,suchasintheArctic.Theseincludethefetus,newborns,childrenandwomenofreproductiveage.TheConventionalsoemphasizesthestrengtheningofnationalcapacitiesforthemanagementofchemicalsindevelopingregions,includingthroughtransferoftechnology,theprovisionoffinancialandtechnicalassistance,andthepromotionofcooperationandinformationexchangeamongthePartiestotheConvention.

Article11oftheStockholmConventionencouragesPartiestoundertakeresearch,development,monitoringandcooperationactivitiesonPOPs,aswellasontheiralternativesand‘candidate’POPs(candidatechemicalsunderreviewbythePOPsReviewCommittee),includingaspectsrelatedtosourcesandreleasesintotheenvironment,levelsandtrends,transport,fateandtransformation,andeffectsonhumanhealthandtheenvironment.

Article16oftheStockholmConventioncallsfortheConferenceofthePartiestoevaluateperiodicallywhethertheConventionisaneffectivetoolinachievingtheobjectiveofprotecting

1 aldrin,chlordane,chlordecone*,dichlorodiphenyltrichloroethane(DDT),dieldrin,endrin,heptachlor,hexachlorobenzene(HCB),gamma-hexachlorocyclohexane(γ-HCH,lindane)*andby-productsoflindane[alpha-hexachlorocyclohexane(α-HCH)*andbeta-hexachlorocyclohexane(β-HCH)*],mirex,toxaphene.

2 tetra-andpentabromodiphenylethers(PBdes)*,hexa-andheptabromodiphenylethers(PBdes)*,hexabromobiphenyl*,perfluorooctanesulfonicacid(PFOS),itssaltsandperfluorooctanesulfonylfluoride(PFOS-F)*,pentachlorobenzene(PeCB)*,polychlorinatedbiphenyls(PCBs).

3 hexachlorobenzene(HCB),pentachlorobenzene(PeCB)*,polychlorinatedbiphenyls(PCBs)andpolychlorinateddibenzo-p-dioxins(PCDDs)anddibenzofurans(PCDFs).

Page 12: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

10 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

humanhealthandtheenvironment;thisevaluationisbasedonseveraltypesofinformation,oneofwhichiscomparableandconsistentmonitoringdataonthepresenceofPOPsintheenvironmentandinhumans.TheGlobalMonitoringPlan(GMP)forPOPs,whichhasbeenputinplaceundertheConvention,isakeycomponentoftheeffectivenessevaluationandprovidesaharmonizedframeworktoidentifychangesinlevelsofPOPsovertime,aswellasinformationontheirregionalandglobalenvironmentaltransport.

Becausetherelease,distributionanddegradationofPOPsarehighlydependentonenvironmentalconditions,climatechangeandincreasingclimatevariabilityhavethepotentialtoaffectPOPscontaminationviachangesinemissionsources,transportprocessesandpathways,androutesofdegradation.Climatevariationmayalsoleadtoexposuretochemicalsthroughdifferentsources,processesandmechanisms.ThiswillhaveimplicationsfortheeffectivenessevaluationoftheStockholmConvention,asthemeasuredlevelsofPOPswillincludeaclimate-inducedcomponent.

ThefirstglobalmonitoringreportundertheGMPreleasedin2009recognizedtheimportanceofclimateeffectsonPOPsandstressedtheneedtoconsiderpossibleclimateeffectswheninterpretingtemporaltrenddataforPOPsinGMPcoremedia(i.e.,humantissuesandair).ThereportconcludedthatconsiderationoftheeffectsofclimateonthetransportandpartitioningofPOPshadthepotentialtoimprovesignificantlytheinterpretationofmeasurementsofPOPsinenvironmentalmediainfutureevaluations.ItalsoconcludedthatfurtherstudiesshouldbeencouragedtoassessclimateinfluencesonlevelsofPOPsinenvironmentalmedia.

Furthermore,DecisionSC-4/31ontheGMPestablishingthetermsofreferenceoftheRegionalOrganizationGroupsandtheGlobalCoordinationGroup,encouragesfurtherassessmentoflong-rangetransportofPOPswhileconsideringtheeffectofclimateandmeteorologyontheobservedtrendsinlevelsofPOPs.ThepresentworkisbasedonthemandategiventotheGlobalCoordinationGrouptoassessclimateinfluencesonthelevelsofPOPsmeasuredintheenvironmentandinhumans.

TheArcticCouncil’sArcticMonitoringandAssessmentProgramme(AMAP)hasconductedanumberofactivitiesinrecentyearsdocumentingthelinkagesbetweenclimatechangeandenvironmentaltransportandfateofcontaminants,includingPOPs.IthasalsoproducedseveralassessmentsofPOPsintheArctic,mostrecentlyin2010(seewww.amap.no),theresultsofwhichcontributetotheworkunderArticle16oftheStockholmConventionandthefurtherdevelopmentoftheGMP.AMAPismandatedtosupportthedevelopmentandimplementationofinternational

ddTsprayinginNamibia

Page 13: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

InTrOdUCTiOn 11

agreementsthatwillreduceenvironmentalcontaminationandeffectsintheArcticregion. TheSecretariatoftheStockholmConventionandAMAPjointlyimplementedastrategytoprepare

thistechnicalbackgrounddocumentinordertoprovideconsistentinformationtoboththeConferenceofthePartiestotheStockholmConventionandtotheArcticCouncil.

ThistechnicalreportdrawsonotherrecentandongoingstudiesthataimtoassessclimatechangeeffectsonPOPsdynamicsandtoxicity,aswellasonthewiderscientificliteratureinordertoprovideabriefoverallsynthesis/reviewofthecurrentstateofknowledgeatthegloballevel,andespeciallywithreferencetotheStockholmConvention.

ThistechnicalreporthighlightskeyfindingsrelatedtothecomplexrelationshipsbetweenclimatechangeandPOPs.ItaimstoprovideanoverallglobalviewofPOPsreleasesintotheenvironment,long-rangetransportandenvironmentalfate,andhumanandenvironmentalexposureinachangingclimate,aswellasthepotentialforacouplingoftheeffectsofclimateandPOPsonhumanhealthandtheenvironment.ItalsoaddressesthesynergiesbetweentheclimatechangeandPOPspolicyagendasandprovidespolicymessagesbasedonthecurrentstateofscience.Thisdocumentidentifiesareasofuncertaintyandexistinggapsininformationandknowledge.

AnimprovedunderstandingoftheinfluenceofclimatechangeonPOPsdynamics,exposureandtoxicitytogetherwithabetterunderstandingofhowthesecombinetoaffectecosystemandhumanhealthwillassistthescientificcommunityanddecision-makersindevelopingappropriatepolicyresponsesthatmaybeaddressedthroughtheStockholmConventionandregionalandnationalstrategies.BettermanagementofPOPswillbenefittheglobalcommunityand,inparticular,sub-populationsthataremostatriskfromexposuretoPOPs.Theidentificationofgapsininformationandknowledgedescribedinthistechnicalreportmaystimulateadditionalresearchtoaddresstheseoutstandingneeds.

Thisreporthaseightchapters.Followingthisintroduction,Chapter2providesinformationonhowchangesinclimatehaveaffectedandmaycontinuetoaffectreleasesofPOPs(includingexistinginventoriesandstockpiles)andpossiblenewusesofPOPsindifferentindustrialsectors.Chapter3addressesbothgenericandspecificfateandtransportprocessesforPOPs,withanemphasisonre-releasesofPOPsfromdifferentenvironmentalcompartmentssuchastheoceans,ice,andlandmasses.Chapter4investigatesthepotentialforchangesinexposurelevelsoftheenvironmentandhumanpopulations,whileChapter5discussesthehealthandecotoxicologicalimplicationsoftheprojectedchangesinexposure.Chapter6analyzespossibleco-benefitsofclimatechangemitigationactivitiesandPOPsemissionreductionmeasures.Chapter7summarizesthemainconclusions,whilepolicyrecommendationsdrawnfromthescientificassessmentareprovidedinChapter8.

Page 14: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

12 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

Chapter 2. Release of POP s to the environment CHriSTiAnBOGdAlandMArTinSCHerinGer

2.1. Environmental releases from primary sources

PastandcurrentusesofintentionallyproducedPOPsleadtoprimaryreleases–alsoreferredtoasprimaryemissions–intotheenvironment.Thatis,directdispersiononsoilsandintoair(pesticides),volatilizationintoairfrominitialapplications(semi-volatiletechnicalchemicals,e.g.,PCBsandpolybrominateddiphenylethers(PBdes)),andleachingintowaterfrominitialapplications(watersolubletechnicalchemicals,e.g.,perfluorooctanesulfonate(PFOS)/perfluorooctanesulfonylfluoride(PFOS-F)).Currently,ddTistheonlyPOPpesticidethatisproducedandappliedinappreciableamountsformalariacontrol,PFOS/PFOS-Farestillusedinawiderangeofapplications,andthereareextensiveamountsofPBdesinproductsandstockpilesofobsoleteformulations.EmissionsintoairofunintentionallygeneratedPOPsresultfromside-reactionsinthermalandchemicalprocesses(e.g.,polychlorinateddibenzo-p-dioxins(PCdds)/polychlorinateddibenzofurans,(PCdFs)generatedbycombustion).AlthoughthemajorityofenvironmentalPOPsourcesarerelatedtoanthropogenicactivities,somenaturalprocessesgeneratingPOPsinsmallamountshavebeenidentified,suchasPCddsandPCdFsfromforestfires(Hungetal.,2010).

ThegeographicaloccurrenceofthereleaseofPOPsandtheirdistributionintheenvironmentisassociatedwiththeirglobalproductionandusagepattern.CurrentreleasesofPOPsusedaspesticidesareoftenrelatedtotheirformerapplicationsinlargeagriculturalareas(Li,1999;vonWaldowetal.,2010).WorldwideemissionsofPOPsformerlyusedastechnicalchemicalsarehighestinindustrializedcountriesintheNorthernHemisphere.Factorsrepresentativeoftheeconomicstatusandthepopulationdensityofacountry,suchasnight-timelightemissionsandelectricpowerconsumption,havealsobeenconsideredasrepresentativeoftheuseandassociatedemissionsoftechnicalchemicals(Breiviketal.,2002;Dolletal.,2006;vonWaldowetal.,2010).Duringthepastdecades,practicesandregulationsfortheuseofhazardouschemicalshavebeenimprovedbothinindustrializedandlessindustrializednations.Today,productionandassociatedreleasesofhalogenatedchemicals,aswellasdisposalandrecyclingofPOP-containingapplications(suchaselectronicequipment)areincreasinglyrelocatedtodevelopingcountriesandcountrieswitheconomiesintransition.Thesecountriesoftendonotyethaveavailablestate-of-theartproductiontechnology,workersmaylacktheeducationrequiredforproductionandusemanagement,andfrequentlyhaveinsufficientregulationsand/orenforcementregimesforthesesectors,includingself-regulation/voluntaryregulationbyindustries(Weberetal.,2008a,b).

2.2. Impact of climate change on primary emissions TheobjectiveoftheStockholmConventionisto“…protect human health and the environment

from persistent organic pollutants”.Tomeetthisobjective,theConventioneliminatesorseverelyrestrictstheproductionand/oruseofPOPs.TheConventionalsomanagesreleasesbylimitingsale,transportationandstorageofPOPs.However,theeffortsundertakenthroughtheStockholmConventionmaybeunderminedbyclimatechangeinseveralways.ClimatechangemayaffectprimaryemissionsofPOPsbychangingtheirrateofmobilizationfrommaterialsorstockpiles,orbyalteringusepatterns.IncreasingambienttemperatureswilldirectlyleadtoenhancedemissionsofPOPsthatvolatilizefromexistingPOP-containingapplications.Thevaporpressureofchemicalsincreasesexponentiallywithtemperature,whichshiftsthepartitioningbetweenairandsoilandbetweenairandwater.Thus,increasingtemperaturesenhancevolatilizationand,therefore,leadtoincreasedemissionsintoair(Lamonetal.,2009).Forsemi-volatilechemicals,suchasmostPOPs,theemissionsbyvolatilizationareparticularlysensitivetoasmallmodificationofvaporpressure.Theglobalaverageofsurfacetemperatureshasincreasedbyabout0.74°Cintheperiod1906to

Page 15: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

ReleASeOFPOPSTOTHeenVirOnMenT 13

2005.Elevenofthetwelvewarmestyearsoccurredbetween1995and2006.However,thewarminghasbeenneithersteadynorthesameindifferentseasonsoratdifferentlocations.Seasonally,warminghasbeenslightlygreaterintheNorthernHemisphereandespeciallyintheArctic.

Warming,particularlysincethe1970s,hasgenerallybeengreateroverlandthanovertheoceans.Additionalwarmingoccursincitiesandurbanareas,oftenreferredtoasthe‘urbanheatislandeffect’.Anincreaseintemperatureof1 °C,whichistobeexpectedinthenearfuture(iPCC,2007),willresultinanapproximately10%to15%increaseinthevolatilityofatypicalsemi-volatilePOP(e.g.,PCBs).Locally,temperaturesmay,however,increasebyconsiderablymore(iPCC,2007).A10 °Criseinambienttemperaturewillresultinanapproximate3-foldincreaseinthevolatilityofatypicalPOP.Therefore,emissionsofPOPspresentinopenapplicationsareexpectedtoincrease,suchasPCBsusedasplasticizersinpaintsandjointsealants,andPBdesusedasflameretardants.

TheeffectoftemperatureonprimaryemissionsofPOPsisprobablythemostimportanteffect,strongerthanmanyothereffectsofclimatechangeontheenvironmentalfateofPOPs(seeChapter3).Inanexperimentwithaglobalenvironmentalfatemodelthatcomparedtheeffectofincreasingtemperature,changingwindfields,changingoceancurrents,andchangingprecipitationontheglobaldistributionofPCBs,higherconcentrationsofPCBsinairwereobtainedinallpartsoftheworld(Lamonetal.,2009).Thisismainlycausedbystrongeremissionsfromprimarysourcesand,toalesserextent,byincreasedre-volatilizationfromPOPreservoirsinsoilsandseawater(seeChapter3).

Further,increasingglobaltemperaturesareexpectedtointensifythepropagationandspreadofmalariaandothervector-bornediseasesintropicalcountriessothatlargerareasthanatpresentmayneedmalariacontrol.TheexistingpublichealthexemptionontheuseofddTforcombatingmalariamayleadtoenhanceddemandforddTand,consequently,mayleadtoincreasingemissionsofddT.

OwingtothiseffectofclimatechangeonthedemandforgreateruseofsomePOPsandincreasedvolatilizationofPOPsfromexistingprimarysources,theoveralltrendoffuturereleasesofPOPsislikelytoincreasealthoughthecertaintyofthepredictionsislimited.ForsomePOPs,climatechange-inducedenhancementofemissionsmayreducetheexpectedeffectivenessoftheStockholmConvention,resultinginreleasesdecreasinglessrapidlythantargeted.ForotherPOPs,suchasddT,continuingorevenincreasingdemandandincreasingvolatilizationmayoutweigh

Brominechemicalfumesabovearefinery

atSidom,Israel

Page 16: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

14 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

reductionefforts,possiblyleadingtostabilizingorevenincreasingoverallreleasesofsomePOPsintotheenvironment.

Oncereleasedintotheenvironmentfromprimarysources,POPsmaybetemporarilystoredin

environmentalreservoirs,whichcanthenturnintosecondarysourcesofPOPs.TheimpactofclimatechangeonsecondarysourcesofPOPsisaddressedinChapter3.

2.3. Conclusions ClimatechangemakesitdifficulttopredicttheoveralltrendoffuturereleasesofPOPs.Whereas

theeffortsundertakenundertheStockholmConventionareexpectedtoreducereleases,climatechangemaycounteracttheseefforts.Increasingglobaltemperaturesarelikelytointensifypropagationofvector-bornediseasessuchasmalariaand,thus,enhancethedemandforinsecticideslikelytoincludeddT.Also,emissionsofPOPsfromremainingstocks(e.g.,PCBsstillpresentinbuildingsandelectricalequipment)willincreasewithawarmingclimatebecausevolatilizationofchemicalsincreasesexponentiallywithtemperature.

Althoughthemagnitudeoftheseeffectsisunclear,somePOPsmayshowaslowdownofemission

reductionswhereasotherPOPsmayevenhaveincreasingemissions.IncreasingdemandandhigheremissionsfromvolatilizationsourceswillinfluenceboththeprojectionsandinterpretationoffuturetrendsofenvironmentalcontaminationbyPOPs.

TheexistinguncertaintyassociatedwiththeexpandeduseandreleaseofPOPspointstotheneedforimprovedquantificationandcharacterizationofusepatternsofPOPs(e.g.,ddTappliedinmalariaaffectedregions)andvolatilizationsourcesofPOPs(e.g.,PCBsstoragesitesandotherPOPswastesites).

Page 17: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

EnVirOnMenTAlFATeAndlOnG-rAnGeTrAnSPOrTOFPOPS 15

Chapter 3. Environmental fate and long-range transport of POP s CHriSTiAnBOGdAlandMArTinSCHerinGer

3.1. Large-scale distribution in the environment Afterrelease,POPsaretransportedawayfromthesourceregionswithmovingairmassesand,in

thelongterm,alsowithoceancurrents.Transportbyoceancurrentsisparticularlyimportantforrelativelywater-solublechemicalssuchashexachlorocyclohexanes(HCHs)andperfluorinatedacids(PFOS,perfluorooctanoicacid(PFOA)).AlthoughthevaporpressureofmostPOPsisrelativelylow(below1Pa),itissufficienttosupportsignificantmobilizationbyvolatilization(seeChapter2).

Bothtransportpathways(airandwater)togethercarryPOPsintoallregionsoftheworld,ashasbeenextensivelydocumentedbymeasurementsinvariousmediaintheArcticandAntarctic(Muiretal.,1999;Macdonaldetal.,2000;WeberandGoerke,2003;Corsolini,2009;Hungetal.,2010).

Forchemicalstransportedbyair,hemisphericdistributionoccurswithinweeksormonths,whereasinter-hemisphericmixingtakesplaceonthetimescaleofyears.TheeffectivenessofairbornetransportofPOPsisdeterminedbytheinterplaybetween:transport(i.e.,windspeedanddirection);removalfromairbydegradation,whichoccursmainlybyreactionwithOHradicalsforchlorinatedcompoundsandphotolytictransformationforbrominatedchemicals;andremovalfromairbydeposition,whichincludesdryandwetdepositionofPOPsinthegaseousphaseanddryandwetdepositionofPOPsassociatedwithatmosphericparticles(aerosols).Wetanddrydepositionoftheparticle-boundfractionofPOPsis,onaverage,thefastestandmosteffectiveoftheremovalprocesses.DegradationformostPOPsisrelativelyslow,particularlythereactionwithOHradicals,whichhashalf-livesoftheorderofdaystoweeksandevenmonthsoryears.GiventhatthetransportofPOPsfromindustrialregionstoremoteareasliketheArctictakesdaystoweeks,somePOPswillundergodegradationduring‘transportation’,whileotherswillremainunaltered.POPswithrelativelyhighvaporpressuresuchaslighterPCBsaremainlyinthegasphase,whereasPOPswithlowvaporpressure,suchashighlyhalogenatedPCBsorPBdesarestronglyassociatedwithaerosolparticles.Becauseofthehighefficiencyoftheparticle-associateddepositionprocesses(washoutwithrain,gravitationalsettling),POPswithlowervaporpressureareremovedmorequicklyandtravelshorterdistances(onaverage).Thisdifferenceinremovalefficienciesleadstotheso-called‘globalfractionation’effect,whereinmorevolatilePOPsarepronetotravellinglongerdistancesintheenvironmentthanlessvolatilePOPs.

TheglobaldistributionofPOPshasbeeninvestigatedbylarge-scalefieldstudies,includinganalysisoflargesetsofsamplesoftreebark(SimonichandHites,1995),soil(Meijeretal.,2003),vegetation(Tremoladaetal.,1996),butter(Kalantzietal.,2001),airandprecipitation(Juradoetal.,2004,2005;Pozoetal.,2006),andbiota(SolomonandWeiss,2002;Hites,2004;CarlsonandHites,2005).Forairsampling,bothactiveandpassivesamplerapproacheshavebeenusedandprovedtobeusefulascomplementarymethods(Gouinetal.,2005).

ThefieldstudiesindicatethatvolatilecompoundssuchasHCBarealmostevenlydistributedwithintheNorthernHemisphereorevenglobally.Incontrast,concentrationsoflessvolatilecompoundssuchashighlychlorinatedPCBsshowhighestvaluesinandaroundthepopulatedregionsofprimaryreleasesandareconsiderablylower–butclearlynotzero–inmoreremoteregions.Importantquestionsinthiscontextare:(1)whetherprimarysourcesstilldominatetheobservedlevels,global-scaledistributionpatterns,andtimetrendsofPOPsintheenvironment;and(2)whatistherelativecontributionfromsecondarysources(e.g.,soilsandoceans)throughremobilizationofPOPs?Currentevidencesuggeststhatprimarysourcesarestilldominating,atleastforPCBs(Gioiaetal.,2006;Lietal.,2010;Schusteretal.,2010).

Page 18: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

16 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

3.2. Impact of climate change on environmental fate and long-range transport HighertemperaturesincreasetherateofvolatilizationofPOPsfromopensources.Th isfactor,

whichisaddressedinChapter2,mainlyconcernsprimaryemissionsandmaybeadominatingeffectofclimatechangeontheenvironmentaldistributionofPOPs.However,climatechangewillalsoaffecttheenvironmentalfateofPOPsoncetheyhavebeenemittedintotheenvironmentfromprimarysources.Th ereareseveralmainfactorsthatarerelevantfortheenvironmentalfateandlong-rangetransportofPOPsandthatmaybeaffectedbyclimatechange(seeFigure3.1).ForthemonitoringofPOPsundertheGMP,itwillbeimportanttotakesuchfactorsintoaccount.Forexample,increasedre-volatilizationfromenvironmentalreservoirssuchassoilorglaciers(process1inFigure3.1)willincreaselevelsdetectedbymonitoringprograms.IntheinterpretationofthesedataandthedevelopmentofcontroloptionsundertheStockholmConvention,itwillbeimportanttounderstandtherelativerolesplayedbyprimaryandsecondarysources.Onlythencanconclusionsontheeffectivenessofmeasurestoreduceemissionsfromprimarysourcesbedrawn.

Figure3.1.ConceptualrepresentationofkeyfactorsinfluencingtheenvironmentalfateandtransportofPOPsunderaclimatechangescenario.Numberscorrespondtoenumerateditemsinthetext,includingclimate-change-inducedmodificationsin(1)strengthofsecondaryre-volatilizationsources,(2)windfieldsandwindspeed,(3)precipitation,(4)oceancurrents,(5)meltingofpolaricecapsandmountainglaciers,(6)frequencyofextremeevents,()degradationandtransformationofPOPs,(8)environmentalpartitioningofPOPs,and(9)biotictransportofPOPs.NotethattheprocessesdepictedfortheNorthernHemispherearethesameintheSouthernHemisphere.

EffectsofclimatechangeonfactorsgoverningtheenvironmentalfateofPOPsinclude:

1. Th estrengthofsecondaryre-volatilizationsources.Th eprocessofincreasingvolatilizationwithincreasingtemperaturemainlyaffectsreleasesofPOPsfromprimarysources;howeverPOPscanalsore-volatilizefromsecondarysources.Environmentalreservoirs(e.g.,surfacewater,soils,vegetation,permafrost,snowandice)thathavebeenloadedwithPOPsinitiallyemittedfromprimarysourcescanbecomesecondarysourcesofPOPs.Landusechanges(e.g.,agriculturalland

inter-hemispheric mixing

regionalwindpatterns

solarirradiation

primaryemissions

extremeweatherevents wet and dry

deposition

latitude

temperature

mountainsand glaciers

ruralareaslakes

urbanareas

industrialareas

currents

oceans

2

6 6 69

7

2

3 3 3

9

5 5

5

81

477

7

polarregions

temperateregions

tropicalregions

Southern Hemisphere Northern Hemisphere

global wind patterns

•OH

66

Page 19: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

EnVirOnMenTAlFATeAndlOnG-rAnGeTrAnSPOrTOFPOPS 17

useintheArcticregion)willchangevegetationcover,affectenvironmentalreservoirs,and,inturn,modifysecondaryemissionsofPOPs.DepositionofPOPsfromtheatmosphereintofoliageandsubsequentformationoflong-termsoilreservoirs(WaniaandMcLachlan,2001)maybeaffectedbyclimate-change-inducedmodificationoflanduse.Forinstance,increasedproportionsofleaf-bearingplantsinArcticregionsmaypromotethis‘forestpumpeffect’fromatmospheretosoil.

2. Windfieldsandwindspeed.POPsmigrationthroughtheatmosphereisdrivenbywindsand,

therefore,higherwindspeedsleadtofasterandmoreeffectivetransportofPOPs.Consequently,higherlevelsofPOPsareexpectedinregionsdownwindofrelevantprimaryandsecondarysources.Thatis,northeastofEuropeinSiberiaandtheArctic;southeastofmainlandAsiainthetropicalPacificOcean;andinnorthernCanadaandGreenland.ModelprojectionsoffutureclimatechangescenariossuggesthigherPOPsconcentrationsinairinregionsdownwindoftheirprimarysources(seeChapter2).Inthecontextofdecadalorlongertime-scaleclimatechange,changesinthemagnitudeanddirectionofglobalwindsasaconsequenceofclimatechangearemoredifficulttoassessbecausesuchchangesarenotreadilymeasurable.Rather,theevidenceforlinkagesbetweenPOPscirculationandchangingwindfieldshascomefromrelationshipsbetweenPOPstransportandwindflowsoratmosphericcirculationassociatedwithinter-annualtime-scaleclimatevariation,notablytheNorthAtlanticOscillation(nAO),theElNiño-SouthernOscillation(enSO),andtheArcticOscillation(AO)intheNorthernHemisphere(Maetal.,2004a;Macdonaldetal.,2005;MacLeodetal.,2005;Beckeretal.,2008).AnomalouschangesintheseatmosphericcirculationmodesaltertheintensityandpositionofmajormeridionalorlongitudinalwindstreamsintheNorthernHemisphericatmosphere.Thismightenhancethemeridionalorpolewardatmospherictransport.Someoftheseclimatevariations(e.g.,nAO)alsoexhibitinter-decadalchangesthathavebeenlinkedtoglobalwarming(Hoerlingetal.,2001).TheassociationbetweenPOPslevelsintheatmosphereandtheseclimatevariations(e.g.,nAO)arelikelytocontainasignatureoftheeffectofdecadalorlongertime-scaleclimatechangeonlong-rangeatmospherictransportofPOPs(Gaoetal.,2010).ClimatechangeinduceddesertificationmightalsoleadtogreaterdistributionofPOPsthroughdusttransportassociatedwithchangingwindfields.

3. Precipitation.Precipitationismostlikelytobeimportantattheregionalscale:inregionswithincreasedprecipitation,depositionofPOPsfromairtosurfacemediawillincrease;inregionswithandduringtimesoflowornoprecipitation,airbornePOPswillbetransportedmoreeffectively.Precipitationprojectionsinclimatechangedifferconsiderablyaroundtheglobe,indicatingbothdecreasing(e.g.,20%reductionfrommean)andincreasing(e.g.,40%increasefrommean)trends

SwimmingPolarBear,Svalbard

Page 20: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

18 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

asreportedbytheIntergovernmentalPanelonClimateChange(iPCC,2007).AmainimpactofthechangesinprecipitationonPOPsconcentrationsiscausedbychangesinwetdeposition.AnotherfactoristheeffectofchangingprecipitationonsoilmoistureandmicrobialcommunitiesinthesoilthatbiodegradePOPs.

4. Oceancurrents.ModificationsofoceancurrentspossiblyoccurringunderclimatechangewillalsoaffectthetransportofPOPs.Itismainlytheenvironmentalfateofmorewater-solublechemicals,suchasperfluorinatedacids,thatwillbeaffectedbymodificationsofoceancurrents(Pavlov,2007;PavlovandPavlova,2008;Yamashitaetal.,2008).

5. Meltingofpolaricecapsandmountainglaciers.Oceanicemeltingwillresultinair-waterexchangeofPOPsinlargeareasoftheArcticoceanswhentheyarenolongericecovered.MeltingiceleadsalsotoreleaseofPOPstrappediniceinpolarandalpineglaciers,aswellastoalossofpermafrost,enablingair-soilexchangeofPOPs.Forexample,duringthepastfiveyearsthelevelsofHCBattheZeppelinstation(Ny-Ålesund,Spitsbergen,Norway)havebeenincreasing(Hungetal.,2010).Todate,suchanincreaseinHCBconcentrationhasonlybeenobservedattheZeppelinstation;nosimilartrendsarereportedfromanyotheratmosphericmonitoringsites(Hungetal.,2010).TheincreasingHCBlevelsmaybeexplainedbyincreasedevaporationofHCBfromtheopenocean(includingduringtheArcticwinter)alongthewesterncoastofSpitsbergen(Svalbard,Norway),whichhasbeenice-freeduringintheperiod2004to2009.Similarlyforα-hexachlorocyclohexane(α-HCH),itisexpectedthatthecentralArcticOcean,whichcurrentlyisconsideredover-saturatedwithα-HCHcomparedtotheair(Jantunenetal.,2008;Hansenetal.,2009),willserveasadirectsourcewhentheicecapdisappearsonaseasonalbasis(aspredictedinvariousclimatechangescenarios).MobilizationofPOPsfrommountainglaciericehasalreadybeenobserved(Blaisetal.,2001;Bogdaletal.,2009).Itisalsowidelyexpectedthatseaicemeltingwillfacilitatemoreshiptrafficandoilandgasexploration,whichwillprobablycauseincreaseddirectorindirectreleasesofPOPs(ACiA,2005;Macdonaldetal.,2005).TourismandthesizeofresidentpopulationsmayalsoincreaseintheArcticastheclimateinthisregionmoderates,leadingtoincreasedPOPreleasestoair,waterandsoils.

6. Frequencyofextremeevents.Morefrequentextremeweathereventssuchasheatwaves,storms,floodsandforestfiresareprojectedtooccurasaresultofglobalwarming(iPCC,2007).ExtremeweathereventshaveadocumentedimpactontheremobilizationandsubsequentbioavailabilityofPOPs.IthasbeenshownthatconcentrationsofcertainPOPs,shortlyafterhurricanesand

CalvingIceberg,DiskoBay,Greenland

Page 21: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

EnVirOnMenTAlFATeAndlOnG-rAnGeTrAnSPOrTOFPOPS 19

storms,wereelevatedseveralfoldlocallyinsoils,sedimentsandrunoffwaters(BurgoaandWauchope,1995;Presleyetal.,2005).Also,floodingevents,whichoccurfrequentlyintemperateregionsofEurope,theAmericas,AsiaandAfrica,maysignificantlycontributetore-emissionandredistributionofPOPsformerlystoredinsedimentandagriculturalsoils.Recentstudiesinvestigatingtheeffectsoffloodingeventsonlong-termremobilizationoflegacyPOPsillustratethepotentialoftheseeventsforreactivatingformerlydepositedpollutants(Wilkenetal.,1994;Holoubeketal.,2007;Pulkrabovaetal.,2008;Weberetal.,2008a).

7. Degradationandtransformation.HighertemperatureswillprobablyleadtoincreaseddegradationofPOPs;thisisprobablymostrelevanttoreservoirsofPOPsinsoils,vegetationandseawater.However,itisnotcleartowhatextentthecapacityofmicroorganismstodegradePOPswillincreasewithincreasingtemperatureandwhethermicroorganismswillexperiencethermalstressunderwarmingclimate.Inair,strongerirradiationinregionswithlesscloudcoverandrainleadstohigherphotolyticirradiationandhigherconcentrationofOHradicalsinair,whichincreasesthedegradationofairbornechemicals.Inaddition,degradationofPOPsoftenincludesformationoftransformationproductsthatarestructurallysimilartotheparentcompoundandmayalsobesimilarlytoxicandpersistent.Anexampleisdde(dichlorodiphenyldichloroethylene),ahighlypersistenttransformationproductofddT(Schenkeretal.,2007).AlthoughtheeffectoftemperatureontransformationanddegradationofPOPsisexpectedtobelessimportantthantheeffectoftemperatureonpromotingprimaryandsecondaryemissionsofPOPs(seeChapter2andLamonetal.,2009),theeffectoftemperatureontransformationanddegradationastheclimatechangesisveryuncertain.

8. Partitioning.ClimatechangecanaffectpartitioningofPOPsbetweenavailablephasesinenvironmentalcompartmentsindifferentways.AkeyfactoristheincreaseinthevaporpressureofPOPswithincreasingtemperature.Thisaffectspartitioningbothbetweenbulkphases(airvs.surfacemediasuchassoil,waterandvegetation)andbetweenthegaseousandparticle-boundphasesinair.Asaresult,strongeremissionsfromprimaryandsecondarysourcesandashifttowardshighergaseousfractionsinairmaybeobserved.AllofthesefactorsmakePOPsmoreavailableforlong-rangetransport.Theamountofparticulatematterinenvironmentalcompartmentsmayalsobeincreasedbyclimatechangeandaffectthemobilityofparticle-associatedPOPs.Intheatmosphere,temperatureincreasemayenhancetheformationofsecondaryatmosphericparticulatematterbyacceleratingchemicalreactions(Forsteretal.,2007).Moreover,ahighertemperatureofsurfacewatermayincreaseprimaryproductionleadingtoincreasedparticulateorganicmatter(Macdonaldetal.,2005;Carrieetal.,2010).Themeltingofsea-icecoverislikelytofurtherenhanceprimaryproductivityasaresultoftheimprovedlightregime.SuchchangeswouldenablealargerfractionofthePOPstobeassociatedwithparticulatematterinairandwater.Intuitively,theatmospherictransportofPOPstoremoteregionsmaybereducedduetotemporaryorpermanentdepositiontosurfaces.However,moreassociationofPOPswithparticulatemattermayalsoresultindecreasedphotodegradationduringtransittoremoteregionsandthusincreasethelong-rangetransportpotentialofPOPs(Scheringer,1997;Macdonaldetal.,2005).Additionally,modifiedwindfieldsandhigherwindspeedsareexpectedtopromoteatmospherictransportofairborneparticlesandassociatedPOPsandmight,therefore,counteractincreaseddepositionofPOPs.Increasedparticulateorganicmatterinsurfacewaterswouldleadtoareductionoffreelydissolvedwaterconcentrationsandincreasedtransferstobenthicsedimentswithimplicationsforlong-rangewatertransport.

9. Biotictransport.Alteredmigrationpatternsofcontaminatedspecies(e.g.,fishandseabirds)maycausefuturetransportofPOPstopreviouslyuncontaminatedregions(Macdonaldetal.,2005;Blaisetal.,2007).Somerecentstudieshavesuggestedthat,nexttoatmosphericandoceanictransport,biotictransportofbioaccumulativecontaminants(e.g.,fromguanoofArcticandAntarcticseabirdsanddeathofmigratingsockeyesalmon)maybeofrelevance(Bard,1999;Krümmeletal.,2003;Blaisetal.,2005,2007;Geiszetal.,2008).

Inadditiontothefactorsdiscussedabove,thereareadditionalelementsofclimatechangethatarelikelytoaffecttheenvironmentalfateofPOPs.Oneisincreasingsoilerosion,whichincreasesmobilizationofPOPspresentinsoilsandtheirtransfertorivers,lakesandoceans(ACiA,2005).

Page 22: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

20 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

Anotherelementischangesinthesalinityoftheseawater.Salinityispredictedtoincreaseinseveralregionsoftheworld’soceansandtodecreaseinothers(iPCC,2007).ChangesinsalinitychangethesolubilityofPOPsinwaterand,thereby,alsoair-waterpartitioning(POPsarelesssolubleinwaterifsalinityishigher).InfluencesofsalinitychangesonthetoxiceffectsofPOPsareaddressedinsection5.2.3.

ThereareseveralimportantgapsincurrentunderstandingoftheimpactsofclimatechangeontheenvironmentalfateandtransportofPOPs.First,forallPOPsthereisatransitionfromaregimethatisdominatedbyprimarysourcestoaregimewheresecondarysourcesdominatetheenvironmentaldistribution,levelsandtrends(Nizzettoetal.,2010).PrimarysourcesarestilldominantforPCBs,whereassecondarysourceshavealreadybeenobservedforHCBandHCHs(seeitem1above).ItiscurrentlynotknownhowclimatechangewillaffecttherateofthistransitionfromprimarytosecondarysourcesfordifferentPOPsandinwhichwaythecapacityofimportantenvironmentalreservoirs(oceanwaterandsoilsintemperateandpolarregions)thataccommodatePOPswillchange.AsecondfieldwithmajoruncertaintiesisthereactionofmicroorganismsinsoilstochangingtemperatureandsoilhumidityandhowthiswillaffectthecapacityofsoilsforbiodegradationofPOPs.Finally,aswithallaspectsofclimatechange,itisgenerallymoredifficulttopredictchangesinthefateofPOPsonregionalscalesthatmightbecausedbychangesinland-use,soilcomposition,andextentofprecipitationandirrigation.Mostimportantly,changesintransportandfateofPOPsasaresultofclimatechangewillhavedirectconsequencesforexposureofwildlifeandhumanstoPOPs(seeChapter4).

3.3. Conclusions

TheenvironmentalfateofPOPsattheglobal,regionalandlocalscalewillbeaffectedbynumerousfactorsrelatedtoclimatechange.ThemaineffectsofclimatechangeonthefateofPOPsindicatedbythecurrentscientificknowledgeinclude:

1. IncreasedmobilizationofPOPsfromenvironmentalreservoirs(e.g.,soils,glaciers,theArcticOcean)byincreasedtemperature,extremeweathereventssuchasflooding,andincreasederosion.

2. Increasedairbornetransporttolocationsdownwindofmainemissionareasbecauseofhigherwindspeeds(mainlyrelevantontheregionalscale).

3. EnhanceddegradationofPOPs(undertheassumptionthathighertemperatureleadstohigherdegradationcapacityofmicroorganisms),butalsoincreasedformationofpotentiallyPOP-liketransformationproducts.

4. Changesindepositionpatternsduetochangingprecipitationpatterns(spatiallyandtemporally),mainlyrelevantonthelocaltoregionalscale.

ThemostimportantresearchneedsassociatedwithclimatechangeandthefateofPOPsinclude: 1. BettercharacterizationofprimaryandsecondarysourcesofPOPs(thisishighlyrelevantforthe

predictionoffuturelevelsandtrendsandfortheinterpretationofmonitoringdata). 2. BetterunderstandingofthemolecularfateofPOPsandespeciallythereactionofmicroorganisms

insoilandwatertoPOPsandclimatechangeand,inparticular,highertemperature(i.e.,willmetabolicactivityandtherebythecapacitytodegradePOPsincreasewithrisingtemperatureorwillthermalstressreducethecapacityofmicroorganismstodegradechemicals).

3. IdentificationoftransformationproductsofPOPsthatmaybeformedinrelevantamountsundertheconditionsofclimatechangeandtheirimpactsorpotentialimpactsonthehealthofecosystemsandhumanpopulations.

Thekeypolicyrecommendationisthatpoliticalandfinancialsupportbeprovidedforlong-termPOPmonitoringprogramsinallregionsoftheworld.

Page 23: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

IMPACTOFCliMATeCHAnGeOnexPOSUreTOPOPSFOrwildliFeAndHUMAnS 21

Chapter 4. Impact of climate change on exposure to POP s for wildlife and humans IAnT.COUSinS,DeGUOKOnGandROBinVeSTerGren

4.1. Introduction Drawingonpreviouslypublishedstudies,includingmodelforecasts,thischapteraimsto

determineif,andtheextenttowhich,exposuretowildlifeandhumanswillalterasaresultofclimatechange.Thegeographicalscopeofthischapterisglobal,althoughclimatechangeeffectsmaybemorepronouncedonregionalscales.TheArcticisanareaparticularlysensitivetoclimatechangeandmanyexamplesinthechapteraretakenfromthisregion.Theissuescoveredinthischapterareimportantbecausetheyaffectthetrendsinhumanexposurelevels,andoneofthetwocoremediaoftheGMPundertheStockholmConventionishumantissues.ThepurposeoftheGMPistomonitorspatialandtemporalchangesinPOPslevelsincoremediatodeterminetheeffectivenessofregionalandglobalcontrolmeasuresforPOPs.Itisimportanttobeabletoattributetherelativeweightofdifferentprocessesinexplainingchangesinconcentrationincoremediaasaresultof(i)climatechange;(ii)controlmeasuresrecommendedbytheStockholmConvention;or(iii)otherfactorssuchasaccidents,warortechnologicalbreakthroughs,sothatcorrectconclusionsaredrawnwhenconductinganeffectivenessevaluationoftheConventionandevaluatingtheneedfornewmanagementstrategiestocontrolPOPs.

Chapter3containsinformationonhowclimatechangeisexpectedtoalterconcentrationsinenvironmentalexposuremedia(e.g.,air,water,soils,sedimentsandvegetation).Thatdiscussionwillnotberepeatedhere,butitisworthemphasizingthatchangesinPOPstransportandfateasaresultofclimatechangewillhavedirectconsequencesforexposureofwildlifeandhumanstoPOPs.BecausehumanandwildlifeexposuretomostPOPsisthroughenvironmentalmedia,apredictedchangeinexternalPOPconcentrationswillcauseanassociatedchangeininternalconcentrationsinwildlifespeciesandhumanpopulations.

PolarBearsatGarbageDump,

Churchill,Canada

Page 24: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

22 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

ThischapterbuildsonChapter3byaddressingthepotentialclimatechangeeffectsonexposuretoPOPsthatarenotassociatedwithchangesinexternalenvironmentalexposureconcentrations.Itisdividedintothreeparts:thepossibleeffectsofclimatechangeonwildlifeexposure;thepossibleeffectsofclimatechangeonhumanexposure;andasectionhighlightingdatagapsandrecommendationsforfutureresearch.Table4.1summarizestheclimate-inducedimpactsonwildlifeandhumanexposureand,wherepossible,providesanindicationofwhetherexposureofwildlifeandhumansarelikelytoincreaseordecreaseasaresultofthespecifiedclimate-inducedimpact.Itisimportanttoremember,however,thatconcentrationsofmostregulatedPOPsareexpectedtofallasaresultofemissionreductionmeasures.However,thismaynotcontinuetobethecaseinthefutureforallPOPsifclimatechangeleadstogreaterprimaryandsecondaryreleases(seeChapter3).Consequently,whenitisconcludedthatexposurewillincreaseordecreaseasaresultofclimatechange,thechangeisonlyrelativetoexposurethatwouldhaveoccurredwithouttheclimatechangeeffect.HealtheffectsresultingfromPOPexposurearenotincludedhereastheseareaddressedinChapter5.

Table4.1Climate-inducedimpactsonthePOPsexposureofwildlifeandhumans.

Climatechange-inducedimpact ImpactsonPOPexposure SourceInwildlife Inhumans

Alteredexternalenvironmentalexposure

+/- +/- SeeChapter4

Changeinfoodwebstructure

Bottom-up(aquatic)

+/- +/- Macdonaldetal.,2003,2005

Bottom-up(terrestrial)

+/- +/- Macdonaldetal.,2005

Top-down(aquaticandterrestrial)

+/- +/- Macdonaldetal.,2003,2005

Earlierarrivalofmigrantspecies

+/- +/- Waltheretal.,2002

Arrivalofinvasivespecies

+/- +/- Occhipinti-Ambrogi,2007;Moore,2008;MooreandHuntington,2008

Increasedinternaluptake + + Lydyetal.,1999;Buchwalteretal.,2003

Increasedmetabolism - - Maruyaetal.,2005;Buckmanetal.,2007;Patersonetal.,2007

Increasedremobilizationduetostarvation

+ Cherryetal.,2009

Changinggrowthratesinorganisms

+/- Peltonenetal.,2007

Increasedtimespentindoorsorinurbanareas

+ Jawardetal.,2004;Bohlinetal.,2008;Schecteretal.,2009

IncreasedusageofddTformalariacontrol

+ Ritteretal.,2011

Wastesiteleakageduetopermafrostthawingandrisingsealevels

+ Gilmanetal.,2009a

Humandietchangescausedbyfoodbeingsuppliedfromdifferentgeographicallocations

+/-

+Indicatesincrease;-indicatesdecrease;anemptycellindicatesnoinformation.

4.2. Exposure of wildlife

Bioaccumulationisthephenomenonbywhichchemicalsreachhigherconcentrationsinbiotarelativetothemediainwhichtheydwell.Forexample,POPssuchasPCBscanreachconcentrationsinahightrophiclevelfishthataremanyhundredthousandtimestheconcentrationsthatarepresentinthewaterinwhichthatfishswimsandmaybeathousandtimeshigherthanthelevelsfoundinamid-trophiclevelfishthatitconsumes.ThebioaccumulationprocessesforPOPsin

Page 25: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

IMPACTOFCliMATeCHAnGeOnexPOSUreTOPOPSFOrwildliFeAndHUMAnS 23

aquaticandterrestrialwildlifespeciesarecomplex(GobasandMorrison,2000;MackayandFraser,2000)andthecomplexityoftheprocessesofferstheopportunityforclimatechangetoactinsubtleways(Macdonaldetal.,2005).Biomagnificationismadeupoftwoprocessestermedbioconcentrationandbioaccumulation.Bioconcentrationispartitioningofasubstancefromtheexternalexposuremediumintothetissuesoftheorganism.Forhydrophobic/lipophiliccompoundsitisthepartitioningfromenvironmentalmediaintolipidsthatprimarilycausesthehighconcentrationsobservedinwildlife.Bioaccumulation,especiallydietaryaccumulationisthecauseofadditionalaccumulationinorganismsofthenexttrophiclevelresultinginanincreaseinchemicalconcentrationupthefoodchainandacrosstheupperfoodweb(i.e.,biomagnification).ModelingtoolsareavailableandhavebeenusedtopredictbioaccumulationforspecificPOPsinwildlife(Clarketal.,1990;Thomannetal.,1992;Gobasetal.,1993;CampfensandMackay,1997).Inprinciple,thesemodelscanalsobeusedtopredicthowbioaccumulationwillalterasaresultofclimatechange.ItisnecessarytounderstandhowtrophicstructureandPOPprocesseswithinorganismsarelikelytochangeasaresultofclimatechangeprocessesinordertounderstandhowbiomagnificationofPOPsinfoodwebsmaychange.

4.2.1. Changes to food web or trophic structure

ChangesinfoodwebstructuremayhaveimportantconsequencesforthebiomagnificationsofPOPsinfoodwebs.Thesechangesmayoccurvianumerousprocesses.Atthesimplestlevel,trophicstructurechangescanoccurintwofundamentallydifferentways,eitherfromthe‘bottom-up’,orfromthe‘top-down’.

Inaquaticsystems,bottom-upcontrolledchangesare,forexample,changesinprimaryorsecondaryproductivity,whichoccurasaresultofchangesinstratification,nutrientsupply,lightintensityoricecover,thatleadtolarge-scaleconsequencesforhighertrophiclevelorganisms.Itisknown,forexample,thatmarinephytoplankton(primaryproducers)affecttheabundanceanddiversityofmarineorganisms,drivemarineecosystemfunctioningandsettheupperlimitsforfisheryyields(RytherandYentsch,1957;Behrenfeldetal.,2006;Hensonetal.,2010).Climatechangeislikelytoimpactonphytoplanktonabundance,butwhetheritwilldecreaseorincreaseabundanceinspecificregionsischallengingtopredict.Long-termmonitoringstudiesofphytoplanktonabundanceusingsatelliteremotesensinghavereportedbothincreasesanddecreasesinphytoplanktonabundance(GreggandConkright,2002;Antoineetal.,2005;Greggetal.,2005;Behrenfeldetal.,2006).Theseobservedchangesinphytoplanktonabundancevaryspatiallybetweenoceanregionsandalsodisplaylargeinter-annualanddecadal-scaletemporalvariability.Changesinprimaryandsecondaryproductionwillhaveamajoreffectontheproductionoforganismsathighertrophiclevels,butthecomplexityofthetrophicsystemsleadingfromprimaryproductiontohighertrophiclevelorganisms(e.g.,fish)makesitdifficulttoestablishpredictiverelationships(RichardsonandSchoeman,2004).Nevertheless,assuggestedbyMacdonaldetal.(2003),itisconceivablethatbottom-upchangesintrophicstructurecouldresultinorganismsbeingpushedhigherorlowerintheireffectivetrophiclevelsandresultinexposurestoPOPsbeingalteredbyafactorof5to10ineitherdirection.StudieswhichattempttodeterminehowchangesinprimaryproductioncouldaffectPOPsexposuretowildlifeinaquaticfoodwebshavebeenreportedbyBorgåetal.(2010)andCarrieetal.(2010).Borgåetal.(2010)usedaPOPfoodwebmodeltoconcludethatincreasedtemperaturecoupledwithincreasedparticulateorganicmatter(POM)inwaterwouldcauseareductionofthebioaccumulationpotentialofPOPsintheArcticmarinepelagicfoodchain.Thedecreasedbioaccumulation(orexposure)potentialofPOPsintheirstudyisprimarilycontrolledbythereductioninthebioavailablefractionofPOPs.TheassumptionofhigherPOMcausesadecreaseinthefreelydissolvedfractionofPOPs(whichisthefractionassumedtobebioavailable)asthesecompoundsstronglyassociatewithPOM.

AlthoughthestudyreportedbyBorgåetal.(2010)illustrateshowafoodwebmodelcanbeusedtoestimatetheconsequencesofclimatechangeonPOPexposure,itisconsideredthattheeffectsofclimatechangeonphytoplanktonabundanceandonfoodwebstructurearecurrentlytoopoorlyunderstoodtodothiswithanydegreeofconfidenceinthemodelpredictions.Forexample,contrarytotheassumptionsofBorgåetal.(2010),arecentstudy(Boyceetal.,2010)measuredadecreaseinprimaryproductivityintheArcticOceanoverthepastcentury.Theobserveddecrease

Page 26: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

24 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

inprimaryproductivitywasassociatedwithlimitednutrientsupplycausedbytheincreasedstratificationofthesurfaceocean.Thewaythatprimaryproductivitywillreacttoclimatechangeisexpectedtobehighlyregionallyspecific.SomeregionsoftheArcticmayhaveincreasedprimaryproductivityasaresultofclimatechange(duetodecreasedicecoverandincreasedwarmthandsunlight)whereasothersmayshowdecreasesduetolimitednutrientsupply.Howfoodwebswillreacttothesechangesisuncertain;somefoodwebsmayexperiencedecreasedexposuretoPOPsassuggestedbyBorgåetal.(2010),whileothersmayexperienceincreasedexposuretoPOPsassuggestedbyCarrieetal.(2010).InthestudyreportedbyCarrieetal.(2010)itissuggestedthattheincreasinglevelsofcontaminantsobservedinanArcticbenthicfish(burbot,Lota lota)werelinkedtoincreasedprimaryproductionandrelatedsedimentationresultingfromclimatechange.TheauthorspostulatedthatrisingtemperaturesandreducedicecoverwillleadtoincreasedexposureofhightrophiclevelArcticfreshwaterbiotatocontaminants.Theirreasoningisthatgreateramountsofalgalorganicmatterarefoundinlakesandthuscancontributetoorganicmatter-boundPOPswhichmaydeposittosedimentsandincreasetheexposureoflocalaquaticbiotasuchasburbot.Carrieetal.(2010)andBorgåetal.(2010)bothstartedwiththesamepremisethatprimaryproductionwillincreaseasaresultofrisingtemperatures;however,theycometooppositeconclusionsregardingtheeffectincreasedprimaryproductionwillhaveonPOPsexposureofdifferentorganisms.ThetwostudiestogetherwouldsuggestthatincreasedprimaryproductivitywilldecreasePOPsexposuretopelagicorganisms,butincreaseexposuretobenthicfeedingorganisms.Thepresentauthorsjudgethesefindingstobeuncertain,duetothepaucityofstudies,andrecommendfurtherinvestigation.

Interrestrialsystems,bottom-upcontrolledchangesintrophicstructurecouldresultfromclimatechangeeffectsonvegetationabundance(biomassanddiversity).IntheArctic,forexample,organismsatthetopofthefoodwebthatcanadapttohabitatchanges(e.g.,Arcticfoxes,grizzlybearsandsomebirds),mayswitchbetweenterrestrialandaquaticfoodwebs,whichcouldlargelyaltertheirexposuretoPOPs(Macdonaldetal.,2005).AshiftfromaquatictoterrestrialfoodwebswouldbelikelytocauseadecreaseinPOPsexposurefortheseorganisms,althoughthemagnitudeofthedeclinewouldbePOPspecific(BrookandRichardson,2002;Kellyetal.,2004).Forwater-solublePOPssuchasperfluorooctanesulfonate(PFOS),highertemperaturesmayincreaseplantuptakebytranspiration,althoughthesechangesmaybeoffsetbytheeffectsofincreasedcarbondioxidethatcouldreducetheactivityofplantstomataandreduceplanttranspiration.BioavailabilityofPOPsinsoils(i.e.,ahigherproportionmaybeinthedissolvedphaseinsoil-water)mayincreasewiththepredicteddeclineinsoilorganiccarboncontent(Bellamyetal.,2005).

Top-downcontrolledchangeoccurswhenthepopulationsnearthetopofthefoodwebareinsomewayaltered.Awell-knownexampleoftop-downcontrolledchangeintheArcticfoodwebisthewidespreadlossoficecover,animportanthabitatformanyArcticspeciesincludingbears,seals,walrusandArcticcod(Macdonaldetal.,2005).Top-downcontrolinfoodwebslimitsthenumberofspeciesatlowertrophiclevelsthroughpredation.LossofpredatorspecieswillhaveimportantconsequencesforspeciesabundanceatlowertrophiclevelsandthusforPOPbiomagnification.Thecurrentshifttowardsanearlierspringbreak-upofseaiceinwesternHudsonBayhasresultedinpolarbearsshiftingtoamorepelagicdiet.ThisnotonlychangesthebioaccumulationofPOPsinpolarbears(McKinneyetal.,2009),butmayalsohaveimportantlong-termtop-downcontrolledeffectsonfoodwebstructure.Thesechangesintop-downcontrolmayfeedbacktocausefurtherchangesinPOPbioaccumulation.Anotherspecialcaseoftop-downchangecanoccurasaresultofhumanactivity.Anincreaseinhabitatlossduetoincreasedhumanoccupancy,anddeclineinspeciesdiversityduetoincreasedhuntingandfishing,mayresultinalterationofthefoodwebstructureandsubsequentlychangetheexposuretoPOPs(Bard,1999;Macdonaldetal.,2003,2005).

Abehavioral(phenological)changewithconsequencesforfoodwebstructureandPOPsexposureisthetimingofspringactivitiessuchastheearlierarrivalofmigrantbirdsandearlierbreedingofcarnivorousanimals.Forexample,birdsarrivingearliermaybepushedhigherorlowerthantheiroriginaltrophiclevel.Alteredmigrationpathwaysofmigratoryspecies(whales,fish,birds)aswellasactingasvectorsforPOPs(seeChapter3)canalsoaffectfoodwebstructure.Invasions

Page 27: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

IMPACTOFCliMATeCHAnGeOnexPOSUreTOPOPSFOrwildliFeAndHUMAnS 25

ofnewspeciesorextensionsofhabitatrangesofexistingspeciesfosteredbyclimatechangealsohavethepotentialtoalterfoodwebstructure.Climatechangemayalsofacilitateso-called‘regimeshifts’,definedasrapidreorganizationsofecosystemsfromonerelativelystablestatetoanotherandareoftenrelatedtochangesintheclimatesystem.Forexample,itisthoughtthataregimeshiftoccurredintheNorthSeaandBalticSeainthelate1980swithfairlyabruptchangesinseasurfacetemperatureandwindfield(Schrum,2001),whichhasbeenlinkedtochangesintheaquaticecosystemwithnegativeconsequencesforcodrecruitmentinbothseas(Brander,2010).

TemporaltrendsincontaminantlevelsinbiotamaybealteredbydietarychangesandthiscouldleadtoincorrectconclusionsbeingdrawnwhenevaluatingPOPmanagementstrategies(e.g.,emissionreduction).Forexample,ifaspeciesisforcedtostartfeedingatahighertrophiclevelthentemporaltrendsmaynotcontinuedownwardasexpected,evenifemissionshavebeenreduced.Conversely,incorrectconclusionsmaybereachedabouteffectivenessofmanagementstrategiesifaspeciesstartsfeedingatalowertrophiclevelandasharpdownwardtimetrendincontaminantlevelsisobserved.ExperimentalevidenceforhowdietarychangesinfluencetemporaltrendsinPCBshasbeenreportedbyHebertetal.(1997).

InastudybyMcKinneyetal.(2010),ithasbeenproposedthattemporalchangesincontaminantpatternsinthetissuesoftoppredatorscanbeusedtodeterminedietarychangesthatmayresultfromclimatechange.AdiposetissuewassampledfromthewesternHudsonBaysubpopulationofpolarbearsatintervalsfrom1991to2007toexaminetemporalchangesincontaminantpatternsofPCBandorganochlorinepesticides.Theauthorsexaminedtheinfluenceofyear(i.e.,agingor‘weathering’ofthecontaminantpattern),dietarytracers(carbonstableisotoperatios,fattyacidpatterns),andbiological(age/sex)grouponcongener/metaboliteprofiles.ItwasobservedthatpatternsofPCBs,chlordanes,andPBdeswerecorrelatedwithdietarytracersandbiologicalgroup,butonlyPCBandchlordanepatternswerecorrelatedwithyear.Itisconcludedthatcontaminantpatterntrendsmaybeusefulindistinguishingthepossibleroleofecological/dietarychangesoncontaminantburdensfromexpecteddynamicsduetoatmosphericsourcesandweathering.

4.2.2. Changes to POP processes within organisms

ItisrecognizedthatawarmerclimatewillaffectthetoxicokineticsofPOPswithinpoikilothermic(cold-blooded)organismssuchasinvertebrates,fishes,amphibiansandreptilesbydirectlyenhancingtheinternaluptakeingillsandtheintestines(Lydyetal.,1999;Buchwalteretal.,2003)andmetabolism(Maruyaetal.,2005;Buckmanetal.,2007;Patersonetal.,2007).IncreasedmetabolismduetohighertemperaturesisonlyexpectedtobeofminorimportanceinmodulatingexposureandeffectsformostPOPs,whicharebydefinitionnotsusceptibletodegradationprocesses.Whereitdoesoccur,enhancedmetabolismcouldleadtoanincreasedexposuretotoxicmetabolitesduetobiotransformationofPOPs(Maruyaetal.,2005;Buckmanetal.,2007;Patersonetal.,2007).

Sometoppredatorsmayundergoperiodsofenforcedfastingrelatedtoclimatechange(Cherryetal.,2009).AwellknownexampleisthepolarbearsinHudsonBaywhichareunabletohuntsealsduringthespringduetothechangesinthespringice-climatewhichaffectsfoodavailability.LongerperiodsofstarvationduetochangesinicecoverwouldleadtohigherinternalexposureofPOPsreleasedfromfatreserves.

ChangesingrowthratesinorganismscanaffectthebioaccumulationofPOPsandcanleadtoincorrectconclusionsbeingdrawnwhenevaluatingPOPmanagementstrategies.Forexample,extremelylargechangeshaveoccurredinthegrowthofBalticherring(Clupea harengus membras)overthepastfewdecadesduetochangesinplanktonabundance(Peltonenetal.,2007).Althoughthereisnoevidencethatclimatechangehascausedthesechangesinherringgrowthrates,itisnotinconceivablethatclimatechangecouldcausesimilareffects.SomepopulationsofBalticherringhavemuchlowergrowthratesthanpreviouslyobserved,whichmaybeoneofthereasonswhylevelsofPOPsinBalticherringhavenotdeclinedinrecentyears(Peltonenetal.,2007)despitereductionsinPOPsloadingstotheBalticSea.

Page 28: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

26 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

4.3. Exposure of human populations

Humansareexposedtochemicalpollutantsthroughingestionoffood,drinkingwateranddust,andtoalesserextent,throughinhalationofambientandindoorairandparticulates.MostPOPsarehydrophobicandlipophilicandhavelowvaporpressure,thusdietdominatesbackgroundhumanexposure.Thisdietaryexposurewillbeaffectedbyanyclimate-relatedchangesinthestructureofrelevantfoodwebs.Thecontrollinginfluenceoffoodwebstructureonhumanexposureissupportedbyarecentstudywhichconcludedthatfoodwebstructureisfarmoreimportantthanotherenvironmentalcharacteristics(e.g.,temperature,precipitation)fordeterminingthepotentialhumanexposureofchemicals(Undemanetal.,2010).Ritteretal.(2009)havedevelopedamodelforestimatingmulti-individualhumantimetrendsforlevelsofpollutantsaftertheyhavebeenbanned.

Inadditiontothedietarybackgroundexposure,somehumanpopulationsareexposedtohigherlevelsofPOPsduetoproximitytopointsources(manufacturingorwastesites)orduetooccupationalexposure.ForafewPOPspresentincommercialproducts,suchasbrominatedflameretardantsandperfluorinatedcompounds(Bohlinetal.,2008;Schecteretal.,2009)exposureviaindoorairanddusthasbeenidentifiedasbeingimportantforlowbackgroundexposuresinhumanpopulations,andofmoreimportanceforchildrenlivingclosetofloorsurfaces(Wilfordetal.,2005;Lorber,2008;Johnson-RestrepoandKannan,2009).Indevelopingcountries,wherehousesaresometimessprayedforcontrolofdisease-carryinginsects,indoorhumanexposuretoddTviainhalationisimportant(Singhetal.,1992;Ritteretal.,2011),althoughnon-POPalternativestoddTmaybeusedinthefuture.

Asaresultofclimatechange,humanpopulationsinindustrialregionscouldreceiveahigherproportionoftheirfutureexposurethroughinhalationofoutdoorairgiventhatthepercentageofPOPspartitioningtoairinsourceregionswherehumanpopulationsresidearepredictedtoincreasewithincreasingtemperature(seeChapter3).However,concentrationsofmostregulatedPOPsarefallingasaresultofemissionreductionmeasuresandthiswillprobablycontinuetobethecaseintotheforeseeablefuture.Nevertheless,itisnotclearwhetheroverallhumanexposuretotheseregulatedPOPswilldecrease,becauseagreaterfractionofPOPswillbedistributedtotheatmosphereasclimatechanges.Therelativeproportionsofindoorandoutdoorexposuremayalsobeinfluencedbyclimatechange.Inwarmregions,humansmayspendmoretimeindoorsas

Motherandbabyprotectedby

mosquitonet,Kenya

Page 29: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

IMPACTOFCliMATeCHAnGeOnexPOSUreTOPOPSFOrwildliFeAndHUMAnS 27

aresultofwarming(i.e.,movetocoolerair-conditionedenvironments),whereasincoolerregionshumansmaybeinclinedtospendmoretimeoutdoors.ThiscouldbeimportantforoverallhumanexposuretosomePOPs(e.g.,PCBs,PBdes,PFOS)whereindoorairconcentrationsareonetotwoordersofmagnitudehigherthanoutdoorvalues(Bohlinetal.,2008).

Thepopulationshiftfromruraltourbanenvironmentsinmanycountriesmayalsochangetheexposurepathwaysofthegeneralpopulation,withagreaterproportionofexposurecomingfromexposuretopollutedurbanair.Thismightbeconsideredasecondaryeffectofclimatechange(climate-forcedmigration),althoughitshouldbenotedthatthisisalsosocialchangerelatedtotheeconomyandmaybeonlypartiallyassociatedwithclimate.UrbanairconcentrationsofsomePOPsaremanytimeshigherthanruralconcentrations(Jawardetal.,2004).IndevelopingcountriesitispossiblethathighertemperatureswillincreaseabundanceandgeographicdistributionofmalariamosquitoesandthustheresultingincreaseduseofddTmayleadtohigherhumanexposureviainhalation(Singhetal.,1992).

AsclimatechangesandpermafrostthawsintheArctic,currentchemicallypollutedwastesitesmaybegintoleaktheircontentsintowatersystemsandlandwithconsequencesforhumanexposure.Localfoodspeciescouldalsobecomecontaminatedbysubstancesfromwastesites,leadingtopotentialincreasesinhumanexposuresdependingonthetypes,amountsandseasonalityoffooduse.Smallislands,whetherlocatedinthetropicsorathigherlatitudes,havecharacteristicswhichmakethemespeciallyvulnerabletotheeffectsofclimatechange,sea-levelrise,andextremeevents.Sea-levelrisesresultingfromclimatechangeareexpectedtoexacerbateinundationofcontaminatedlandsandwastemanagementsites,potentiallyincreasinghumanexposuretoPOPs.

SocialfactorscanalsoaffectPOPsexposure(Gilmanetal.,2009a).Althoughthetraditional/localfoodsofsomeArcticpopulationsareanexcellentsourceofnutrientsandenergyandcontributetogoodsocial,spiritualandphysicalhealth,theyarealsotheprimarysourceofPOPsexposure.Concernaboutcontaminants,changingculturalvalues,andthelackofavailabilityoftraditionally-huntedspeciesduetoclimatechange,allplayaroleininfluencingthetypesoftraditional/localfoodsconsumed,thefrequencyoftheirconsumption,andtheexposureofArcticpopulationstoPOPs(Vaktskjoldetal.,2009;Lougheed,2010).Itispossiblethatasaresultofclimatechange,humanpopulationsthatcurrentlyrelyontraditionaldietsoflocal/countryfoodswillmovetowardconsumptionofamoretypical‘western’diet,highincarbohydrates.Althoughitisequallypossiblethatwithincreasingdroughtandreducinggrainyields,otherhumanpopulationsmayneedtorelymoreonsubsistence/localfoods.Itisexpectedthatclimatechangewillhaveanimpactonfoodproduction(RosenzweigandParry,1994).Someregionsmaybecomelargelyinfertilewhileothersmaybeabletogrownewcropspreviouslyunsuitedtotheclimate.ThesechangesinfoodproductionpatternsmayhaveconsequencesforPOPsbioaccumulationandhumanexposure.

4.4. Conclusions

AsclimatechangealtersprimaryandsecondaryreleasesofPOPs,levelsandpatternsofexposureinwildlifeandhumanswillchange.Climatechangeisalreadyalteringfoodwebstructuresinsomeareas.ThiswillbeanaddedinfluenceontheexposureofwildlifeandhumanstoPOPs.

Therearelargeuncertaintiesconcerninghowclimatechangehasaffectedecosystemsandfoodwebstructuresinthepast,andhowthesewillbeaffectedinthefuture.DuetoinsufficientbaselineexposureinformationforPOPsinmanypartsofthedevelopingworldanduncertainclimateandecosystemresponsepredictionsonaregionalbasis,itisnotpossibletoestimateaccuratelythedirectionandextentofhowclimatechangemayimpactPOPsexposureforwildlifeandhumans.POPsexposureinwildlifecouldeitherincreaseordecreaseasaresultofclimatechangeandthechangesinexposure(relativetoascenarioinwhichtherewerenoclimatechangeinducedeffects)couldbeanorderofmagnitudeineitherdirection.Examiningthetemporalcontaminantpatternsintoppredatorsisapromisingmethodforstudyingthepossibleroleofchangesinecologyanddiet.

Page 30: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

28 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

Giventhecomplexityofclimatechangeeffectsontrophicstructure,itisextremelychallengingtodevelopaccuratepredictivemodelsofecosystemchangeandcurrentlytherearenosuitablemodelsavailable.

4.5. Data gaps and recommendations for future research Currently,thereareonlyafewlong-termdatasetswhichcanbeusedforanalyzingtheclimate-

inducedimpactsonexposuretoPOPsinhumancohortsandwildlifetissues(Chan,1998;AMAP,2002;Maetal.,2004b;Hungetal.,2010;Rigétetal.,2010).Itisimportanttohaveagoodbaselinedatasetsothatpossiblefuturechangescanbeobserved.ItisthusessentialtocontinueexistingmonitoringprogramsofPOPsinhumancohortsandwildlife.ItisalsoimportanttoextendthemonitoringtoincludenewerPOPs,aswellassubstanceswithPOP-likecharacteristics,andtocoverdifferentregionsoftheworld,especiallytheArcticandAntarctic(whichareparticularlysensitivetoclimatechange),thedevelopingworld(wherecertainPOPsarestillwidelyused),andthoseregionswherelittlelong-termmonitoringcurrentlyexists.

Focusneedstobeplacedonstablelong-termmonitoringofthePOPslistedundertheStockholmConventionandonconcentrationsinhumanmilkandbloodplasma,whichareamongthepreferredmediaundertheGMP.AswellasmonitoringPOPslevels,itisalsoimportanttomonitorsocialchangessuchashumandietarychanges,inordertohelpdeterminethepossiblecausesofchangesinhumanexposure,andtomonitornewsourcesofPOPs,whetherregulatedornot,relatedtoindustrialactivityorexpandedusesofsomePOPsfordiseasevectorcontrol.

Researchonhowclimatechangeislikelytoaffectthetrophicstructureofecosystemsisneededtosupportthedevelopmentofpredictiveecosystem-scalemodels.Althoughpresentpredictionsoffoodwebchangesarehighlyuncertain,sensitivityanalysisofexistingbioaccumulationmodelsmaypresentopportunitiestopin-pointkeyparametersfordeterminingexposuretoPOPs.Ultimately,long-termecologicalmonitoringofplanktonandotherwildlifepopulationsisneededtounderpintheunderstandingoftrophicrelationships.

BioaccumulationinfoodwebsisnotwellunderstoodforallPOPs.Itisimportanttoimprovepredictivemodelsofbioaccumulationtobetterunderstandthelikelyimpactsofclimatechangewithrespecttolevelsinwildlifeandhumans.Modelsshouldbeevaluatedagainstmeasureddatabecauseitisimportanttohavewell-evaluatedmodelsofPOPsexposureundercurrentclimateconditionsbeforeitispossibletomodelexposureunderconditionsofachangingclimate.Themorewell-studiedPOPs(e.g.,PCBs)arecurrentlythebestcandidatesforconsiderationinclimate-changePOPmodelingexercises;however,POPmodelsshouldberefinedtomodelthosePOPsnotpreviouslystudied(e.g.,PFOS,whichisnotlipophilicandwhichbehavesdifferentlytothetraditionallegacyPOPs).

Page 31: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

IMPACTOFCliMATeCHAnGeOnTOxiCOlOGiCAlAndeCOTOxiCOlOGiCAleFFeCTSOFPOPSexPOSUre 29

Chapter 5. Impact of climate change on toxicological and ecotoxicological effects of POP s exposure

AndrewGilMAnandBjørnMUnrOJenSSen

5.1. Introduction

Persistentorganicpollutantlevelsinglobalecosystemsarelikelytochangesignificantlyoverthenextthreedecadesduetochangesinuseandreleasepatterns,achangingclimateandclimatevariability(seeChapters2and3).ThechangesinPOPslevelswillnotbeuniformandsomeregionsmayexperiencenetreductionsandsomenetincreases.Therelativechangeswillaffectexposureofbiotaincludinghumanbeings(seeChapter4)eventhoughthedirectionofchangeisuncertainandmayimpacthealthandwellbeingofalllivingpopulations(e.g.,reproductivepotential,neurologicaldevelopment,behavior,cancerandotherdiseasesandadaptability).

ManyofthelegacyPOPshavesimilareffectsonbiologicalsystems.TheselegacyPOPsincludealdrin,chlordane,ddT,dieldrin,endrin,heptachlor,HCB,mirex,PCBs,PCdds,PCdFsandtoxaphene;all12listedintheoriginalAnnexA,BandCoftheStockholmConvention(seefootnotes1to3inChapter1).MostPOPspossessendocrinedisruptingproperties(seesection5.2.9)andseveralareconsideredtobepro-carcinogensorco-carcinogensformammals(seesection5.3.2);however,thesePOPsusuallyhavedifferentpotenciesandnotallspeciesrespondinthesamewaytothesameexposureofanygivenPOP.Inaddition,severalindividualPOPs,suchascyclodienepesticides,PCBs,chlorinateddibenzo-p-dioxins,chlorinateddibenzofuransandchlorobornanes(whichincludesthetechnicalproductmarketedastoxaphene)havehundredsofcongenersintheirindividualfamilieswhichcanbemetabolizedatdifferentratesandpossessdifferenttoxicpropertiesandpotencies(seereferencesinsection5.3).ToaddfurthertothecomplexityofanassessmentoftheeffectsofPOPsonbiota,includinghumans,istherealitythatnoenvironmentalexposuretoPOPsisevertoasinglechemical;environmentalexposuresarealwaystomixturesofPOPsbecausetheyco-occurinthefoodchain(Gilman,2003).

Exposuretopesticidescancausebirdstolay

eggswiththinnedshells,reducingthechance

ofsuccessfulhatching

Page 32: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

30 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

FormostPOPs,knowledgeabouttheirindividualorcombinedtoxicityisderivedfromcontrolledlaboratorystudieswithfish,copepods,ratsandmice.Occasionallytestdataareavailableforcontrolledstudieswithwildlifespeciesincaptivity.Evenlesscommonlyavailableareadversehealtheffectsdataforexposedwildlifeorhumanpopulations(epidemiologicalstudies).

ThecomplexityofevaluatingtheeffectsofPOPsonpopulationsofanimalsorhumansishugebecauseofthecomplexityoftheindividualPOPsandtheircombinedpresenceintheenvironmentandalsobecauseofmultipleconfoundersofeffects.Confoundersforanimalpopulationsarediscussedinsection5.2;confoundersforhumanpopulationswhichincludelifestyleandculturalpractices,socio-economicstatus,generalhealth,dietandnutrition,education,geneticendowment,andotherswerediscussedbyGilmanetal.(2009a).Climatechangeandclimatevariability(e.g.,additionalheatstress,colderclimates,moreorlessrainfall,foodavailabilityandquality,availabilityofservicesandshelter,movementsofdisease-bearinginsectvectors)alsoactasfactorswhichcaninfluencethegeneralhealthorexposureofanimalandhumanpopulations.

ThischapterexaminesverybrieflythekeyadverseoutcomesassociatedwithPOPsexposureandtheinfluencesthatclimatechangemayhaveonwildlifeandhumanpopulationhealthasaresultofchangesinexposurestoPOPs.TheinformationonchangesinexposurecomesprimarilyfromChapter4.

5.2. Environmental health impacts

5.2.1. Effects of POP s and climate change in the environment

AlthoughithaslongbeenrecognizedthattemperatureaffectsthetoxicityandtoxicokineticsofPOPsinpoikilothermic(cold-blooded)animals,suchasinvertebrates,fishes,amphibiansandreptiles(Guthrie,1950;AndersonandPeterson,1969;MillerandOgilvie,1975;PowellandFielder,1982),itisnotuntilrecentlythattheconsequencesofclimatechangeontheenvironmentaltoxicityofchemicalpollutantshasreceivedattention(Jenssen,2006;Schiedeketal.,2007;Noyesetal.,2009).Climatechangemayresultinalterationsoftheenvironmentalfateofchemicalsaswellasinarangeofabioticfactors,suchassalinity,pHandultraviolet-radiationwhichhavebeenshowntoaffectbothuptakeandtoxicityofchemicalsinpoikilotherms(Huovinenetal.,2001;Wronaetal.,2006;Noyesetal.,2009;Kimetal.,2010).ItisalsoacknowledgedthatclimatechangemayhaveanimpactontheeffectsofPOPsinhomeothermic(warm-blooded)animals(Jenssen,2006;Noyesetal.,2009).ToxicPOPsandotherchemicalpollutantsmayinterferewithphysiologicalandbehavioralprocessesthatareimportantforanimalstoacclimateandadapttoclimatechange(ZalaandPenn,2004;Jenssen,2006;Noyesetal.,2009)andviceversa,climatechangemaymodulatephysiologicalprocessesinanimalswithconsequencesforchemicaluptake,metabolismandtoxicityintheorganisms(Heugensetal.,2002;Noyesetal.,2009).

Thereisevidencethatclimatechange,includingincreasedclimaticvariability,canaffectthebiodiversityandthusecosystemcompositionandfunctioning(Waltheretal.,2002;LovejoyandHannah,2005;PörtnerandKnust,2007;Parkeretal.,2008).Thus,climatechangewillcausealterationsintrophicstructures,foodsourcesandmigratorypatterns,whichwillinfluencebioaccumulationandbiomagnificationofsomePOPs(Schiedeketal.,2007;Noyesetal.,2009)(seeChapter4).Becauseofbioaccumulation,thisisprobablymostimportantfortoppredators,inwhichdifferentcontaminantlevelsmayeitherincreaseordecreaseduetoalterationsintrophicstructures.Climatechangemayalsoexposeorganismstopathogensanddiseasevectorsthattheyhavenotbeenpreviouslyencountered(Harvelletal.,2002),andPOPsthatcauseimmunosupressionmaymakeanimalsmoresensitivetoinfectiousdiseaseagents(Acevedo-WhitehouseandDuffus,2009).Furthermore,thereisconcernabouteffectsarisingfrommultiplestressors,includingexposuretoPOPsandclimatechange,inenvironmentswherespeciesare

livingattheedgeoftheirphysiologicaltolerance,suchasintheBalticSea,orinpolarand alpineregions(SchindlerandSmol,2006;Schiedeketal.,2007;Bustnesetal.,2008;Noyesetal.,

2009).

Page 33: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

IMPACTOFCliMATeCHAnGeOnTOxiCOlOGiCAlAndeCOTOxiCOlOGiCAleFFeCTSOFPOPSexPOSUre 31

Sincemolecular,cellular,physiologicalandbehavioralprocessesinpoikilothermsarehighlyinfluencedbytemperature,climatechangecanmodulatetheeffectsofPOPsontheseprocesses.Furthermore,POPscaninteractwithphysiological,behavioralandecologicaladaptationstoclimatechange,andtherebyinfluencetheabilityoforganisms,populations,communitiesandecosystemstowithstandand/oradaptadequatelytoclimatechange(Jenssen,2006;Wingfield,2008).Thus,climatechangecanenhancethesensitivityoforganismsandecosystemstoPOPs.Inaddition,POPscanmodulatethevulnerabilityoforganismsandecosystemstoclimatechange-inducedvariationsofenvironmentalfactors.ThemajoreffectsaresummarizedinTable5.1.

Table5.1Climatechange-inducedecotoxicologicaleffectsofPOPs(modifiedfromNoyesetal.,2009).

Climatechange-inducedeffect Relationships/interactions(forsources,seeNoyesetal.(2009)andchaptertext)

Increasedtemperature ↑temperature=↑toxicity↑temperature=↑metabolicbiotransformationandpotentiallyalteredmetaboliteprofiles-Toxicantexposuremaylimitthecapacityofspeciesandpopulationstoacclimatetoalteredtemperatures-Pollutant-exposedanimalsattheedgeoftheirphysiologicaltolerancerangemaybeespeciallysensitivetotemperatureincreases

Alteredenvironmentalsalinity ↑salinity+POPexposure=↓osmoregulatoryabilities

DecreasedpH ↓pH+POPexposure=↑toxicityandendocrinedisruptiveeffects(?)

IncreasedUV-radiation ↑UV-radiation+POPs=↑toxiceffectsonmolecular,cellularendphysiologicalprocessesinplantsandanimals(?)

Increasedeutrophication ↑eutrophication=↑toxicalgalblooms-AlgaltoxinsmayinteractwithPOPs

Hypoxia ↓oxygentensioninwater=↑increaseintoxicityofPOPs(?)

Alteredecosystems(andnutritionalstatus)

-AlteredPOPsequestrationand/orremobilizationthroughshiftsinfoodsourcesandstarvationevents-Shiftsindiseasevectorrangeandseveritycoupledwithtoxicantexposureinhibitingimmuneresponsesmayleaveorganismsmoresusceptibletodisease-Lowlevelexposuresmayimpairorganismacclimationtoecosystemalterationsinducedbyclimatechange-ClimatechangeinducedchangesintrophicfoodwebsmayalterPOPbioaccumulationandbiomagnification

↑Indicatesanincrease;↓indicatesadecrease;(?)indicatesthattheeffectsarenotcertain.

5.2.2. Effects of temperature on toxicity and toxicokinetics

Sincepoikilothermicanimalsarehighlyaffectedbyambienttemperature,thetoxicityofPOPscaneitherbedecreasedorincreasedwithincreasingtemperature(Noyesetal.,2009).Inmostcases,thermalstresspotentiateschemicaltoxicity,andthisappearstorelatetotemperaturemodulationofchemicaluptakeandtotemperature-inducedshiftsinphysiologicalandmetabolicprocessesoftheexposedorganisms(Heugensetal.,2002;Noyesetal.,2009).Forinstance,thelethalityofdieldrintothefreshwaterdarter(Etheostoma nigrum)andthetoxicityofatrazinetocatfish(Ictalurus punctatus)increasedwithincreasingtemperatures(Silbergeld,1973;GauntandBarker,2000).Ontheotherhand,pyrethroidsandddTaregenerallymoretoxicatlowtemperatureconditions(Narahashi,2000).ExposuretosublethalconcentrationsofendosulfancausedsignificantreductionintheuppercriticaltemperaturetoleranceoffreshwaterfishinAustralia(Patraetal.,2007),asignificantconcerninviewofclimatechange.Similarly,freshwaterfishwereabletosurvivehigherconcentrationsofendosulfanatlowerwatertemperatures(Capkinetal.,2006).Asimilarresponsewasfoundwiththeeggsandlarvaeofthebollworm(Earias vitella);highertemperaturesandhigherhumidityincreasedthetoxicityofendosulfan(Satputeetal.,2007).

Temperature-dependentchangesinmetabolismcanmodulatethebiotransformationofPOPsbyanimals(Noyesetal.,2009).Forexample,inrainbowtrout(Oncorhynchus mykiss),biotransformationofPCBstothemoretoxichydroxylatedPCBmetabolitesispositivelyrelated

Page 34: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

32 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

towatertemperature(Buckmanetal.,2007).Sincechangesinambienttemperaturewillnotalterthebodytemperatureofhomeothermicanimals,changesintheenvironmentaltemperaturewillprobablynotdirectlyinfluencetoxicityandtoxicokineticsinhomeotherms.However,POPsmayinterferewithphysiologicaladaptationstoheatorcoldstressintheseanimals.

Thesensitivityofanimals,particularlypoikilotherms,seemstobedependentontheenvironments,orbiomes,towhichtheyhaveadapted.Forsixchemicals(amongthosetheinsecticidechlordane),tropicalorganismstendedtobemoresensitivethantheirtemperatecounterparts(Kwoketal.,2007).However,forseveralothersubstances,especiallymetalsandddT,theoppositetrendwasnoted(DaamandvanderBrink,2010).

5.2.3. Effects of salinity on toxicity

Climatechangewillcauseshiftsinprecipitationandevaporationpatterns,terrestrialfreshwaterrun-offandicemeltandwillthuscausealterationinthesalinityofthesea(iPCC,2007).Salinitycaninfluencethechemicalitselfanditstoxicity,andthephysiologyoforganisms(Schiedeketal.,2007;Noyesetal.,2009).Thebioavailabilityoforganiccompoundsmayalsobealteredinsaltwaterascomparedtoinfreshwater(Noyesetal.,2009)(seeChapter3).Theincreasedtoxicityobservedatelevatedsalinityhasbeenattributedtohigherphysiologicalcostsfororganismstomaintainosmoregulation,leadingtoadeclineinfitnessandelevatedsensitivitytocontaminants(Noyesetal.,2009).POPsmayalsoalterosmoregulatoryfunctioninaquaticorganisms(Schiedeketal.,2007;Noyesetal.,2009).Effectsofalteredsalinityaremostlikelytoaffecttoxicityingill-breathinganimals(invertebratesandfish)thatneedtoosmoregulate.Astudyontheeffectsofcombinedtemperatureandsalinityonthetoxicityofcommonpesticidestothegrassshrimp(Palaemonetes pugio),demonstratedthattheresponseswerecomplexanddependedonboththeorganism’slifestageandthetypeofchemicalcontaminant(DeLorenzoetal.,2009).Amphibiansandmarinereptilesandbirds,whichalsoosmoregulatetoexcreteexcesssalt,arealsolikelytobevulnerabletothecombinedeffectsofPOPsandsalinitychangesrelatedtoclimatechange.

5.2.4. Effects of pH on toxicity

Owingtotheexpectedincreasedlevelsofcarbondioxide(CO₂)inthemarineenvironment,oceanacidificationisanexpectedoutcomeofclimatechange(Hoegh-GuldbergandBruno,2010).ObservedaccumulationofCO₂inthesurfaceseawaterduetotheincreaseofatmosphericCO₂sincepre-industrialtimeshasprobablyalreadycausedadecreaseofalmost0.1pHunits(HauganandDrange,1996).ReductionsofpH(andthefollowingreductionsinCO₂)inseawatermayhaveconsequencesformarinelife,especiallyshell-formingorganismsandcoralsthatrelyoncalcifiedstructures(MarubiniandAtkinson,1999;Feelyetal.,2004)andalsodeep-seaanimals(SeibelandWalsh,2003).ItiswellknownthatpHinteractswiththetoxicityofmetalsinaquaticorganisms(Florenceetal.,1992).However,thereappeartobefewreportsonhowpHaffectsthetoxicityofPOPs,andonhowoceanacidityinteractswithtoxicityofPOPs.SincenoclearrelationshipsbetweenoceanacidificationandPOPstoxicityhavebeendescribedsofar,thisissuemeritsfurtherconsideration.

5.2.5. Effects of UV-radiation on toxicity

ClimatechangecanalterexposureofanimalstoUV-radiation.ExposuretoUV-radiationcancausebiomolecular,cellularandphysiologicalalterationsinexposedplantsandanimals(Wronaetal.,2006),adeclineinfitnessandelevatedsensitivitytocontaminants.Inaddition,UV-radiationcanalterthechemicalstructureoftoxicants,renderingthemmoretoxicorlesstoxictoanimals(Noyesetal.,2009;Huovinenetal.,2001).Indeed,synergisticinteractionsofUV-radiationandcontaminantshavebeensuggestedtobeafactorinpopulationdeclinesofamphibians(Blausteinetal.,2003).Thereisevidencethatsomenon-persistentorganiccompoundsmayposeagreaterrisktoaquaticorganismswhenexposedtoultravioletlight(Macdonaldetal.,2005);however,noevidenceseemstobereportedforPOPs.

Page 35: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

IMPACTOFCliMATeCHAnGeOnTOxiCOlOGiCAlAndeCOTOxiCOlOGiCAleFFeCTSOFPOPSexPOSUre 33

5.2.6. Effects of eutrophication on toxicity

Studiessuggestthatbioaccumulationandtrophictransferofsediment-associatedcontaminantswillincreasefollowingfreshorganicmatterinput,forexample,aftersedimentationofphytoplanktonblooms(GranbergandSelck,2007).LittleisknownabouttheeffectsofeutrophicationontoxicityofPOPs;however,toxinsfromphytoplanktonbloomsmayinteractwithtoxicantssuchasPOPs.

5.2.7. Effects of pO2 in water on toxicity

Factorssuchaseutrophicationmaycauseloweredoxygentensioninaquaticsystems.Higherwatertemperaturealsoreducestheoxygencontentinwater.Worldwide,anoxicandhypoxicareasinaquaticsystemshaveexpandedoverrecentdecades(DiazandRosenberg,1995,2001;Wu,1999),andthistrendprobablywillincreasewithclimatechange(Schiedeketal.,2007).AreassuchasinChile,Peru,CaliforniaandNamibiaareoftenaffectedbyminimumoxygenzones(MOZ),inparticularduringwaterupwelling.Itisanticipatedthatglobalwarmingwillincreasetheseminimumoxygenzonesduetoincreasedrainfallandtemperature(Harleyetal.,2006).Inmanycoastalareasandestuaries,hypoxiaisacommonfeatureduringlowtidesandusuallythespecieshaveadaptedsuccessfullytocopewithlowoxygenconditions,switchingtoanaerobicenergyproduction(ZebeandSchiedek,1996).

ThereislittlebackgroundinformationontheeffectsoflowoxygenlevelsontoxicityofPOPs.Exposureofanimalstowatercontaininglessoxygenmayincreaseoverall‘stress’forthatspecies;howeverthereislittlehardevidenceforthisassumption.Matsonetal.(2008)havereportedthatinfish,hypoxicconditionsmayinfluencethetoxicityofcompoundswhereasBrianetal.(2009)foundthatacombinedexposuretohypoxiaandendocrinedisruptingcontaminantscausednoeffects.AlteredenvironmentaloxygenlevelscanindirectlyaffectPOPstoxicityinthattheychangeventilationandmetabolicratesofgill-breathinganimals.

5.2.8. Effects of nutritional status on toxicity

Climatechangewillcausealterationsintrophicstructuresand,thus,alterthefoodcompositionofwildlife.Hence,thenutritionalstatusofanimalsmaybecomealtered.Forinstance,polarbearsmayencounterlongfastingperiodsduetochangesinicecoverageandfoodavailability(Cherryetal.,2009).Thecurrentshifttowardsanearlierspringbreak-upoftheseaiceinwesternHudsonBay,hasresultedinashifttowardsamorepelagicdietinpolarbearsandaresultantchangeinbioaccumulationofPOPs(McKinneyetal.,2009).IthasbeenestablishedthatthenutritionalstatusoforganismsmayinfluencetheoutcomeofthetoxiceffectsofPOPs(Majkovaetal.,2008).

Relationshipsbetweenclimatechange,POPsaccumulationandadverseresponsesofbiotacanbecomplex.Forinstance,Bustnesetal.(2008)examinedtherelationshipbetweenenvironmentalconditions,organochlorinebodyburdensandfitnessparametersofthreemarinebirdcolonies.Theyobservedthatfoodavailabilityhadadirectinfluenceonbodycondition,andthatbodyconditionwasrelatedtoorganochlorinebodyburdensandreproductivefitnessoftheanimals.

5.2.9. Effects of POP s on adaptation to climate change

Toacertainextent,animalscanrespondtoclimatechangebyphysiologicalandbehavioraladaptations(Wingfield,2008).However,toxicandendocrinedisruptingPOPscaninterferewithphysiologicalandbehavioralprocesses(Colborn,1995;ZalaandPenn,2004;Wingfield,2008)thatareimportantfororganismsforacclimationandadaptationtoclimatechange(Jenssen,2006;Noyesetal.,2009).Forinstance,toxicchemicalsimpairtheabilityofanimalstorespondtochangesinenvironmentaltemperature(Heugensetal.,2002;Noyesetal.,2009).Thus,toxicorendocrineeffectsmaydirectlyaffectfecundityand/orsurvival,whichcanhaveadirectconsequenceonpopulationsize.

Page 36: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

34 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

OfmostconcernarePOPsthatinterferewiththereproductivesystemandwiththethyroidsystem(Colbornetal.,1993;Jenssen,2006).SeveralPOPshavebeendocumentedtohaveharmfuleffectsonreproductiveorgansandhormones,andtoadverselyaffectfertilityandfecundityinanimalsrangingfrominvertebratestomammals(Vosetal.,2000).Forinstance,PCBshavebeenreportedtoaffectreproductivehormonesinpolarbears(Haaveetal.,2003;Oskametal.,2003)andtheseeffectshavebeenlinkedtopoorrecruitmentinpolarbearpopulationsexposedtohighlevelsofPOPs(Derocheretal.,2003).Thyroidhormonesareimportantfortemperatureregulation,adaptationtofasting,forreproduction,growthanddevelopment,cognitivefunction,motorabilitiesandmemory(Jenssen,2006).ThereisplentifulevidencethatPOPs,ormetabolitesofPOPs(e.g.,hydroxylatedPCBs),interferewiththyroidhomeostasisandthyroidfunctioninawiderangeofspeciesrangingfromfishtobirdsandmammals(Letcheretal.,2010).

Persistentorganicpollutantshavealsobeenshowntoaffectotherendocrinesystems,suchasthecorticoidsystem,whichisrelatedtostressresponses(Letcheretal.,2010).Furthermore,endocrinedisruptingPOPscaninterferewithbehaviorandthusdisturbresponsestoclimatechange,suchasmigration,reproductivebehaviorandtimingofreproduction(ZalaandPenn,2004;Wingfield,2008).

ManyPOPshavebeenshowntobeimmunotoxictofishandwildlife(Rossetal.,1996;ReynaudandDeschaux,2006;Acevedo-WhitehouseandDuffus,2009)andmayaffecttheabilityofanimalstorespondtoavarietyofpathogensandparasites.ExamplesfromCanadaprovideanumberofcircumstanceswherechemicalsandenvironmentalvariabilityarelikelytohaveworkedtogethertoaffectvulnerabilityofaquaticorganisms(Couillardetal.,2008).Climatewarmingcanincreasediseaseriskbothforterrestrialandmarinebiota(Harvelletal.,2002).Again,theimpactsresultfromacombinationofeffects.POPexposurecanalsoimpairimmunocompetenceofanimals(Noyesetal.,2009)andclimatecanaltertransmissionandinfectivityofpathogens.

5.2.10. Predicted combined effects on ecosystems in different regions

ThereisconcernthatclimatechangewillbeparticularlylargeinArcticandAntarcticregions.POPsaretransportedtothepolarregionsfromurbanized/industrializedareasviaatmosphericandoceantransport.AlthoughPOPslevelsgenerallyarelowinlowertrophiclevelsinthepolarregions,levelsofsometoxicandendocrinedisruptingPOPsareveryhighinsomefreshwaterfishesandintoppredatorssuchasgulls,polarbears,andtoothedwhales(Letcheretal.,2010).Thus,thelargestconcernforinteractingeffectsbetweenclimatechangeandPOPsisforthesehighertrophiclevelspecies.However,itshouldalsobenotedthatecologicaleffectscanbemanifestedasatop-downstressthatcascadesdownthroughtheecosystem,thatis,effectsonpopulationsofhighertrophiclevelspeciesmayaffectpopulationsoflowertrophiclevelspecies(Schiedeketal.,2007).

TemperateareasaredenselypopulatedwithlargereleasesofPOPsfromhouseholds,industry,agricultureoroldwastes/deposits.Ecosystemsintheseareasarealsoexposedtoseveralotheranthropogenicstressors,suchashabitatlossandfragmentation,over-harvestingoffishandwildlifepopulations,andeutrophication.POPscanexertserioustoxicoradditionalstressthatcanactinconcertwithclimatechangetopushthespeciesbeyondtheirenvironmentaltolerancelimits,orreducereplenishmentratesofharvestedstocksorpopulations.

Tropicalregionsarecharacterizedbyhighbiodiversity.Thenumbersofindividualsthatconstituteaspeciesmay,however,below.Insometropicalregions,theuseofpesticides,suchasddTisalsorelativelyhigh.Duetolowgeneticvariabilityinsuchspecies,theymaybesusceptibletoexposuretomultipleanthropogenicstressors,suchasclimatechange,habitatlossandfragmentationandpollution.Itislikelythatacombinedexposuretothesefactorsactssynergisticallyandincreasesextinctionrates.

FreshwaterenvironmentsaresinksforPOPs.Climatechangewillcausetemperaturechangesandmayalsoaffecthydrology,andwaterchemistry,includingpH,conductivityandoxygencontent,andeutrophication.Climatechangecanalsoinfluenceprecipitationandincreaserun-offofPOPsandothersubstances,suchasmetals.Environmentalchangeslinkedtoclimatechangemay

Page 37: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

IMPACTOFCliMATeCHAnGeOnTOxiCOlOGiCAlAndeCOTOxiCOlOGiCAleFFeCTSOFPOPSexPOSUre 35

influencethetoxicityofthesubstances,orthetoxicandendocrineeffectsofPOPscaninterferewiththeabilityofspecies,populationsandecosystemstoresistclimatechange.

MarineenvironmentsareconsideredtobetheultimatesinkforPOPs.Thisisthecase,inparticular,forareasclosetourbanizedareas.Marineecosystemsarealsothreatenedbyotheranthropogenicfactorssuchasover-fishing,petroleum-basedactivities,eutrophicationandhypoxia,andrecentlyalsoacidificationduetoincreasedmarinecarbondioxidelevels(pCO₂).POPsexposureisaseriousadditionaltoxicandendocrinedisruptingstressorthatcanaffectacclimationoradaptationtooceantemperaturechanges.EndocrinedisruptingPOPscanalsoreducerecruitmentratesofheavilyexploitedstocksorpopulations.Duetobiomagnification,toppredators,suchasmarinemammalsandseabirds,aremostlikelytobeatgreatestrisk.Acombinationofincreaseddiseaseriskcausedbyclimatechange(Harvelletal.,2002)andimmunosuppressiveeffectsofPOPs(Acevedo-WhitehouseandDuffus,2009)mayhaveseriousimpactsatthepopulationlevel.

5.3. Human health impacts

EstimatingtheeffectsofPOPsonhumanbeingsisgenerallythroughanimalstudieswhichestablisheffectlevelsorno-effectlevelsmeasuredinmilligramsofcontaminantexposureperkilogramofanimalbodyweightperdayofexposure(mg/kg-bw/d).Usuallydataareobtainedformorethanonespeciesbecauseitisclearthatnotallmammalsrespondthesamewayandtothesamedegreetoagiventoxicant.Bodysize,metabolicrate,andotherfactorsaffecthowanimalspeciesrespond.Inordertounderstandtheeffectsofatoxicant,mosttoxicologystudiesaredesignedtotestonesubstanceatatime.MostPOPshavesufficienttoxicitydatatoprovidearangeof‘effect’or‘no-effect’levelsforanumberofadversehealthoutcomesinlaboratoryspecies.AsummaryofthetoxiceffectsofPOPsisavailablethroughHansenetal.(1998),Bonefeld-JorgensenandAyotte(2003),DewaillyandWeihe(2003)andGilmanetal.(2009b);detailedevaluationsofindividualPOPsareavailablethroughtheU.S.AgencyforToxicSubstanceandDiseaseRegistries(ATSdr,2010)andotherinternationalorganizations(iPCS,2010;eU,2010).

‘Effect’or‘no-effect’levelsanduncertaintyfactorsareusedtosethumanexposureguidelinesoftenreferredtoas‘tolerabledailyintakes’(Tdis).Tdisaredesignedtoincludeamarginofsafetytoprotecthumanpopulationsfromthemostdangerousadverseeffects.Forexample,safetyfactorsareappliedtotakeaccountofspeciesdifferences,severityoftheeffectobserved,extrapolationfromanimaltohumanpopulationsandusuallyconsiderthemostsensitivemembersofthepopulation(oftenconsideredtobethefetus,newborns,childrenandwomenofreproductiveage).Tdisareoftenrevisedasnewtoxicologyandepidemiologydatabecomeavailable.SometypicalTdisareprovidedinTable5.2.TheseareonlyexamplesoftheTdisforsomePOPsanddemonstratetherangeintoxicpotentialforhumanpopulationsexposedto2,3,7,8-tetrachlorodibenzo-p-dioxin(2,3,7,8-TCdd)(highesttoxicityshown)andddT(lowesttoxicityshown).ThereisaneedtoapplyTdiswithcautionastheremaybethepotentialforsynergistic,agonistoradditiveimpactsasaresultofthesimultaneousexposureofhumanpopulationstoalargenumberofPOPs(i.e.,legacyPOPs,newlyidentifiedPOPs,andchemicalswithPOP-likecharacteristicsnotyetlistedundertheStockholmConvention),otherless-persistentorganicchemicals,gases,metalsandparticulates.

Table5.2.SomeTolerableDailyIntakevaluessetforhumanpopulations(adaptedfromHansenetal.,1998).

Substance TDI(µg/kg-bw) SourceDioxin(2,3,7,8-TCdd) 0.00001 WorldHealthOrganizationMirex 0.07 HealthCanadaChlordane 0.05 HealthCanadaToxaphene 0.2 HealthCanadaTotalHCH 0.3 HealthCanadaTotalPCBs 1.0 HealthCanadaγ-HCH(Lindane) 8.0 WorldHealthOrganizationddT 20 WorldHealthOrganization

Page 38: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

36 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

5.3.1. Effects of POP s on human populations

TheHumanHealthAssessmentGroupoftheArcticCouncil’sArcticMonitoringandAssessmentProgramme(AMAP)hasevaluatedanddescribedthemajoreffectsofseverallegacyPOPsandsomenewlyidentifiedPOPsonhumanpopulations(Hansenetal.,1998;Bonefeld-JorgensenandAyotte,2003;BurkowandWeber,2003;DewaillyandWeihe,2003;Gilmanetal,2009b).Table5.3categorizesthemostsignificanteffectsofsomelegacyPOPsandsomenewlyidentifiedPOPs,identifiesthepopulationsubgroupprimarilyatrisk,andprovidesanindicationofthetypeofadverseoutcomereported.Someoftheeffectsreportedhavebeenobservedinhumanpopulationsfollowingaccidentalpoisoningsituations(e.g.,fordibenzo-p-dioxins,dibenzofurans,brominatedbiphenylsandchlorinatedbiphenyls)andothershavebeenreportedinpopulationsexposedtoPOPsthathaveaccumulatedinthefoodchain.Sincemostofthedatacomefromepidemiologystudiesthereislessinformationonnewlyidentifiedcontaminants.

Table5.3.EffectsofconcernofsomePOPsonspecificsub-populations.

Populationhealtheffect

LegacyPOPslikelytobeinvolvedincausingtheeffect

Sub-populationatrisk Source

Cancer ddT,toxaphene,2,3,7,8-TCdd,mirex,HCH,PCBs,HCB

Primarilyadult(breastcancer;prostateandtesticularcancer);Somecancersreportedinchildren

iArC,1987(andupdates);Prins,2008;

Chlordecone Possibleassociationwithprostatecancer

Multigneretal.,2010

Reproductiveeffects PCBs,somedibenzodioxinsanddibenzofurans

Fetus(livebirths);Newborns(genitalandotherbirthdefects);Womenofchildbearingage(fecundity)

Gilmanetal.,2009b

PentaBde Harleyetal.,2010

Growthretardation PCBs,somedibenzodioxinsanddibenzofurans

Fetus,newbornsandchildren(length,bodyweight,headcircumferenceofnewborns)

DewaillyandWeihe,2003

Neurologicalimpairment

PCBs,somedibenzodioxinsanddibenzofurans(cognition,attentionspan)

Fetusandchildren(cognition,attentionspan,memory)

Gilmanetal.,2009b

Adults(Parkinson’sdiseaseandAlzheimer’sdisease)

Landriganetal.,2005;Weisskopfetal.,2010

Alteredbehaviouraldevelopment

PCBs,somedibenzodioxins,PentaBde

Children,intoadulthood(attentiondeficitdisorders,learningdisabilities)

Herbstermanetal,2010;Rozeetal.,2009

Immunesystemsuppression

PCBs,somedibenzodioxinsanddibenzofurans

Newborns,children(increasedearinfections,coldsanddiseaseresistance)Adults(immunosuppression)

Gilmanetal.,2009b

Cardiovasculareffects PCBs Childrenandadults(bloodpressureandheartratevariability)

DewaillyandWeihe,2003;Gilmanetal.,2009b

Effectsonthethyroid PCBs,PFOSandPBdes Perimenopausalwomen(hypothyroidism)

Gilmanetal.,2009b;Sowersetal.,2003;Canarisetal.,2000

Metabolicdisorders PCBs,POPsingeneral Adultmalesandfemales(diabetesandobesity)

LongneckerandDaniels,2001;Longneckeretal.,2001;Rylanderetal.,2005;Vasiliuetal.,2006

Bonedisease PCBs,dioxin,andHCH Adultfemalesandmales(osteomalacea,osteoporosis)

Alveblometal.,2003;Côtéetal.,2006

Page 39: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

IMPACTOFCliMATeCHAnGeOnTOxiCOlOGiCAlAndeCOTOxiCOlOGiCAleFFeCTSOFPOPSexPOSUre 37

SomeoftheeffectslistedinTable5.3arecausedbylong-termexposuretoPOPs(e.g.,ddTandcancer),othersmaybeassociatedwithshortertermexposures(e.g.,2,3,7,8-TCddandsomedioxin-likePCBcongeners,PBdes,andPFOSduringspecificwindowsoftimeduringpregnancy).Whilesomeeffectsarenowbeingdiscussedintheelderlyexposedfordecades(MasoroandSchwartz,2001;Adler,2003;Hood,2003),mostscientificfocushasbeenoninuteroexposuresandchildhoodexposures(Gilmanetal.,2009b).

ChildrenandthedevelopingfetusaremoresusceptibletoPOPsforseveralreasons: • developingphysiologyopenswindowsofvulnerabilityatcriticaldevelopmentalstagesandmay

alsoaffecttheabsorption,metabolismandeliminationofPOPs • immunesystemdevelopmentissuppressedbyseveralPOPsatatimewhenmicrobiological

challengesspecifictosomedietsandlivingconditionsarehighest • uniqueearlylifeexposurepathwaysexistsuchastrans-placentaltransferofPOPs,consumptionof

breastmilkcontainingPOPs,‘close-to-ground’exposuresofinfantsandhand-to-mouthbehaviorsofchildren

• exposuresarecomparativelygreaterthanthoseofadultsbecausechildreneat,drinkandbreathemoreinproportiontotheirbodyweight.

ChildrenarealsomoreatriskbecausetheyareunabletomanageorcontroltheirexposuretoPOPsorotherenvironmentalsubstancesandenvironmentalconditionsrelatedtoclimatechange.Furthermore,childrenlivinginpovertyhaveahigherburdenofenvironmentallyattributabledisease,relatedinparttopoornutrition,poororcrowdedhousing,lesseducation,lessaccesstohealthcare,poorerqualitylocalenvironmentsandlessthanadequatenurture(Wigle,2003;CPCHe,2005;wHO,2005).

AmajormechanismthoughttoberesponsibleformanyoftheeffectsascribedtoPOPsisendocrinemodulation.ItisverylikelythatmanyoftheendocrinerelatedeffectsreportedinepidemiologystudiesofchildrenandadultsresultfromconcurrentexposurestoseveralPOPsinmixture.

ThelegacyPOPsandmostofthenewlylistedchlorinatedandbrominatedPOPsareallhighlylipophilicandbiomagnifyinthefoodchain.Asaresult,humanexposuretomostPOPsintheenvironmentisprimarilythroughfattyfoodsandespeciallyfrommarine,freshwaterandland-basedspeciesatthetopofthefoodchain(seechaptersondietsandlevelsofPOPsinAMAP,2003and2009;Undemanetal.,2010).FormostPOPs,thislipophilicityplacessubsistenceconsumers(thosewhoconsumespeciesatthetopofthefoodchain)atthegreatestriskofexposureandeffects.InArcticcountries,thishasbeenreferredtoasthe‘ArcticDilemma’,thatis,thehighlynutritioussubsistencedietsarealsotheprimarysourceofexposuretoPOPs.SubsistenceconsumersnearpollutedindustrialsitesordumpswherePOPsmayhavebeenproduced,storedorland-filledarealsolikelytobeexposedforlongperiodsoftimeandatgreaterriskthantheaveragepopulation(Gilmanetal.,2009a).Individualswhoconsumefoodsfromregulatedsuppliers(grocerystores,meatanddairyproductsfrominspecteddomesticanimals)tendtohavelowerPOPslevelsthansubsistenceconsumersbecausemost‘storebought’foodscomefromveryshortfoodchains(VanOostdamandDonaldson,2009).

BreastmilkisthemajorsourceofexposuretolipophilicPOPsformostinfants.However,breastmilkalsoprovidessignificantbenefitstonewbornsincludingexcellentnutrition,asecureandsafefoodsupply,developmentofahealthyimmunesystem,nurtureandparent-childbonding.PublichealthauthoritiesaregenerallyunanimousthatthebenefitsofbreastfeedingoutweightherisksassociatedwithPOPsexposure(Gilman,2003;Odlandetal.,2009).

ExposurestomostPOPsviadrinkingandbathingwaterandbyairaregenerallyconsideredtobefarlessthanthroughfood.However,foronenewlyidentifiedPOPwhichisnotlipophilic(i.e.,PFOS),themajorrouteofexposureisfromsurfacecontaminationoffoodsandwaterasaresultofwatertransportandfromdirectcontactwithproducts(seeChapter2).Additionally,indoorsourcesofsomePOPsusedasflameretardants(e.g.,PBdes)andstainprevention(e.g.,PFOS)relatedproductsmaybecomemoresignificantforhumanpopulationsspendingmoretimein

Page 40: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

38 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

climatecontrolledbuildingsduetoincreasesordecreasesinambienttemperaturesrelatedtoclimatechange(seesection4.3).

AttentionalsoneedstobeplacedonthepotentialforaccelerateddegradationofPOPsasaresultofincreasedtemperaturesandbacterialproliferationinregionswhichbecomewarmerandwetter.WhilemorerapiddegradationofPOPsmaybeabenefit,somePOPsmetabolitesanddegradationproductscanpossesssignificanttoxicity(e.g.,hydroxylated-PCBs)formammals,includinghumans(Gilmanetal.,2009b).

5.3.2. Probable changes in onset and severity of effects due to climate change factors

Gilman(2003)providedqualitativeestimatesofdeclinesinseverallegacyPOPs(andresultingreductionsinhumanexposuresinArcticpopulations);however,climatechangeandclimatevariabilitywerenotconsideredasfactors.WhilethereisaworldwidetendencytowarddecreasinglevelsoflegacypollutantssuchasPCBsandddT,severalnewlylistedPOPsandchemicalswithPOP-likecharacteristicsarebeingreportedinthescientificliterature(i.e.,inecosystemcompartmentsandintissueofbiotaandhumans).ThesechemicalsincludebrominatedflameretardantssuchasPBdes,somesurfaceactivecompoundssuchasPFOSandPFOA,short-chainedchlorinatedparaffins(SCCPs)andotherchlorobornanes(AMAP,2009).LevelsofsomeofthesenewlylistedPOPsarenotdecreasingand,forafew,levelsarestillincreasinginhumantissues(VanOostdamandDonaldson,2009).

Chapter3identifiesanumberoffactorswhichwillinfluenceredistributionofPOPsgloballyasclimateschangeandbecomemorevariable.Chapter4indicatesthatforhumanpopulations,somegenericexposuresmayincrease,butthatoverallPOPslevelswillcontinuetodeclinegloballyasaresultofemissionsreductioninitiativessuchastheStockholmConvention.KeyfactorswhichmayincreaseexposuresincludegreateruseofpersistentpesticidessuchasddTtocontrolparasiticdiseasevectorsinwetterregions,redistributionofPOPswasteinareasinundatedwithrainorseawater,greaterpartitioningofsomePOPsinindustrial-urbanareasintobreathingzoneairandgreaterexposuretosomePOPsasaresultofgreatertimespentindoorsawayfromambientheatorcold.

ToxiceffectsrelatedtoPOPslikelytobeobservedasaspecificresultofclimatechangeandclimatevariabilityaredifficulttopredictwithprecision.Certainly,understandingtheeffectswillbecomplicatedbysimultaneousmulti-contaminantexposuresandotherconfoundingfactorsrelatedtosustaininggoodhealth(Gilmanetal.,2009a).Takingtheserealitiesintoaccount,theenhancedeffectsofPOPsassociatedwithclimatechangemayincludethefollowing:

• SomePOPs(e.g.,ddT)haveverylowacutetoxicityformammalsincludinghumansandasaresult,increaseduseofddTforinsectvectorcontrolwillnotleadtoanyobservableshort-termincreasesintoxicity.However,greateruseofddTwillleadtogreaterhumanexposureatthesitesofapplicationandinremoteregions(asaresultoflong-rangetransport)andtheeffectsofchronicexposuretohighlevelsofaccumulatedddeintissuecouldincludeanincreaseinhumancancers.Othereffectiveandlesspersistentinsectvectorcontrolagents(e.g.,pyrethroids),whencombinedwithcommunitysupportednon-chemicalpestmanagementpractices,havebeenshowntobeeffectiveinseveralcountries(e.g.,Mexico,someAfricanstates)andcansignificantlyreducerelianceonddTasacontrolagent.

• FloodedwastesitesandwastesitesaffectedbyexcessiverunoffmayleadtogreaterhumanexposuretoahostofPOPs.ThesePOPsmayenterthefoodchainorcontaminatelocalpotablewatersupplies.GreaterexposuretoPOPsingeneralislikelytoleadtomoderatelydecreasedbirthweightsandgrowthretardationofchildren,moderatelyincreasedneurobehavioraldeficits,andotherendocrinerelatedeffectsaslistedinTable5.3.

• Ifsomepopulationsspendmoretimeindoorstoreducetheirexposuretotemperatureextremes(heatorcold)relatedtoclimatechange,humanexposuresmayincreasetomorecommonlyfound‘buildingPOPs’suchasflameretardants(e.g.,PBdes,hexabromocyclododecanes(HBCds))

Page 41: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

IMPACTOFCliMATeCHAnGeOnTOxiCOlOGiCAlAndeCOTOxiCOlOGiCAleFFeCTSOFPOPSexPOSUre 39

andanti-stainingagentscontainingthePFOSmoiety.IncreasedexposurestoHBCdsmayleadtogreatertoxicityaslistedinTable5.3;however,theeffectsofPBdesandPFOSonhumanhealtharestillpoorlyunderstood.Long-termexposurestothesesubstanceshavebeenassociatedwithhypothyroidisminperimenopausalwomen.

• Inregionswheretemperaturesincreaseandthereislessrainfall,levelsofairborneparticulatesmayincrease.Inurbanareaswithhighmotorvehicledensity,outdoorburningandcombustionbasedindustries,chemicalindustriesandelectronicrecyclingactivities,theseparticulatesmaycontainPOPssuchasdioxinsandfurans,HCB,PBdes,PCBs,andpentachlorobenzene.PulmonaryexposurestoPOPsarenotwellstudied;however,endocrinerelatedeffectsmayincreaseandbeofsignificantconcernforthedevelopingfetus,newbornsandchildren.ExposuretoPCBs(andairpollutionandsomenon-POPscontaminantssuchasmercury)canleadtocardiovasculardiseaseinchildrenandadults(seeTable5.3).Medicationscommonlyusedtotreatchroniccardiovasculardiseaseinseniorsmayexacerbatetheeffectsofextremeheatassociatedwithchangingclimateandclimatevariability(Flynnetal.,2005).

• MeltingofthepolaricecapislikelytoreleaseHCHandHCBcurrentlysequesteredintheiceandseawatertotheaircolumn(seeChapter3).Throughdepositionmechanisms,thesePOPswillenterthefoodchainandbioconcentrateandbiomagnify.ArcticpopulationsreliantonmarinemammalsintheirdietmaybeexposedtohigherconcentrationsofthesePOPsthancurrentlyreported.GreaterexposuretoHCHandHCBcouldleadtomorecancercasesandpossiblybonedisease.

• Asclimateschange,oceancurrentswillchange,bringingincreasedpollutiontosomeregionsandlowerlevelsofpollutantstootherregions.Thesecurrentsmaydelivertheirpollutantstocomplexfoodchainswithsignificantopportunityforbioaccumulationandbiomagnification.Asaresult,humanexposuretoseveralPOPsfoundinroutinelyharvestedspeciesoffishandmarinemammalsmayincreaseaslevelsofthesesamePOPsincreaseintheseharvestedspecies.IndigenouspopulationssuchasintheArcticcouldbeexposedtoalargenumberofredistributedPOPsfromprimaryandsecondarysourcesandcouldsustainanincreaseinanumberofthePOPsmixtures-relatedeffectslistedinTable5.3.

• Changesintheavailabilityorqualityoffoodspeciesnormallyeatenbysubsistenceconsumersmayleadtoincreasedrelianceuponmore-orless-contaminatedfoods.POPsrelatedeffectsarelikelytooccurinsubsistenceconsumerswithhigherexposures.

• Populationsmostlikelytobeaffectedbyclimate-POPsrelatedinfluencesarethosewhichareinthepooresthealth,havelessaccesstohealthcare,arelesseducated(especiallyabouthowtoavoidexposures),crowdedindenseurban-industrialareas,livingincrowdedhousingand/oraremorereliantonsubsistencefoods.InareaswherePOPsincreasebeyondtheircurrentlevels,immunosuppressioncouldalsoincrease.Forpopulationsalreadycompromisedbypoorgeneralhealthanddiet,suppressionoftheimmunesystemcouldresultinmorefrequentandlongerlastinginfections,especiallyfornewborns.Thisisespeciallysignificantforregionswheretemperaturesandmoisturelevelsincreaseasaresultofclimatechangebecauseinsectdiseasevectorsandbacteriamaybothproliferateandspreadintotheseareas.

5.4. Conclusions

AnimalandhumanpopulationsinthepooresthealthandexposedtoincreasedlevelsofPOPsarelikelytobethemostaffected.ItisnotpossibletopredictwithanycertaintyinwhichanimalorhumanpopulationsorregionsthetoxiceffectsofPOPswillincreaseordeclineasaresultofclimatechangeandclimatevariabilityeffects.GreaterknowledgeofwheretemperaturesandrainfallamountswillchangeandthecurrentlevelsofindividualPOPsinbiotaandhumansisessentialforfurthermeaningfulevaluation.

ToxicandendocrinedisruptingPOPscaninterferewithphysiologicalandbehavioralprocessesthatareimportantforanimalstoacclimateandadapttoclimatechange.Acombinationof

Page 42: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

40 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

increaseddiseaseriskcausedbyclimatechangeandimmunosuppressiveeffectsofPOPsmayhaveseriousimpactsatthepopulationlevel.Thus,toxicorendocrineeffectsmaydirectlyaffectfecundityand/orsurvival,andthereforehaveadirectconsequenceonpopulationsize.Effectsatthepopulationlevelcanbemanifestedasbottom-uportop-downstressinecosystems,causingseverechangesinbiodiversityandecosystemfunctioning.

Ecosystemsindenselypopulatedareasareexposedtoseveralotheranthropogenicstressors,suchashabitatlossandfragmentation,over-harvestingoffishandwildlifepopulationsandeutrophication.Thus,POPscanexertserioustoxicoradditionalstressthatcanactinconcertwithclimatechangetopushthespeciesbeyondtheirenvironmentaltolerancelimits,orreducerecruitment/replenishmentratesofharvestedstocksorpopulations.

Insometropicalregionswhereinsectdiseasevectorsproliferate,theuseofpesticidessuchasddTmayincrease.Duetolowgeneticvariabilityinmanytropicalspecies,thesespeciesmaybesusceptibletoexposuretomultipleanthropogenicstressors,suchasclimatechange,habitatlossandfragmentationandpollution.Itislikelythatacombinedexposuretothesefactorsactsadditivelyorsynergisticallyandmayincreaseextinctionrates.

MarineandfreshwaterenvironmentsareconsideredtobetheultimatesinkforPOPs.Thisisparticularlythecaseforecosystemsincloseproximitytourbanized/industrializedareas.Theseecosystemsarealsothreatenedbyotheranthropogenicfactorssuchasover-fishing,petroleum-relatedactivity,eutrophicationandhypoxia,andrecentlyalsoacidification.POPsexposureisaseriousadditionaltoxicandendocrinedisruptingstressorthatcanaffectacclimationoradaptationtooceantemperaturechanges.EndocrinedisruptingPOPscanalsoreducerecruitment/replenishmentratesofheavilyexploitedstocksorpopulationswhentheyareexposedtotheadditionalstressofclimatechange.

InareaswherelevelsofPOPsintheenvironmentincreaseasaresultofredistributionandnewprimaryandsecondarysourcereleases,humanexposurewillincrease.POPsareknowntohavenegativehealtheffectsonhumans,suchascardiovasculardisease,immunosuppression,metabolicdisordersincludingdiabetes,cancer,andneurobehavioral,endocrineandreproductiveeffects.WhereclimatechangeorclimatevariabilityresultinanincreaseinexposuretoPOPs,riskstohealthwillincrease.

Inuitchildrenplayonapileofempty

oildrums.Moriussaq,nwGreenland

Page 43: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

IMPACTOFCliMATeCHAnGeOnTOxiCOlOGiCAlAndeCOTOxiCOlOGiCAleFFeCTSOFPOPSexPOSUre 41

Thecombinedeffectofseveraldirectandindirectclimate-relatedfactors–forexample,excessiveheatorcold,overcrowdingassociatedwithpopulationmigration,increasedexposuretoinsectvectorsofdisease,andchangesintheavailabilityandqualityoftraditional/localfood–couldalsomodulatetheeffectsofPOPsexposureonhumanpopulations.Socio-economicfactorssuchaseducationandgeneralhealthstatuscanalsohaveanimpactonhumanvulnerabilitytoPOPs.Indigenouspeoplesingeneral,andespeciallyindigenouspopulationsintheArctic,experiencemanyofthesemodulatingfactorsandarehighlyvulnerabletotheeffectsofclimatechangeandPOPs.

Ingeneral,POPshavetheirmostsignificanteffectsonthedevelopingfetus,onchildren,onwomenofreproductiveageand,followinglifetimeexposures,ontheelderly.ItwillbeessentialtofollowboththetrendsinhumanexposurelevelstoPOPsandtheeffectsofthesePOPsinthosesubgroupsmostatriskandinregionswhereincreasesaretakingplace.

Withoutbaselinedataforcurrentexposures,itwillbeimpossibletomeasurechangesinexposuretoPOPsandtoundertakeevaluationsofthepotentialforanincreaseinharmtoecosystemorhumanhealthfromclimaterelatedchangesinPOPsexposure.

5.5. Data/knowledge gaps

5.5.1. Environmental health

Thefollowingactionsareneededtofilldatagapsonenvironmentalhealth: • Identifyandbetterunderstandthemechanismsunderlyingtheinteractingeffectsofclimate

changeandPOPsonalllevelsofecosystems. • IdentifyspeciesandecosystemsmostsensitivetotheeffectsofclimatechangeandPOPsexposure. • Developandapplyapproachesforassessingcombinedecologicaleffectsofmultiplestressors

(POPs,climatechange,andotherfactorsdescribedinsection5.2.1).

5.5.2. Human health

Thefollowingactionsareneededtofilldatagapsonhumanhealth: • UndertakemoreextensiveandsystematicmonitoringofcurrentlevelsofPOPsinhumantissuesin

populationslocatedinthemostsignificantlyclimate-affectedareasisessentialtocreateabaselinefromwhichtomeasurechange.SpecialfocusshouldbeplacedonregionsinAfrica,theIndiansub-continent,SouthAmericaandAsia,wherelittlehasbeenpublishedonhistoricalorrecentlevelsofcontaminantsinhumantissue(bloodorbreastmilk).

• UndertakemorestudiesoftheeffectsofthenewlyidentifiedPOPssuchasHBCds,PBdes,PFOS,SCCPsandothersubstanceswithPOP-likecharacteristics,tounderstandhowtheymayaffecthumanpopulations,especiallytheveryyoung(includingthefetus)andtheelderly(whomayhavebeenexposedfordecades).

• GeneratebetterpredictionsofthelocationswhereclimatechangeandclimatevariabilityarelikelytobegreatestandwhereimpactsonPOPsexposuresarelikelytobegreatest,suchastheArctic.

Page 44: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

42 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

Chapter 6. Co-benefits of mitigation activities for climate change and POP s emission reduction

JOZeFM.PACynA,KyrreSUndSeTHandEliSABeTHG.PACynA

6.1. Introduction

Greenhousegases(GHGs)andselectedunintentionallyproducedPOPsareoftenemittedfromthesamesourcesandanymitigationoptionorintegratedpolicymeasuresforreducingclimatechangeimpacts,particularlythroughreductionofcarbondioxide(CO₂)maychangethelevelsofemissionsandthusexposuretounintentionallyproducedPOPs.However,insomesituationsreductionofCO₂mayleadtoincreasedemissionsofunintentionallyproducedPOPs,requiringsometrade-offsforpolicymakers.Therearetechnologiesandpracticesthatrequireadditionalenergyfortheirapplication(e.g.,end-of-pipetechniquestoreduceCO₂emissions).Inthecaseofwasteincineration,moderntechniquesoftenaimatenergyrecoveryandthenetresultcouldbeareductionofGHGemissionsalongwithreductionsofairemissionsofunintentionallyproducedPOPsfromthissource.Ontheotherhand,thisapproachmayresultinanincreaseintotalreleases,forexample,increasedunintentionallyproducedPOPsinflyash.Finally,therearealsomeasurestoreduceunintentionallyproducedPOPswhichdonothaveanymajoreffectonGHGemissionreductions,suchaseliminationofopenburningofwastesthroughapplicationofmodernincinerationtechniques(unlessthereisanenergyrecoveryprocessinplace).Ingeneral,theco-benefitcasesoccurinmanymoresituationsthanthetrade-offssituationsandsothemajorfocusinthischapterisonco-benefitsratherthantrade-offs.

AnnexCoftheStockholmConventionlists20sourcecategorieshavingsignificantglobalimpactsontheformationandreleaseofunintentionallyproducedPOPstotheenvironment.ApportionmentofglobalCO₂emissionsbymaincategoriesonaglobalscalein2006ispresentedinFigure6.1.

Figure6.1 Globalcarbondioxideemissionsbysectorin2006(OECD,2008).

ThelargestCO₂emissionsaregeneratedduringcombustionoffuelsfromstationarysources(67%)andtransport(23%).Therefore,theco-benefitcasesforCO₂andunintentionallyproducedPOPsemissionreductionsaremostoftenfoundforthesetwogroupsofsources.

Amongthe21differentPOPsandPOPgroupslistedinAnnexesA,BandCoftheStockholmConventionanddiscussedinthisreport,severalareemittedfromthesourcesshowninFigure6.1insignificantamounts,includingPCdds/PCdFs,HCB,andPCBs.TherearealsootherPOPs

Residential7%

Other10%

Industry19%

Electricityand Heat

41%

Transport23%

Page 45: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

CO-BeneFiTSOFMiTiGATiOnACTiViTieSFOrCliMATeCHAnGeAndPOPSeMiSSiOnredUCTiOn 43

suchasperfluorinatedcompounds(PFCs),organicpollutantssuchaspolycyclicaromatichydrocarbons(PAHs)andaminesandblackcarbon(soot)whicharenotmentionedinAnnexCtotheConventionbutneedtobeconsideredwhendiscussingtheco-benefitsofclimatechangemitigationoptions.

Averycomprehensiveassessmentofco-benefitsandtrade-offsbetweenenergyconservationandreleasesofunintentionallyproducedPOPshasrecentlybeenpreparedfortheGlobalEnvironmentFacility(GeF)byBohmeretal.(2009).Oneofthemajorquestionsaddressedinthisassessmentwaswhetherimplementationofbestavailabletechniques(BAT)andbestenvironmentalpractices(BeP)inthecontextoftheStockholmConventionhassynergisticeffectsonGHGemissionsorwhethertherearetrade-offs.Thischapterhasusedtheresultsoftheassessmenttogetherwithotherdatapublishedintheopenliterature.

6.2. Technological and non-technological measures for emission reductions of greenhouse gases and unintentionally

produced POP s

TherearevarioustechnologicalmeasurespresentedwithinBATandBePlistswhicharedirectedtowardsimprovementofcombustionconditions,energyefficiency,energyrecoveryrates,andemissionreductions(eeA,2006;Nemetetal.,2010).ThesemeasuresaredesignedforapplicationinvariousindustrialsectorsandthetransportationsectorwherebothGHGsandunintentionallyproducedPOPscanbereleasedtotheatmosphere.Thefollowingsectorsareofparticularimportanceinthiscontext:combustionoffuelsinutilityburnersforelectricityandheatproduction,industrialandresidentialboilers(particularlythosefuelledwithwoodandotherbiomass),wasteincinerators,crematories,cementkilns,primaryandsecondarynon-ferrousmetalindustries,pulpproduction,specificchemicalproductionandmotorfuelfiring.ThechoiceofspecifictechnologywouldhaveadirectimpactonreleasesofGHGsandunintentionallyproducedPOPs.

Typically,highcombustiontemperaturesdesignedtoensurecompletecombustioninvariousutility,industrialandresidentialboilersaswellasmotorenginesminimizetheformationofunintentionallyproducedPOPs.FormationofunintentionallyproducedPOPsduringthecombustionoffuelscanbesignificantlyreducedbyoptimizingcombustionconditionswithco-benefitsforenergyrecoveryandreducedGHGemissions.MaximizedenergyrecoverysignificantlyreducestheamountoffossilfuelsneededtogenerateagivenquantityofpowerandassuchformationofunintentionallyproducedPOPs(UneP,2005;Bohmeretal.,2009).Asfuelisbyfarthelargestportionoftheoveralloperatingcostsforpowergenerationfacilities,bothintermsofoperatingcostsandGHGemissions,reductionoffuelconsumptionthroughefficiencyimprovementforlowerfuelconsumptionperunitofpowergeneratedisthemostpromisingapproachtoreducesimultaneouslyCO₂andunintentionallyproducedPOPsemissions.

Inthecaseoftransportation,dieselparticulatefiltersinmobileenginescanleadtouptoa90%reductionofAh-bindingcompounds(e.g.,dioxin-likecompounds)asshownbyWengeretal.(2008).

Polychlorinateddibenzo-p-dioxinsanddibenzofuransmayalsobeformedduringwoodcombustionviaprecursorssuchasphenolsandligninorviade-novoreactionsinthepresenceofparticulatecarbonandelementalchlorine.HighemissionlevelsofunintentionallyproducedPOPscanbeexpectedfromburningwastetreatedwood.Woodresiduesoftencontainvarioustypesofcontaminants(copperarsenate,pentachlorophenol,creosote,preservatives,adhesives,resins,paintandothersurfacecoatings).StoppingthepracticeofburningwastewoodwouldsignificantlyreduceunintentionallyproducedPOPsemissions.

WoodandotherbiomassfiringisalsoalargesourceofCO₂(eeA,2007)andtheseemissionscanalsobereducedthroughimprovedcombustionefficiency.Combinedheatandpower(CHP)

Page 46: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

44 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

systemsarethemostimportanttechnicalandeconomicalmeasuretoincreasefuelefficiency(eC,2006a,b).ThismeasurewillalsocontributetoreductionsinunintentionallyproducedPOPsemissions.

BATandBePforwasteincinerationincludetheimplementationofprimarymeasures,effectiveend-of-pipetechniquesandappropriatetreatment/disposaloptionsforsolidresidues(especiallyforflyash).PrimarymeasuresreducebothGHGandunintentionallyproducedPOPsemissionsthroughthepreventionofunintentionallyproducedPOPsformationorbyprovidingthebasisforhighenergyefficiencyandreducedprocessdemandforenergy.Inaddition,theapplicationofBATandBePhelpstooptimizetheprocessbyincreasingtheefficiencyofend-of-pipetechniquesoverthelifetimeoftheplant(Bohmeretal.,2009).

GasolineandespeciallydieselfuelcombustionareknowntoemitPCddsandPCdFs.Inaddition,insomeregionsoftheworldtetraalkylleadisstillusedasananti-knockcompoundingasoline.Inadditiontotetraalkyllead,bothethylenedichlorideandethylenedibromidehavebeenusedasenginescavengers.Inthepresenceofchlorideorbromide,fuelcombustionprocessesfavortheformationofunintentionallyproducedPOPs.BATandBePforthissourceofCO₂includeprohibitionofleadedgasoline,aswellasinstallationofdieseloxidationcatalysts,particulatefiltersandcatalyticconverters.Reductionoffuelconsumptionbyvehiclesandconversionofmotorfleetstoelectric,solar,fuelcellorotheralternativemeansofvehiclepowerisalsorecommended.

AminesarenotconsideredwithinAnnexCoftheStockholmConvention,althoughthesecompoundsmayberelatedtoPOPsastheyareusedinthedevelopmentofvariousadsorbersfortheirapplicationwithinthe‘carboncaptureandstorage’(CCS)technologies.ThesetechnologiescaptureCO₂,POPsandothercontaminantsandthencontributetocontaminationoflandand/oraquaticenvironmentsthroughthestorageofcapturedcontaminants.Amines,whicharetoxictohumans,areamongthesecontaminants.

Petrochemicalplant,Scotland,UK

Page 47: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

CO-BeneFiTSOFMiTiGATiOnACTiViTieSFOrCliMATeCHAnGeAndPOPSeMiSSiOnredUCTiOn 45

6.3. Mitigation options by implementation of environmental regulations and capacity building

ImplementationofvariousenvironmentalregulationsalsoprovidesanopportunitytoreduceGHGsandunintentionallyproducedPOPs.Thisissueisofparticularimportanceforwastedisposal,whichisaveryimportantsourceofemissionsofPCddsandPCdFs.OpenburningandaccidentalburningofwastesisanimportantsourceofGHGemissionsonaglobalscaleandoneofthelargestglobalsourcesofPOPs.ProhibitionofopenburningofwastesthroughadequatedomesticandregionalregulationscouldresultinsignificantreductionsinemissionsofGHGsandunintentionallyproducedPOPsfromthissource.

Thereisaneedtoraiseawareness,buildcapacity,transfertechnologyandprovidetechnicalawareness,particularlytodevelopingcountriesontheissueofco-benefitsthatcanbeachievedfromthereductionofGHGsandunintentionallyproducedPOPsemissionsatthesamesourceorwithinthesamesourcecategory.ThiswillalsoresultinsimultaneousreductionsofGHGsandunintentionallyproducedPOPsemissionsfromseveralsources.

6.4. Conclusions

TheeffectsofclimatepoliciesonunintentionallyproducedPOPsandotherairpollutantemissionsmainlytakeplaceinalimitednumberofsectors:industrial,residential,andtransportation.ClimatepoliciesareexpectedtohaveapositiveeffectonregionalandlocalscaleairpollutionbyreducingthecreationandemissionsofunintentionallyproducedPOPs.Table6.1providesaqualitativeassessmentofunintentionallyproducedPOPsco-benefitsduringthereductionofCO₂emissions.

Table6.1.AqualitativeassessmentofCO₂emissionreductionbenefitsforreductionoptionsandco-benefitsforunintentionallyproducedPOPsreduction.

CO₂reductionoption CO₂benefits Co-benefitsforunintentionallyproducedPOPsreduction

1 Reductionfromcoalusage Medium→Large Medium

2 Reductionfromindustrialprocesses Medium→Large Medium→Large

3 Reductionfromwasteincineration Small→Large Large

4 Reductionfromtransportation Small→Large Medium→Large

Currentliteratureindicatesthatairqualitypoliciesbasedonstructuralchanges,suchasimprovementofenergyefficiencyinpowerstations,replacementoffossilfuelsbyrenewablesources,andimprovementofcombustionprocessesinstationaryandmobilesources,andindustrialtechnologies,canprovidegreaterclimateandairpollutionco-benefitsthanthetraditionalend-of-pipetechnologies.

Mitigationthroughimplementationofenvironmentalregulationstoarrestopenburningofwastewillalsoresultinco-benefitsofreducingGHGsandunintentionallyproducedPOPs.

Enhancedcollaborationandcommunicationbetweenkeyclimatechangeandairpollutionstakeholders(particularlyforunintentionallyproducedPOPs)wouldbeessentialtodevelopco-benefitsstrategiesatinternational,nationalandlocalscales,whichmayincludevariousenvironmentalprotectionauthoritiesandgovernmentaldepartments,aswellasindustryandacademia.

Page 48: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

46 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

Chapter 7. Conclusions THeExPerTGrOUPASAwHOle

7.1. General trends

TheStockholmConventionincludesimportantobligationstoreduceoreliminatereleasesfromintentionalproductionanduseandrequiresPartiestotakemeasurestoreducethetotalreleasesofunintentionallyproducedPOPs“…with the goal of their continuing minimization and, where feasible, ultimate elimination” (Article5).Reductionsinthemanufacture,useanddisposalofmanyoftheoriginal12POPslistedunderAnnexesA,BandCoftheStockholmConvention(i.e.,thelegacyPOPs)haveledtoageneralglobaldeclineinenvironmentalconcentrations.However,levelsofsomeindividualPOPs,forexample,ddT,HCHandHCB,commercialpentabromodiphenylether(c-PBde),commercialoctabromodiphenylether(c-OBde)andPFOSmaynotbedecliningasrapidlyormayevenincreaseinregionsmostaffectedbyclimatechange.FornewlyidentifiedPOPs,forwhichregulationsareonlynowenteringintoforceorforwhichrestrictedusesarepermitted,levelsarenotlikelytodeclineforseveralyearsandmayincreaseinmostclimatechangeimpactedregions.

7.2. POP s releases

Pastandcurrentmanufacture,useanddisposalofintentionallyproducedPOPsleadtoprimaryreleasesintotheenvironment.ChangesinoveralltrendsoffuturereleasesofPOPsaredifficulttopredict.EvidencesuggeststhatclimatechangewillaffectprimaryemissionsofPOPsbychangingtheirrateofmobilizationfrommaterialsorstockpilesandtheirdegradationratesduetohigherambienttemperatures,orbyalteringusepatternsorincreasingdemandforsomePOPssuchasddTfordiseasevectorcontrol.Therefore,theintendedresultsoftheStockholmConventioncouldbeaffectedbyclimate-relatedfactorsshouldtheyleadtogreateruseandreleasesofsomePOPs.

7.3. Environmental fate of POP s

Afterprimaryrelease,POPscirculateviaenvironmentalmediauntildepositedinenvironmentalreservoirs.Secondaryreleasesaredescribedasrevolatilizationandremobilizationfromthesereservoirs.ThesecondaryreleaseofPOPsisaconfoundingfactorintheinterpretationofmonitoringdata.Thereisconsiderableuncertaintywhetherprimaryorsecondaryreleaseswilldominateonaregionalbasis.

TheenvironmentalfateofPOPswillbeaffectedbyseveralfactorsrelatedtoclimatechangeonaglobal,regionalandlocalscale:

• remobilization(secondaryreleases)fromenvironmentalreservoirsduetoincreasedtemperatureand/orextremeeventssuchasflooding

• increasedairbornetransporttolocationsdownwindofmainemissionareasbecauseofhigherwindspeedsandstrongeraircirculation(mainlyrelevantonaregionalscalewithlong-rangetransportintherangeofhundredstothousandsofkilometres)

• enhanceddegradationofPOPsifmicroorganismshavehigherdegradationcapacity,butalsoincreasedformationofpotentiallyPOP-liketransformationproducts

• changesinatmosphericdepositionpatternsduetospatialandtemporalchangesinprecipitationpatterns,whicharemostrelevantatthelocalandregionalscale.

Page 49: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

COnClUSiOnS 47

7.4. Exposure to POP s

AsclimatechangealtersprimaryandsecondaryreleasesofPOPs,levelsandpatternsofexposureinwildlifeandhumanswillalsochange.Climatechangeisalreadyalteringfoodwebstructureinsomeareas.ThiswillbeanaddedinfluenceontheexposureofwildlifeandhumanstoPOPs.However,therearelargeuncertaintiesconcerninghowclimatechangewillaffectecosystemandfoodwebstructure.GiventhesmallamountofbaselineexposureinformationforPOPsinmanypartsofthedevelopingworld,uncertainpredictionsofregionalchangesinclimate,anduncertainecosystemresponsetothesechanges,itiscurrentlynotpossibletoevaluateaccuratelyhowclimatechangewillimpactexposureofanimalandhumanpopulationstoPOPs.

7.5. Effects of POP s on biota

Overall,POPsareknowntohavedirectadverseconsequencesonindividualsofaspeciesandcanaffectpopulationsize.MostsignificantaretheendocrinedisruptingeffectsofPOPs,whichmaydirectlyaffectfecundityand/orsurvival,andthushavedirectconsequencesonanindividualbasisaswellasonpopulationsize.EndocrinedisruptingPOPscanalsointerferewithphysiologicalandbehavioralprocessesinanimals,whichareimportantforadaptationandresponsetoclimatechange.Forinstance,POPsimpairtheabilityofananimaltorespondtochangesinenvironmentaltemperature.EndocrinedisruptingPOPscanalsoreducethereplenishmentofheavilyexploitedstocksorpopulationsandtheimmunosuppressiveeffectsofPOPsmayfacilitatethespreadofdiseaseandhaveothernegativeimpactsonpopulations.AttentionshouldbepaidtonewinformationresultingfrommolecularandepigeneticstudieswhichareexaminingimpactsandoutcomesofexposureoforganismsandcellstochangingconcentrationsofPOPs.

Severalclimate-relatedfactorswillmodulatethetoxicityandtoxicokineticsofPOPs.Thesefactorsincludesalinity,oceanacidification,eutrophication,wateroxygenlevels,changesinthenutritionalstatusofindividuals/species,temperaturechangeandtheadaptabilityofindividuals/species,andtheproliferationofparasitesandpathogens.Thesechangescouldenhance,eitheraloneorincombination,thetoxiceffectsofPOPsandultimatelyincreasespeciesvulnerability.Particularspecieswithlowgeneticvariability(asoccurinsomeareaswhereddTisapplied)couldfaceincreasedriskofextinction.Ecologicaleffectsofclimate-relatedchangesandPOPstoxicitycanbemanifestedasatop-downorbottom-upstressthatcascadesthroughtheecosystem.

InadditiontoPOPsandclimate-relatedimpacts,ecosystemsarealsoexposedtoseveralotheranthropogenicstressorssuchashabitatlossandfragmentation,over-harvestingoffishandwildlifepopulations,eutrophication,petroleum-relatedactivities,aswellasurbanandagriculturaldischarges.Thecombinationofsomeorallofthesefactorscanpushspeciesbeyondtheirenvironmentaltolerancelimitsandsignificantlyreducetherateofreplenishmentofharvestedstocksorpopulations.

7.6. Human health effects of POP s

Persistentorganicpollutantsarewellknownfortheiradverseeffectsonindividualsandhumanpopulations.Theextentoftheeffectsisdependentontheamount,timinganddurationofexposure.ThoseatmostriskfromtheeffectsofincreasedexposuretoPOPsincludethedevelopingfetus(e.g.,growthretardation,impairedneurologicaldevelopment),children(e.g.,cardiovasculardisease,immunosuppression,metabolicdisorders,neuro-behavioralimpairment)andwomenofreproductiveage(e.g.,endocrineandreproductiveeffects).Recentdatasuggestthattheelderly,whohavebeenexposedforalifetimetomixturesofPOPs,mayalsobevulnerabletolate-onsetchronicdisease(e.g.,cardiovasculardisease,metabolicdisordersincludingdiabetesandthyroiddysfunction,bonediseaseandcancer).

DataoncurrenthumanexposurelevelstoPOPsfrommanyregionsinthedevelopingworldarescarceorunavailable.Thispaucityofexposuredatacombinedwithuncertaintyinclimatechange

Page 50: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

48 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

modelsforthesesameregionsmakepredictionsofchangesinexposuretoPOPsandriskstohealthdifficult.Itisprobablethatsubsistenceconsumers(especiallythoseharvestingfoodfromtheaquaticenvironment)areatahigherriskduetocontaminationoftheirtraditional/localfoodsupply.IndigenouspeoplesintheArcticareknowntobeexposedtosomeofthehighestlevelsofenvironmentallytransportedPOPsandmaybecomeevenmoreexposedfromremobilizationandrevolatilizationofsomePOPs(e.g.,HCHandHCB)frommeltingpolariceandfromtheArcticOcean.IndividualswholiveintheregionsmostaffectedbyclimatechangemayspendmoretimeindoorsandbeexposedtohigherlevelsoftypicalindoorPOPs(e.g.,PFOS,PBdes).IndividualslivinginornearregionswhereddTmaybeappliedforpublichealthreasons,suchastocontroltheincreaseinprevalenceofdiseasevectors,maybecomemoreexposedtothisPOP.

Severalclimate-relatedfactorswillcombinetoaggravatetheeffectsofPOPsonhumans.Forexample,excessiveheatorgreatercold,overcrowdinganddiseasespreadassociatedwithpopulationmigrationaslandbecomeslessarableorfloods,increasedexposuretovector-bornediseasesandothermicrobialpathogens,andchangesintheavailabilityandqualityoftraditional/localfoods.Otherdeterminantsofhealth(e.g.,socio-economicstatus,education,adequacyofshelter,generalhealthstatus)mayalsocombinetoadverselyaffecthumanresponsestoPOPsandclimatechange.

7.7. Mitigation co-benefits

MitigationactionstoreduceGHGemissionsandshort-livedclimateforcers(e.g.,blackcarbonorsoot)areexpectedinmostcasestoresultinsimultaneousreductionsinemissionsofunintentionallyformedPOPsandothercontaminantsofconcern.ThesereductionsmaybeexpectedforemissionsfrommajoranthropogenicsourcesofCO₂,includingstationarycombustionoffuels,incinerationofwastes,andtransportation.Insomecases,however,wherethereisanincreaseintheuseofbiomassasfuelforheatingandcooking,unintentionalPOPsemissionsmayincrease.

Technologicalandnon-technologicaloptionsforclimatechangemitigationcanbeconsideredwhendiscussingco-benefitsforreductionsofunintentionalPOPs.Majortechnologicaloptionsincludeswitchingfuels,improvingcombustionefficiency,improvingheatrecoveryandbetterrecycling,andchangingcombustiontechnologies.Non-technologicalmeasurescontributingto

co-benefitsincludemeasuressuchasintroductionandenforcementofregulations.

7.8. Knowledge gaps

Thefollowingkeyknowledgegapswereidentifiedduringthecourseofthetechnicalreview:

• ThereisaneedtoidentifyandimprovecharacterizationbothofprimaryandsecondaryemissionsourcesofseveralPOPs(suchasPCBsandPBdes)andtoestimatefuturescenariosoftheneedfor,anduseof,ddT.Thisishighlyrelevantforpredictionoffuturelevelsandtrends,aswellasfortheinterpretationofmonitoringdata.

• ThereisalackofadequatemonitoringdataandassessmenttoolstoevaluatetheimpactofclimatechangeonchangingPOPsemissionsandconcentrations.Thisisespeciallytrueinsomedevelopingcountryregions,includingSouthAmerica,Asia,AfricaandtheIndiansub-continent.SpecificattentionalsoneedstobepaidtotheeffectsofclimatechangeontransportmechanismsofPOPs,particularlyinair,sinceitisacoremediaundertheGMP.

• Thereisaneedtoexpandandharmonizetemporaltrendmonitoringinhumansonaglobalbasistoassesshowlevelschangeandwhatimpactclimatechangehasontheselevels,asrecognizedbytherecentGMPreports.

Page 51: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

COnClUSiOnS 49

• Computer-runmathematicalmodelsoftheenvironmentalfateofPOPsareimportanttoolsforpredictingtheresponseofPOPstochangesinenvironmentalfactors,includingclimate-relatedfactors.Thus,thereisaneedtobuildorimprovemodelsforforecastingPOPsfate,transportandimpactonexposureunderprojectedclimatechangescenarios.Forthecredibilityofmodels,evaluationofmodelresultswithfielddataisessential,whichrequiresthatadequatemonitoringdataareavailable.

• ThereisapoorunderstandingofthepotentialimpactsofachangingclimateonmicroorganismsandhowtheresponseofmicroorganismstoclimatechangemayaffectthedegradationofPOPsinsoilandwater.ItisuncertainwhetheranincreaseintemperaturewillincreasethemetabolicactivityofmicroorganismsandtherebytheircapacitytodegradePOPsorifthermalstresswillreducetheircapacitytodegradePOPs.Identificationofthetransformation/degradationproductsofPOPsthatmaybeformedinrelevantamountsundertheconditionsofclimatechangeisimportantforevaluatingtheeffectsonecosystemsandhumanpopulationsbecauseseveraldegradation/transformationproductsofPOPshavebeenfoundtopossesssignificanttoxiccharacteristics.

• TobetterassessPOPsexposurepathwaysandspeciesimpacts,thereisaneedtobetterunderstandhowfoodwebstructureswillbeaffectedbyclimatechange.

• Thereisaneedfortoxicologystudiesofsomeofthenewlylisted(non-legacy)POPssuchasthePBdesandperfluorinatedsubstances,andsomeofthosesubstanceswhichhavebeenidentifiedasPOPsbutnotyetlistedintheStockholmConventionannexes,includingendosulfan,HBCdsandSCCPs.ThestudiesneedalsotoconsidertheeffectsofmixturesofPOPsnowfoundinvariousregionsoftheworld.Bothtypesofstudies(exposurestosinglesubstancesandtomixtures)areneededforestimatingtheeffectsofenvironmentallyrelevantconcentrationsofPOPsonhumanpopulationsandotherbiota.

• ThereisaneedtobetterunderstandthecombinedeffectsofPOPsexposureandclimatechangestressesonhumanpopulationsandotherbiota.Whilemanyofthepotentialstressorshavebeenidentified,therearefewlaboratoryandevenfewerfieldstudiescombiningclimatechangestresswithPOPsexposure.

• ItisnotalwaysclearwhetherclimatechangemitigationoptionshavefullytakenintoaccountnegativeinfluencesassociatedwithproductionanddistributionofunintentionallyproducedPOPs.Forinstance,‘carboncaptureandstorage’strategiestoreducereleasesofCO₂totheairwillalsocapturePOPsandothercontaminantswhicharethentransferredtolandand/oraquaticenvironments,resultinginfurtherenvironmentalcontaminationofPOPs.ItisuncertainhowmuchcooperationiscurrentlyinplacebetweenpolicymakerswhoaddressclimatechangeandthosewhoaddressPOPsmanagementdomesticallyandinternationally.

Page 52: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

50 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

Chapter 8. Policy recommendations MAriAnnLlOyd-SMiTHandMAriOYArTO

ThereareseveralsignificantissuestobeaddressedforthesuccessfulimplementationoftheStockholmConventiononanational,regionalandglobalscale.GovernmentsstillfacechallengesandresponsibilitiesforthelegacyPOPs,theyneedtoaddressnewlylistedPOPs,andtheyneedtoupdateNationalImplementationPlansinaccordancewiththeirrespectiveobligations.OthersubstanceswithPOP-likecharacteristicsarealsounderreviewforinclusionintheStockholmConventionandmaybecomefutureobligationsundertheStockholmConvention.ThechallengesoffindingreplacementchemicalsandpracticestoaddresstheusesofsomeregulatedPOPsmaybeincreasedbecauseofdiverseclimaticconditionsgloballyandtherequirementundertheConventiontopreventthereplacementofonePOPwithanother.ClimatechangemaycomplicatetheimplementationoftheStockholmConventionevenfurtherbecauseofitspotentialtohaveadirectimpactonpresentandfuturemanagementofPOPs(e.g.,newuses,redistribution,changesinthefateofPOPs).

Previouschaptersofthisreporthighlightthatclimatechangerelatedeffectssuchastemperaturerise,increasedfrequencyandintensityofextremeweatherevents,andsealevelrisearelikelytointeractwithavarietyofenvironmentalstressors,includingexposuretoPOPs.WhiletheinteractionbetweenclimatechangeandPOPsisstillanewresearcharea,currentinformationprovidesevidencethatmanyoftheprobableeffectsofclimatechangearelikelytoenhancePOPscontaminationandincreasePOPsexposureinsomeregions,therebycounteractingeffortsundertheStockholmConventiontoeliminateorreducePOPsglobally.ThereisthereforeaneedforgreaterpreventionandprecautionwithrespecttoclimatechangeiftheobligationsoftheStockholmConventionaretoberealized.

Furthermore,andasdescribedinpreviouschaptersofthisreport,climatechangewillalsohaveimplicationsforthemeasurementoftheeffectivenessevaluationoftheStockholmConvention.Theeffectsofclimatechangeontherelease,transportandpartitioningofPOPshavethepotentialtocomplicatesignificantlytheinterpretationofmeasurementsofPOPsinenvironmentalmediaandinhumantissues.ThescientificreviewinthisreportconcludedthatfurtherstudiesshouldbeencouragedtoassessclimateinfluencesonlevelsofPOPsinenvironmentalmedia,aswellaspotentialnegativeimpactsonhumanandenvironmentalhealth.Inthisaspect,theworkoftheGMPisessentialtoprovideguidanceonmonitoringandaddressthescientificgapsanduncertaintiesthathavebeenidentifiedinthisreport.

Underconditionsofachangingclimate,thereisalsoagreaterurgencytoidentifyandsecurestockpilesandcontaminatedsitescontainingregulatedPOPsandtofocusondevelopingalternativesforPOPslistedinAnnexBoftheConvention.Thepolicyrecommendationsindicatedinsection8.2arebasedonthecurrentstateofthescienceandacknowledgetheimportantdatagapswhichneedtobefilledassoonaspossible.

8.1. Existing initiatives on POP s and climate change

Thereareseveralinternationalorganizationsandprogramsdedicatedtotheimprovementofknowledgeonsources,fateandimpactsofPOPsintheenvironment,aswellasontheimpactsofclimatechangeonhumanpopulationsandecosystems.BothscientificandpoliticalinitiativesexistforPOPsandforclimatechange(seeAppendix),butthereisanurgentneedforimprovedcoordinationamongtheseinitiativesandprogramstoensurethatefficiencyandbetterinformationexchangeispromoted.EquallyimportantistheneedtopromoteanapproachtoidentifyingandaddressingthecombinedimpactsofclimatechangeandexposuretoPOPs.Forinstance,thePOPsReviewCommittee(POPrC)oftheStockholmConventionandtheIntergovernmentalPanelon

Page 53: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

POliCyreCOMMendATiOnS 51

ClimateChange(iPCC)arethetechnicalbodiesthatevaluatescientificdataandprovidesupportandrelevantrecommendationsfordecision-makingpurposestotheConferencesofthePartiestotheStockholmConventionandtheUnitedNationsFrameworkConventiononClimateChange,respectively.Communicationandexchangeofinformationbetweenthesegroupscouldprovideimportantdataandsharedknowledgefrombothfields,andfacilitatetheassessmentofthecombinedeffectsofPOPsandclimatechange.

8.2. Science-based policy recommendations

Thefollowingrecommendationsreflectthemainneedsandinformationgapsidentifiedinthisreport:

1. Governmentsareurgedtoconsidertheknowledgegapsidentifiedinthisreportandtoencourageandsupportresearchtoimprove,harmonizeandconsolidateknowledgeontherelationshipbetweenPOPsandclimatechange,includingaspectssuchasenvironmentalreleases,transport,fate,degradationandeffectsofPOPsinachangingclimateatthenational,regionalandgloballevels.

2. GovernmentsareurgedtocontributetothedevelopmentofdecisionsupportsystemsthatincludemorereliablepredictionsoffuturereleasesandimpactsofPOPs,othersubstanceswithPOP-likecharacteristicsandclimatechange.Betterpredictivetoolswouldassistinthedevelopmentofimplementationstrategiestoestablishandmeetreleasereductiontargets.

3. TheUnePStockholmConvention’sGlobalMonitoringPlan(GMP)onPOPshasbeenestablishedusingorganizationalstructuresthatincludeSCRegionalOrganizationalGroups(rOGs)andtheSCGlobalCoordinatingGroup(GCG).Governmentsareurgedtocommittolong-termmonitoringnetworksandtorequestthattheGMPanditsadvisorygroups(rOGsandtheGCG)considertheimplicationsoftheinformationpresentedinthisreport.Governmentsshoulddevelopstrategiestoprovideasufficientknowledgebasefordecision-making,includingabetterunderstandingoftherelationshipsbetweenchangesinclimateandlevelsofPOPsintheenvironment.

4. Thepotentialforenhancedfrequencyandintensityofextremeweatherevents(e.g.,floodingandstorms)leadingtoincreasedreleases,modifiedusepatterns,andtheriskofremobilizationofPOPsfromwastedumps,soils,sediments,andotherreservoirsofPOPs,needstobeaddressedbyallstakeholders,includingtheindustrysector.Governmentsareurgedtoimprovethemanagement

ofexistingstockpilesandlandfillsaswellastheclean-upofcontaminatedsitesinareasatrisk ofwaterincursion,floodingandstormevents.Newlandfillsshouldnotbesitedinareasat riskofwaterincursion,floodingandstormevents.Additionally,inventoriesofexistingstockpiles

ofregulatedPOPsshouldbeupdatedandinventoriesforthenewlyregulatedPOPsshouldbedeveloped.ImprovedinformationisalsorequiredontheamountsandfrequencyofuseofrestrictedPOPslistedinAnnexBoftheStockholmConvention.

5. GovernmentsareurgedtosupportdevelopingcountriesandcountrieswitheconomiesintransitioninreducingtheiremissionsofPOPsandGHGs.Measuresmightinclude,butnotbelimitedto,bettercollaborationbetweentheStockholmConventionandtheBaselConventiontoreduceillegaldumpingofhazardouswasteortheuncontrolledexportofelectronicwastestocountrieswithpoordismantlingtechnologiesandpooroccupationalhealthprotection,approachesforreducingsignificantlyorrestrictingopenburningofwaste,andinformationonbestavailabletechnologyandbestenvironmentalpractices.

6. OwingtotheimpactsofclimatechangeandPOPsonthemostvulnerableanddisadvantagedpopulationssuchasmanyindigenouspopulationswhichrelyontraditional/localdiets(especiallyArcticpopulationsconsumingmarinemammalsandfish),thoseinmalariaaffectedregions,andthosewithpoorhealthandnutrition,governmentsareurgedtoidentifyandimplementmeasurestoreducethecombinedimpactsofclimatechangeandPOPsonthesemostvulnerablepopulations.

Page 54: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

52 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

7. Governmentsareurgedtoexploreandassessopportunitiesforco-benefitsandmitigationmeasurestoreduceemissionsofGHGsandPOPsthroughappropriatelife-cyclemanagementoptionsandrelevantregulations,suchasprohibitionofopenburningofwaste,improvementofwastemanagementandmoreefficientcombustionprocesses.Theyarealsourgedtoexploreanddisseminateinformationonpossiblemitigationactivitiesandtheco-benefitsofmanagingPOPs,othercontaminantsandclimatechangeinanintegratedmanner.ToimproveunderstandingamongindustryandcivilsocietyofthecombinedeffectsofPOPsexposureandclimatechange,governmentsareencouragedtoprovidecapacitybuilding,education,outreachandawarenessprogramsforthegeneralpublicandthecorporateworld,inrelationtotheimpactsofPOPsandclimatechangeonhumanhealthandtheenvironment.

8. Anessentialsteptodevelopco-benefitstrategiesatinternational,nationalandlocalscaleswouldbetoestablishamandateformultidisciplinarystakeholderworkinggroups,fromexistingcommitteesonchemicals,wastesandclimatechange.TheroleofthesegroupswouldbetoenhancecollaborationandcommunicationbetweenkeyclimatechangeandPOPsstakeholders,whichmayincludevariousenvironmentalprotectionauthorities,governmentaldepartmentsandinternationalbodies(includingtheagenciesoftheUnitedNations),thehealthsector,industry,academia,andothernon-governmentalstakeholders.Co-operationbetweenallstakeholdersandreviewofexistinginternationalandregionalagreementsonPOPsmanagementandclimatechangemitigationwithrespecttohowtheycanworkbettertogetherwillbeessentialsuccessfactorsforsimultaneouslyreducingtheeffectsofPOPsandclimatechange.

8.3. Conclusions

Therecommendationslistedinsection8.2aresupportedbythecurrentlevelofknowledgeoninteractionsbetweenPOPsandclimatechange,whichrecognizesthatthesearebothrelevantenvironmentalstressorsintheirownrightandthat,incombination,theyarebothofgreaterharmtoenvironmentalandhumanhealth.Theyalsoaddresstheuncertaintyinthecurrentscientificinformation.

TheissuesofPOPsandclimatechangearebothglobalinnature.Acoordinatedresponseisneededfromdecision-makersallovertheworldtotakeactiontocounteractimmediate,mediumandlong-termeffectsonhumanhealthandecosystemsofconcurrentexposuretoPOPsandchangingclimates.

Giventhecurrentknowledgegaps,aprecautionaryapproachisneededtoguidethedevelopmentandadoptionofpolicyactionstoensurethathumanhealthandtheenvironmentareprotectedfromthenegativeimpactsofPOPsandclimatechangeandtheircombinedeffects.

Page 55: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

Appendix 53

Appendix List of International Initiatives on Chemicals Research and Assessment

International Panel on Chemical Pollution TheInternationalPanelonChemicalPollution(iPCP)hasbeenestablishedasanorganizationfor

scientistsinvolvedinenvironmentalpollutionissuestobridgethegapbetweenscienceandpolicy.IntheiPCP,scientistsfromawiderangeofdisciplinescollaboratewithvariousscientificsocietiesandwitheachotherinaninterdisciplinarymannerwithanobjectiveofgainingcredibilityintheinterpretationofscientificfindingsforeffectivecommunicationbetweenscienceandpolicy.Themaintaskofthispanelistoprovidescientificsupportfordecisionmakersdealingwithpollutionproblemsandtheassessmentandmanagementofchemicals,bothatthenationalandinternationallevelandbasedoncurrentscientificknowledge.Further,iPCPwantstoofferexpertisegatheredwithiniPCPtodeliverstate-of-knowledgedocumentsontopicsrelatedtochemicals,healthandenvironmentforotherinterestedparties/stakeholders.Forfurtherreading,seewww.ipcp.ch.

Global Monitoring and Assessment Group AGlobalMonitoringandAssessmentGroup(GMAG)isbeingestablishedwithinUnePto

formulateschemesandtoolsforreportingprogressundermulti-lateralenvironmentalagreements(MeAs)andtoadviseonintegrityandrobustnessofmonitoringandassessmenttools.ItwillbejointlychairedbytheChemicalsBranchoftheDivisionofTechnology,IndustryandEconomics(dTie)andtheDivisionofEarlyWarningandAssessment(dewA).TheGMAGwillconsistofglobalstakeholderssuchastheUnePSciencePanel,academicinstitutions,andnormativeinstitutions.DecisionsbytheConferencesofthePartiesofmulti-lateralenvironmentalagreementsorfromtheInternationalConferenceonChemicalsManagement(iCCM)andtheirstakeholderswillfeedintotheGMAG.TheGMAGwillback-uptheschemestobedevelopedandtheassessmentsatvariousstagesofdevelopmentandwillprovidetraininganddistributionofthemethods,tools,andschemes.ThecontextfortheGMAGcanbeviewedundertheUnePProgrammeofWork,HarmfulSubstancesandHazardousWastePriorityArea,Project52-P5andat:http://intranet.unep.org/PdF/52-P5%20Project%20document%20and%20Budget%20SiGned.pdf

Society of Environmental Toxicology and Chemistry TheSocietyofEnvironmentalToxicologyandChemistry(SeTAC)recentlypublisheda‘Call

forResearch’(Wenningetal.,2010)whichemphasizedtheimportanceoftheeffectsofclimatechangeoncontaminants,includingPOPs,tosupportregulatorydecisions.Theauthorscalledfortheemploymentof‘broaderframeworkstopreventmyopicviewsofenvironmentalissues’asclimatechangeisnowaglobalenvironmentalthreatthatwillimpactonallecosystemsintheyearstocome.SeTAChasproposedspecializedworkshopsofinternationalexpertstoproviderecommendationstoregulatoryagenciesonshort-andlong-termmeasuresforadaptiontochangingclimaticconditionsandtoidentifyfutureresearchneedstofilldatagaps.

Strategic Approach to International Chemicals Management TheStrategicApproachtoInternationalChemicalsManagement(SAiCM)providesapolicy

frameworktopromotechemicalsafetyaroundtheworld.AtthesecondsessionoftheInternationalConferenceonChemicalsManagementinGeneva,May2009,mentionwasmadethat"It was crucial, […], for the link between chemicals and climate change to be accentuated and for a global strategy on knowledge and information to be developed" (UneP,2009).Alsothat, "an international chemicals panel, along the lines of the Intergovernmental Panel on Climate Change, could be the answer to filling the gaps in scientific knowledge for politicians and legislators and to enabling them to intensify their efforts to achieve global sustainable chemicals management"(seewww.saicm.org).

Page 56: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

54 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

Arctic Council TheArcticCouncil(www.arctic-council.org)isahighlevelforumforintergovernmental

cooperationandcoordinationamongtheeightArcticStates,withtheinvolvementoftheArcticindigenouspeoples.TheArcticMonitoringandAssessmentProgramme(AMAP)isthegroupundertheArcticCouncilthatisresponsibleforongoingassessmentofpollutionandclimatechangeissuesintheArctic.AMAPalsocoordinatesthecircumpolarprogramtomonitorlevels,trendsandeffectsoflong-rangetransportedcontaminants(includingPOPs)andclimatechangeanditsimpacts.AMAPassessmentshavedocumentedthechallengesforenvironmentalprotectionandsustainabledevelopmentintheArcticcreatedbylong-rangetransportedpollutantsandclimatechange.OnthebasisofinformationprovidedbyAMAP,theArcticCouncil(2002,2009)hasrecognizedtheneedforfurtherunderstandingofthecombinedeffectsofPOPsandotherenvironmentalstressors,includingclimatechange,onhumanhealthandtheenvironmentintheArctic.AMAPhasanumberofexpertgroupsonclimatechangeandPOPsthatproduceassessmentsfortheArcticCouncilandcontributescientificinformationtoorganizationsincludingtheStockholmConventionandtheIntergovernmentalPanelonClimateChange.SeveralexpertsfromthisnetworkofAMAPscientistshavebeeninvolvedintheproductionofthisreport.

International POP s Elimination Network TheInternationalPOPsEliminationNetwork(iPen),apublicinterestnetworkof700organizations

in100countrieshasinvestedinandconductedchemicalmonitoringactivitiesrelatedtoPOPsandotherchemicalsofconcernsince2004.iPenhasfocusedongeneratinganalyticaldataindevelopingcountriesandcountrieswitheconomiesintransitioninordertoassisttheassessmentandenvironmentallysoundmanagementofchemicalsinthosecountries.InitiativeshaveincludedmonitoringhumanbreastmilkforPOPsinseveralcontinentsandthemonitoringofPOPsinchickeneggsin17countries.iPen’smonitoringandassessmentofPOPswaslinkedtocurrentwastemanagementpractices(includingincineration)inthosecountrieswhichdidnotadequatelyaddressco-benefitsrelatedtoreductionsinGHGsandunintentionallyproducedPOPs,allofwhicharepartoftheenvironmentallysoundmanagementofchemicals.

Page 57: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

ReFerenCeS 55

References

Acevedo-Whitehouse,K.andA.L.J.Duffus,2009. Effectsofenvironmentalchangeonwildlifehealth.

PhilosophicalTransactionsoftheRoyalSocietyB,364:3429-3438.

ACiA,2005.ArcticClimateImpactAssessment.CambridgeUniversityPress.

Adler,T.,2003.Agingresearch–thefuturefaceofenvironmentalhealth.EnvironmentalHealthPerspectives,111(14):A761-765.

Alveblom,A.K.,L.Rylander,O.JohnellandL.HagmarL,2003.Incidenceofhospitalizedosteoporoticfracturesincohortswithhighdietaryintakeofpersistentorganochlorinecompounds.InternationalArchivesofOccupationalandEnvironmentalHealth,76(3):246-248.

AMAP,2002.Sourcesandpathwaysofpersistentorganicpollutants.In:AMAPAssessment2002:PersistentOrganicPollutantsintheArctic,pp.5-20.ArcticMonitoringandAssessmentProgram(AMAP),Oslo,Norway.

AMAP,2003.AMAPAssessment2002:HumanHealthintheArctic.ArcticMonitoringandAssessmentProgram(AMAP),Oslo,Norway.xiv+137pp.

AMAP,2009.AMAPAssessment2009:HumanHealthintheArctic.ArcticMonitoringandAssessmentProgramme(AMAP),Oslo,Norway.xvii+254pp.

Anderson,J.M.andm.R.Peterson,1969.ddT-Sublethaleffectsonbrooktroutnervoussystem.Science,164:440-442.

Antoine,D.,A.Morel,H.R.Gordon,V.F.BanzonandR.H.Evans,2005.Bridgingoceancolorobservationsofthe1980sand2000sinsearchoflong-termtrends.JournalofGeophysicalResearch,110.C06009,doi:10.1029/2004JC002620.

ArcticCouncil,2002.InariDeclaration–OntheoccasionoftheThirdMinisterialMeetingofTheArcticCouncil.http://arctic-council.org/filearchive/inari_Declaration.pdf.

ArcticCouncil.2009.TromsøDeclaration–OntheoccasionoftheSixthMinisterialMeetingofTheArcticCouncil.http://arctic-council.org/filearchive/Tromsoe%20Declaration-1.pdf

ATSdr,2010.ToxicityProfiles.AgencyforToxicSubstancesandDiseaseRegistry,USDepartmentofHealthandHumanServices,Atlanta,GAhttp://www.atsdr.cdc.gov/toxprofiles/index.asp

Bard,S.M.,1999.GlobaltransportofanthropogeniccontaminantsandtheconsequencesfortheArcticmarineecosystem.MarinePollutionBulletin,38:356-379.

Becker,S.,C.J.Hallsall,W.Tych,R.Kallenborn,Y.SuandH.Hung,2008.Long-termtrendsinatmosphericconcentrationsofα-andγ-HCHintheArcticprovideinsightintotheeffectsoflegislationandclimaticfluctuationsoncontaminantlevels.AtmosphericEnvironment,42(35):8225-8233.

Behrenfeld,M.J.,R.T.O’Malley,D.A.Siegel,C.R.McClain,J.L.Sarmiento,G.C.Feldman,A.J.Milligan,P.G.Falkowski,R.M.LetelierandE.S.Boss,2006.Climate-driventrendsincontemporaryoceanproductivity.Nature,444:752-755.

Bellamy,P.H.,P.J.Loveland,R.I.Bradley,R.M.LarkandG.J.D.Kirk,2005.CarbonlossesfromallsoilsacrossEnglandandWales1978-2003.Nature,437:245-248.

Blais,J.M.,D.W.Schindler,D.C.G.Muir,M.Sharp, D.Donald,M.Lafrenière,E.BraekeveltandW.M.J.

Strachan,2001.Meltingglaciers:AmajorsourceofpersistentorganochlorinestosubalpineBowLakeinBanffNationalPark,Canada.Ambio,30:410-415.

Blais,J.M.,L.E.Kimpe,D.McMahon,B.E.Keatley,M.L.Mattory,M.S.V.DouglasandJ.P.Smol,2005.Arcticseabirdstransportmarine-derivedcontaminants.Science,309:445-445.

Blais,J.M.,R.W.Macdonald,D.Mackey,E.Webster,C.HarveyandJ.P.Smol,2007.Biologicallymediatedtransportofcontaminantstoaquaticsystems.EnvironmentalScienceandTechnology,41:1075-1084.

Blaustein,A.R.,J.M.Romansic,J.M.KieseckerandA.C.Hatch,2003.Ultravioletradiation,toxicchemicalsandamphibianpopulationdeclines.DiversityandDistributions,9:123-140.

Bogdal,C.,P.Schmid,M.Zennegg,F.S.Anselmetti,M.ScheringerandK.Hungerbühler,2009.Blastfromthepast:Meltingglaciersasarelevantsourceforpersistentorganicpollutants.EnvironmentalScienceandTechnology,43:8173-8177.

Bohlin,P.,K.C.Jones,H.TovalinandB.Strandberg,2008.Observationsonpersistentorganicpollutantsinindoorandoutdoorairusingpassivepolyurethanefoamsamplers.AtmosphericEnvironment,42:7234-7241.

Bohmer,S.,W.Carroll,E.Fiani,H.Hartenstein,U.Karl,P.FinlayandS.Richter,2009.Benefitsandtrade-offsbetweenenergyconservationandreleasesofunintentionallyproducedpersistentpollutants.AreportpreparedonthebehalfoftheScientificandTechnicalAdvisoryPanel(STAP)oftheGlobalEnvironmentFacility(GeF),Geneva,Switzerland.

Bonefeld-Jorgensen,E.CandP.Ayotte,2003.ToxicpropertiesofpersistentorganicpollutantsandrelatedhealtheffectsofconcernforArcticpopulations.In:AMAPAssessment2002:HumanHealthintheArctic,pp57-74.ArcticMonitoringandAssessmentProgram,Oslo,Norway.

Borgå,K.,T.M.SalorantaandA.Ruus,2010.Simulatingclimatechange-inducedalterationsinbioaccumulationoforganiccontaminantsinanArcticmarinefoodweb.EnvironmentalToxicologyandChemistry,29:1349-1357.

Boyce,D.G.,M.R.LewisandB.Worm,2010.Globalphytoplanktondeclineoverthepastcentury.Nature,466:591-596.

Brander,K.,2010.Impactsofclimatechangeonfisheries.JournalofMarineSystems,79:389-402.

Breivik,K.,A.Sweetman,J.M.PacynaandK.C.Jones,2002.TowardsaglobalhistoricalemissioninventoryforselectedPCBcongeners–amassbalanceapproach.2.Emissions.ScienceoftheTotalEnvironment,290:199-224.

Brian,J.V.,N.Beresford,J.Walker,G.Pojana,A.Fantinati,A.MarcominiandJ.P.Sumpter,2009.Hypoxiadoesnotinfluencetheresponseoffishtoamixtureofestrogenicchemicals.EnvironmentalScienceandTechnology,43:214-218.

Brook,R.K.andE.S.Richardson,2002.Observationsofpolarbearpredatorybehaviourtowardcaribou.Arctic,55:193-196.

Page 58: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

56 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

Buchwalter,D.B.,J.J.JenkinsandL.R.Curtis,2003. Temperatureinfluencesonwaterpermeabilityand

chlorpyrifosuptakeinaquaticinsectswithdifferingrespiratorystrategies.EnvironmentalToxicologyandChemistry,22:2806-2812.

Buckman,A.H.,S.B.Brown,J.Small,D.C.G.Muir, J.Parrott,K.R.SolomonandA.T.Fisk,2007.Role

oftemperatureandenzymeinductioninthebiotransformationofpolychlorinatedbiphenylsandbioformationofhydroxylatedpolychlorinatedbiphenylsbyrainbowtrout(Oncorhynchus mykiss).EnvironmentalScienceandTechnology,41:3856-3863.

Burgoa,B.andR.D.Wauchope,1995.Pesticidesinrun-offandsurfacewaters.Environmentalbehaviourofagrochemicals.JohnWiley&SonsLtd.

Burkow,I.C.andJ.-P.Weber,2003.Prioritycontaminants,‘new’toxicsubstancesandanalyticalissues.In:AMAPAssessment2002:HumanHealthintheArctic,pp.21-30.ArcticMonitoringandAssessmentProgramme,Oslo,Norway.

Bustnes,J.O.,P.Fauchald,T.Tveraa,A.Helbergand J.U.Skaare,2008.Thepotentialimpactof

environmentalvariationontheconcentrationsandecologicaleffectsofpollutantsinamarineaviantoppredator.EnvironmentInternational,34:193-201.

Campfens,J.andD.Mackay,1997.Fugacity-basedmodelofPCBbioaccumulationincomplexaquaticfoodwebs.EnvironmentalScienceandTechnology,31:577-583.

Canaris,G.J.,N.R.Manowitz,G.MayorandE.C.Ridgway,2000.TheColoradothyroiddiseaseprevalencestudy.ArchivesofInternalMedicine,160(4):526-534.

Capkin,E.,I.AltinokandS.Karahan,2006.Waterqualityandfishsizeaffecttoxicityofendosulfan,anorganochlorinepesticide,torainbowtrout.Chemosphere,64:1793-1800.

Carlson,D.L.andR.A.Hites,2005.Polychlorinatedbiphenylsinsalmonandsalmonfeed:Globaldifferencesandbioaccumulation.EnvironmentalScienceandTechnology,39:7389-7395.

Carrie,J.,F.Wang,H.Sanei,R.W.Macdonald,P.M.OutridgeandG.A.Stern,2010.IncreasingcontaminantburdensinanArcticfish,burbot(Lota lota),inawarmingclimate.EnvironmentalScienceandTechnology,44:316-322.

Chan,H.M.,1998.AdatabaseforenvironmentalcontaminantsintraditionalfoodsinnorthernandArcticCanadadevelopmentandapplications.FoodAdditivesandContaminants,15:127-134.

Cherry,S.G.,A.E.Derocher,I.StirlingandE.S.Richardson,2009.FastingphysiologyofpolarbearsinrelationtoenvironmentalchangeandbreedingbehaviorintheBeaufortSea.PolarBiology,32:383-391.

Clark,K.E.,F.A.P.C.GobasandD.Mackay,1990.Modeloforganicchemicaluptakeandclearancebyfishfromfoodandwater.EnvironmentalScienceandTechnology,24:1203-1213.

Colborn,T.,1995.Environmentalestrogens-healthimplicationsforhumansandwildlife.EnvironmentalHealthPerspectives,103:135-136.

Colborn,T.,F.S.V.SaalandA.M.Soto,1993.Developmentaleffectsofendocrine-disruptingchemicalsinwildlifeandhumans.EnvironmentalHealthPerspectives,101:378-384.

Corsolini,S.,2009.IndustrialcontaminantsinAntarcticbiota.JournalofChromatographyA,1216:598-612.

Côté,S.,P.Ayotte,S.Dodin,C.Blanchet,G.Mulvad, H.S.Petersen,S.GingrasandE.Dewailly,2006.

Plasmaorganochlorineconcentrationsandboneultrasoundmeasurements:across-sectionalstudyinperi-andpostmenopausalInuitwomenfromGreenland.EnvironmentalHealth,5:33.

Couillard,C.M.,S.C.CourtenayandR.W.Macdonald,2008.Chemical-environmentinteractionsaffectingtheriskimpactsonaquaticorganisms:AreviewwithaCanadianperspective–interactionsaffectingvulnerability.EnvironmentalReviews,16:19-44.

CPCHe,2005.ChildHealthandtheEnvironment:APrimer.CanadianPartnershipforChildren’sHealthandEnvironment.http://www.healthyenvironmentforkids.ca/collections-cpche

Daam,M.A.andP.vanderBrinck,2010.Implicationsofdifferencesbetweentemperateandtropicalecosystemsfortheecologicalriskassessmentofpesticides.Ecotoxicology,19:24-37.

DeLorenzo,M.,S.C.Wallace,L.E.DaneseandT.D.Baird,2009.Temperatureandsalinityeffectsonthetoxicityofcommonpesticidestothegrassshrimp,Palaemonetes pugio.JournalofEnvironmentalScienceandHealthB,44:455-460.

Derocher,A.E.,H.Wolkers,T.Colborn,M.Schlabach,T.S.LarsenandO.Wiig,2003.ContaminantsinSvalbardpolarbearsamplesarchivedsince1967andpossiblepopulationleveleffects.ScienceoftheTotalEnvironment,301:163-174.

Dewailly,E.,andP.Weihe,2003.TheeffectsofArcticpollutiononpopulationhealth.In:AMAPAssessment2002:HumanHealthintheArctic,pp.95-105.ArcticMonitoringandAssessmentProgramme,Oslo,Norway.

Diaz,R.J.andR.Rosenberg,1995.Marinebenthichypoxia:Areviewofitsecologicaleffectsandthebehaviouralresponsesofbenthicmacrofauna.OceanographyandMarineBiology:AnAnnualReview,33:245-303.

Diaz,R.J.andR.Rosenberg,2001.Overviewofanthropogenically-inducedhypoxiceffectsonmarinebenthicfauna.In:Rabalais,N.N.andR.E.Turner(Eds.).CoastalHypoxia:ConsequencesforLivingResourcesandEcosystems,pp.129-146.CoastalandEstuarineStudiesNo.58.

Doll,C.N.H.,J.P.MullerandJ.G.Morley,2006.Mappingregionaleconomicactivityfromnight-timelightsatelliteimagery.EcologicalEconomics,57:75-92.

eC,2006a.LargeCombustionPlants.Integratedpollutionpreventionandcontrol.Referencedocumentonbestavailabletechniquesforlargecombustionplants.July2006.EuropeanCommission,http://eippcb.jrc.es/reference/

eC,2006b.WasteIncineration.Integratedpollutionpreventionandcontrol.Referencedocumentonbestavailabletechniquesforwasteincineration.August2006.EuropeanCommission,http://eippcb.jrc.es/reference/

eeA,2006.Airqualityandancillarybenefitsofclimatechangepolicies.TechnicalReportNo.4/2006,EuropeanEnvironmentAgency.

eeA,2007.THeeMeP/COrinAirAtmosphericEmissionInventoryGuidebook,EuropeanEnvironmentAgency.

eU,2010.EvaluationofPersistent,BioaccumulativeandToxic(PBT).EuropeanCommission,JointResearchcentre,InstituteforHealthandConsumerProtection.February2010.http://ecb.jrc.ec.europa.eu/documentation/

Page 59: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

ReFerenCeS 57

Feely,R.A.,C.L.Sabine,K.Lee,W.Berelson,J.Kleypas, V.J.FabryandF.J.Millero,2004.Impactof

anthropogenicCO₂ontheCaCO₃systemintheoceans.Science,305:362-366.

Florence,T.M.,G.M.MorrisonandJ.L.Stauber,1992.Determinationoftrace-elementspeciationandtheroleofspeciationinaquatictoxicity.ScienceoftheTotalEnvironment,125:1-13.

Flynn,A.,C.McGreevyandE.C.Mulkerrin,2005.Whydoolderpatientsdieinaheatwave?QuarterlyJournalofMedicine,98(11):227-229.

Forster,P.,V.Ramaswamy,P.Artaxoand48others,2007.ChangesinAtmosphericConstituentsandinRadiativeForcing.CambridgeUniversityPress.

Gao,H.,J.Ma,Z.Cao,A.DoveandL.Zhang,2010.TrendandclimatesignalsinseasonalairconcentrationoforganochlorinepesticidesovertheGreatLakes.JournalofGeophysicalResearch,doi:10.1029/2009JD013627.

Gaunt,P.andS.A.Barker,2000.Matrixsolidphasedispersionextractionoftriazinesfromcatfishtissues;examinationoftheeffectsoftemperatureanddissolvedoxygenonthetoxicityofatrazine.InternationalJournalofEnvironmentandPollution,13:284-312.

Geisz,H.N.,R.M.Dickhut,M.A.Cochran,W.R.FraserandH.W.Ducklow,2008.Meltingglaciers:AprobablesourceofddTtotheAntarcticmarineecosystem.EnvironmentalScienceandTechnology,42:3958-3962.

Gilman,A.P.,2003.RiskreductionstrategiesforArcticpeoples.In:AMAPAssessment2002:HumanHealthintheArctic,pp106-113.ArcticMonitoringandAssessmentProgramme,Oslo,Norway.

Gilman,A.,J.Berner,S.Donaldson,A.A.Dudarev,H.S.PedersenandJ.ØOdland,2009a.Factorsinfluencinghumanexposuretocontaminantsandpopulationvulnerability.In:AMAPAssessment2009:HumanHealthintheArctic,pp.9-20.ArcticMonitoringandAssessmentProgramme,Oslo,Norway.

Gilman,A.,P.Ayotte,J.Berner,E.Dewailly,A.Dudarev,E.Bonefeld-Jorgensen,G.Muckle,J.OdlandandC.Tikhonov,2009b.Publichealthandtheeffectsofcontaminants.In:AMAPAssessment2009:HumanHealthintheArctic,pp.143-190.ArcticMonitoringandAssessmentProgramme,Oslo,Norway.

Gioia,L.,E.Steinnes,G.O.Thomas,S.N.MeijerandK.C.Jones,2006.PersistentorganicpollutantsinEuropeanbackgroundair:derivationoftemporalandlatitudinaltrends.JournalofEnvironmentalMonitoring,8:700-710.

Gobas,F.A.P.C.andH.A.Morrison,2000.Bioconcentrationandbiomagnificationintheaquaticenvironment.In:Boethling,R.S.andD.Mackay(Eds.).HandbookofPropertyEstimationMethodsforChemicals,pp.189-232.lewiS,Florida.

Gobas,F.A.P.C.,X.ZhangandR.Wells,1993.Gastrointestinalmagnification:themechanismofbiomagnificationandfoodchainaccumulationoforganicchemicals.EnvironmentalScienceandTechnology,27:2855-2863.

Gouin,T.,T.Harner,P.BlanchardandD.Mackay,2005.PassiveandactiveairsamplersascomplementarymethodsforinvestigatingpersistentorganicpollutantsintheGreatLakesBasin.EnvironmentalScienceandTechnology,39:9115-9122.

Granberg,M.E.andH.Selck,2007.Effectsofsedimentorganicmatterqualityonbioaccumulation,degradation,anddistributionofpyreneintwomacrofaunalspeciesandtheirsurroundingsediment.MarineEnvironmentalResearch,64:313-335.

Gregg,W.W.andM.E.Conkright,2002.Decadalchanges inglobaloceanchlorophyll.GeophysicalResearch

Letters,29:10.1029/2002GL014689.Gregg,W.W.,N.W.CaseyandC.R.McClain,

2005.Recenttrendsinglobaloceanchlorophyll.GeophysicalResearchLetters,32:doi:10.1029/2004GL021808.

Guthrie,F.E.,1950.Effectoftemperatureontoxicityofcertainorganicinsecticides.JournalofEconomicEntomology,43:559-560.

Haave,M.,E.Ropstad,A.E.Derocher,E.Lie,E.Dahl,O.Wiig,J.U.SkaareandB.M.Jenssen,2003.PolychlorinatedbiphenylsandreproductivehormonesinfemalepolarbearsatSvalbard.EnvironmentalHealthPerspectives,111:431-436.

Hansen,J.C.,A.P.Gilman,V.KlopovandJ.O.Odland,1998.Pollutionandhumanhealth.In:AMAPAssessmentReport:ArcticPollutionIssues,pp.775-844.ArcticMonitoringandAssessmentProgramme,Oslo,Norway.

Hansen,G.H.,R.Kallenborn,H.Kylin,S.Eckhardt,J.Burkhard,A.Stohl,D.Hirdman,H.SodemannandV.Pavlov,2009.nOrACiA:Impactofclimatechangeontransportanddistributionofpersistentorganicpollutants(POPs)intheArcticenvironment.NorwegianInstituteofAirResearch(nilU)Report.

Harley,C.D.G.,A.R.Hughes,K.M.Hultgren,B.G.Miner,C.J.B.Sorte,C.S.Thornber,L.F.Rodriguez,L.TomanekandS.L.Williams,2006.Theimpactsofclimatechangeincoastalmarinesystem.EcologicalLetters,9:228-241.

Harley,K.G.,A.R.Marks,J.Chevrier,A.Bradman,A.SjödinandB.Eskenazi,2010.PBdeconcentrationsinwomen’sserumandfecundability.EnvironmentalHealthPerspectives,118:699-704.

Harvell,C.D.,C.E.Mitchell,J.R.Ward,S.Altizer,A.P.Dobson,R.S.OstfeldandM.D.Samuel,2002.Ecology-Climatewarminganddiseaserisksforterrestrialandmarinebiota.Science,296:2158-2162.

Haugan,G.andH.Drange,1996.EffectsofCO₂ontheoceanenvironment.EnergyConversionandManagement,37:1019-1022.

Hebert,C.E.,J.L.ShuttandR.J.Norstrom,1997.DietarychangescausetemporalfluctuationsinpolychlorinatedbiphenyllevelsinherringgulleggsfromLakeOntario.EnvironmentalScienceandTechnology,31:1012-1017.

Henson,S.A.,J.L.Sarmiento,J.P.Dunne,L.Bopp,I.Lima,S.C.Doney,J.JohnandC.Beaulieu,2010.Detectionofanthropogenicclimatechangeinsatelliterecordsofoceanchlorophyllandproductivity.Biogeosciences,7:621-640.

Heugens,E.H.W.,A.J.Hendriks,T.Dekker,N.M.vanStraalenandW.Admiraal,2002.Areviewoftheeffectsofmultiplestressorsonaquaticorganismsandanalysisofuncertaintyfactorsforuseinriskassessment.CriticalReviewsinToxicology,31:247-284.

Hites,R.A.,2004.Polybrominateddiphenylethersintheenvironmentandinpeople:Ameta-analysisofconcentrations.EnvironmentalScienceandTechnology,38:945-956.

Hoegh-Guldberg,O.andJ.F.Bruno,2010.Theimpactofclimatechangeontheworld’smarineecosystems.Science,328:1523-1528.

Hoerling,M.P.,J.W.HurrellandT.Y.Xu,2001.TropicaloriginsforrecentNorthAtlanticclimatechange.Science,292:90-92.

Page 60: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

58 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

Holoubek,I.,J.Klanova,J.Jarkovskyand J.Kohoutek,2007.Trendsinbackgroundlevels

ofpersistentorganicpollutantsatKoseticeobservatory,CzechRepublic.PartI.Ambientairandwetdeposition1996-2005.JournalofEnvironmentalMonitoring,9:557-563.

Hood,E.,2003.Towardanewunderstandingonaging.EnvironmentalHealthPerspectives,111(14):A756–A759.

Hung,H.,R.Kallenborn,K.Breivikand12others,2010.AtmosphericmonitoringoforganicpollutantsintheArcticundertheArcticMonitoringandAssessmentProgramme(AMAP):1993-2006.ScienceoftheTotalEnvironment,408:2854-2873.

Huovinen,P.S.,M.R.SoimasuandA.O.J.Oikar,2001.PhotoinducedtoxicityofretenetoDaphnia magna underenhancedUV-Bradiation.Chemosphere,45:683-691.

iArC,1987.Monographontheevaluationsofcarcinogenicity:AnupdateofiArCMonographVols.1-42,Suppl.7.WorldHealthOrganization,InternationalAgencyforResearchinCancer.

iPCC,2007.ClimateChange2007:Impacts,adaptationandvulnerability.ContributionofWorkingGroupIItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeUniversityPress.

iPCS,2010.EnvironmentalHealthCriteria.InternationalProgramonChemicalSafety,WorldHealthOrganization.http://www.who.int/ipcs/assessment/en/

Jantunen,L.M.,P.A.Helm,H.KylinandT.F.Bidleman,2008.Hexachlorocyclohexanes(HCHs)IntheCanadianArchipelago.2.Air-watergasexchangeofα-andγ-HCH.EnvironmentalScienceandTechnology.42:465-470.

Jaward,F.M.,N.J.Farrar,T.Harner,A.J.SweetmanandK.C.Jones,2004.PassiveairsamplingofPCBs,PBdes,andorganochlorinepesticidesacrossEurope.EnvironmentalScienceandTechnology,38:34-41.

Jenssen,B.M.,2006.Endocrine-disruptingchemicalsandclimatechange:Aworst-casecombinationforarcticmarinemammalsandseabirds?EnvironmentalHealthPerspectives,114:76-80.

Johnson-Restrepo,B.andK.Kannan,2009.AnassessmentofsourcesandpathwaysofhumanexposuretopolybrominateddiphenylethersintheUnitedStates.Chemosphere,76:542-548.

Jurado,E.,F.M.Jaward,R.Lohmann,K.C.Jones,R.SimoandJ.Dachs,2004.AtmosphericdrydepositionofpersistentorganicpollutantstotheAtlanticandinferencesfortheglobaloceans.EnvironmentalScienceandTechnology,38:5505-5513.

Jurado,E.,F.Jaward,R.Lohmann,K.C.Jones,R.SimoandJ.Dachs,2005.Wetdepositionofpersistentorganicpollutantstotheglobaloceans.EnvironmentalScienceandTechnology,39:2426-2435.

Kalantzi,O.I.,R.E.Alcock,P.A.Johnston,D.Santillo,R.L.Stringer,G.O.ThomasandK.C.Jones,2001.TheglobaldistributionofPCBsandorganochlorinepesticidesinbutter.EnvironmentalScienceandTechnology,35:1013-1018.

Kelly,B.C.,F.A.P.C.GobasandM.S.McLachlan,2004.Intestinalabsorptionandbiomagnificationoforganiccontaminantsinfish,wildlife,andhumans.EnvironmentalToxicologyandChemistry,23:2324-2336.

Kim,J.,J.Park,P.G.Kim,C.LeeandK.Choi,2010. Implicationofglobalenvironmentalchangeson

chemicaltoxicity-effectofwatertemperature,pH,andultravioletBirradiationonacutetoxicityofseveralpharmaceuticalsinDaphnia magna.Ecotoxicology,19:662-669.

Krümmel,E.M.,R.W.Macdonald,L.E.Kimpe,I.Gregory-Eaves,M.J.Demers,J.P.Smol,B.FinneyandJ.M.Blais,2003.Deliveryofpollutantsbyspawningsalmon:FishdumptoxicindustrialcompoundsinAlaskanlakesontheirreturnfromtheocean.Nature,425:255-256.

Kwok,K.W.H.,K.M.Y.Leung,V.K.H.Chu,P.K.S.Lam,D.Morritt,L.Maltby,T.CM.Brock,P.J.VandenBrink,MStJWarne,M.Crane,2007.Comparisonoftropicalandtemperatefreshwaterspecies’sensitivitiestochemicals:implicationsforderivingsafeextrapolationfactors.IntegratedEnvironmentalAssessmentandManagement,3:49-67.

Lamon,L.,H.vonWaldow,M.MacLeod,M.Scheringer,A.MarcominiandK.Hungerbuhler,2009.Modelingthegloballevelsanddistributionofpolychlorinatedbiphenylsinairunderaclimatechangescenario.EnvironmentalScienceandTechnology,43:5818-5824.

Landrigan,P.J.,B.Sonawane,R.N.Butler,L.Trasande,R.CallanandD.Droller,2005.Earlyenvironmentaloriginsofneurodegenerativediseaseinlaterlife.EnvironmentalHealthPerspectives,113(9):1230-1233.

Letcher,R.J.,J.O.Bustnes,R.Dietz,B.M.Jenssen,E.H.Jørgensen,C.Sonne,J.Verreault,M.M.VijayanandG.W.Gabrielsen,2010.Exposureandeffectsassessmentofpersistentorganohalogencontaminantsinarcticwildifeandfish.ScienceoftheTotalEnvironment,408:2995-3043.

Li,Y.F.,1999.Globalgriddedtechnicalhexachlorocyclohexaneusageinventoriesusingaglobalcroplandasasurrogate.JournalofGeophysicalResearch,104:23785-23797.

Li,Y-F.,T.Harner,L.Liu,Z.Zhang,N.-Q.Ren,H.Jia,J.MaandE.Sverko,2010.Polychlorinatedbiphenylsinglobalairandsurfacesoil:distributions,air-soilexchangeandfractionationeffect.EnvironmentalScienceandTechnology,44:2784-2790.

Longnecker,M.P.andJ.L.Daniels,2001.Environmentalcontaminantsasetiologicfactorsfordiabetes.EnvironmentalHealthPerspectives,109(S6):871-876.

Longnecker,M.P.,M.A.Klebanoff,J.W.BrockandH.Zhou,2001.Polychlorinatedbiphenylserumlevelsinpregnantsubjectswithdiabetes.DiabetesCare,24:1099-1101.

Lorber,M.,2008.ExposureofAmericanstopolybrominateddiphenylethers.JournalofExposureScienceandEnvironmentalEpidemiology,18:2-19.

Lougheed,T.,2010.ThechanginglandscapeofArctictraditionalfood.EnvironmentalHealthPerspectives,118(9):387-393.

Lovejoy,T.E.andL.Hannah,2005.ClimateChangeandBiodiversity.YaleUniversityPress.

Lydy,M.J.,J.B.BeldenandM.A.Ternes,1999.Effectsoftemperatureonthetoxicityofm-parathion,chlorpyrifos,andpentachlorobenzenetoChironomus tentans.ArchivesofEnvironmentalContaminationandToxicology,37:542-547.

Ma,J.,H.HungandP.Blanchard,2004a.HowdoclimatefluctuationsaffectpersistentorganicpollutantdistributioninNorthAmerica?Evidencefromadecadeofairmonitoring.EnvironmentalScienceandTechnology,38:2538-2543.

Page 61: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

ReFerenCeS 59

Ma,J.M.,Z.H.CaoandH.Hung,2004b.North AtlanticOscillationsignaturesintheatmospheric

concentrationsofpersistentorganicpollutants:AnanalysisusingIntegratedAtmosphericDepositionNetwork-GreatLakesmonitoringdata.JournalofGeophysicalResearch,109:D12305.doi:10.1029/2003JD004435

Macdonald,R.W.,L.A.Barrie,T.F.Bidlemanand26others,2000.ContaminantsintheCanadianArctic:5yearsofprogressinunderstandingsources,occurrenceandpathways.ScienceoftheTotalEnvironment,254:93-234.

Macdonald,R.W.,D.Mackay,Y.F.LiandB.Hickie,2003.Howwillglobalclimatechangeaffectrisksfromlong-rangetransportofpersistentorganicpollutants?HumanandEcologicalRiskAssessment9,643-660.

Macdonald,R.W.,T.HarnerandJ.Fyfe,2005.RecentclimatechangeintheArcticanditsimpactoncontaminantpathwaysandinterpretationoftemporaltrenddata.ScienceoftheTotalEnvironment,342:5-86.

Mackay,D.andA.Fraser,2000.Bioaccumulationofpersistentorganicchemicals:mechanismsandmodels.EnvironmentalPollution,110:375-391.

MacLeod,M.,W.J.RileyandT.E.Mckone,2005.AssessingtheinfluenceofclimatevariabilityonatmosphericconcentrationsofpolychlorinatedbiphenylsusingaGlobal-ScaleMassBalanceModel(BETR-Global).EnvironmentalScienceandTechnology,39:6749-6756.

Majkova,Z.,E.Oesterling,M.ToborekandB.Hennig,2008.ImpactofnutritiononPCBtoxicity.EnvironmentalToxicologyandPharmacology,25:192-196.

Marubini,F.andM.J.Atkinson,1999.EffectsofloweredpHandelevatednitrateoncoralcalcification.MarineEcologyProgressSeries,188:117-121.

Maruya,K.A.,K.L.SmallingandW.Vetter,2005.Temperatureandcongenerstructureaffecttheenantioselectivityoftoxapheneeliminationbyfish.EnvironmentalScienceandTechnology,39:3999-4004.

Masoro,E.J.andJ.B.Schwartz,2001.Explorationofagingandtoxicresponseissues:FinalReport.PreparedforRiskAssessmentForum,USEnvironmentalProtectionAgency,byVersar,Inc.www.epa.gov/raf/publications/pdfs/aging_internet.PdF

Matson,C.W.,A.R.Timme-LaragyandR.T.DiGiulio,2008.Fluoranthene,butnotbenzo[a]pyrene,interactswithhypoxiaresultinginpericardialeffusionandlordosisindevelopingzebrafish.Chemosphere,74:149-154.

McKinney,M.A.,E.PeacockandR.Letcher,2009.Seaice-associateddietchangeincreasesthelevelsofchlorinatedandbrominatedcontaminantsinpolarbears.EnvironmentalScienceandTechnology,43:4334-4339.

McKinney,M.A.,I.Stirling,N.J.Lunn,E.PeacockandR.J.Letcher,2010.Theroleofdietonlong-termconcentrationandpatterntrendsofbrominatedandchlorinatedcontaminantsinwesternHudsonBaypolarbears,1991–2007.ScienceoftheTotalEnvironment,408:6210-6222.

Meijer,S.N.,W.A.Ockenden,E.Steinnes,B.P.CorriganandK.C.Jones,2003.SpatialandtemporaltrendsofPOPsinNorwegianandUKbackgroundair:Implicationsforglobalcycling.EnvironmentalScienceandTechnology,37:454-461.

Miller,D.L.andD.M.Ogilvie,1975.Temperature selectioninbrooktrout(Salvelinus fontinalis)

followingexposuretoddT,PCBorphenol.BulletinofEnvironmentalContaminationandToxicology,14:545-551.

Moore,S.E.,2008.Marinemammalsasecosystemsentinels.JournalofMammalogy,89:534-540.

Moore,S.E.andH.P.Huntington,2008.Arcticmarinemammalsandclimatechange:Impactsandresilience.EcologicalApplications,18:S157-S165.

Muir,D.,B.Braune,B.DeMarch,R.Norstrom,R.Wagemann,L.Lockhart,B.Hargrave,D.Bright,R.Addison,J.PayneandK.Reimer,1999.SpatialandtemporaltrendsandeffectsofcontaminantsintheCanadianArcticmarineecosystem:areview.ScienceoftheTotalEnvironment,230:83-144.

Multigner,L.,J.R.Ndong,A.Giusti,M.Romana,H.Delacroix-Maillard,S.Cordier,B.Jégou,J.P.ThomeandP.Blanchet,2010.Chlordeconeexposureandriskofprostatecancer.JournalofClinicalOncology,28:3457-3462.

Narahashi,T.,2000.Neuroreceptorsandionchannelsasthebasisfordrugaction:Past,present,andfuture.JournalofPharmacologyandExperimentalTherapeutics,294:1-26.

Nemet,G.F.,T.HollowayandP.Meier,2010.Implicationsofincorporatingairqualityco-benefitsintoclimatechangepolicymaking.EnvironmentalResearchLetters,5:014007-014016.

Nizzetto,L.,M.MacLeod,K.Borgåand16others,2010.Past,present,andfuturecontrolsonlevelsofpersistentorganicpollutantsintheglobalenvironment.EnvironmentalScienceandTechnology,44:6526-6531.

Noyes,P.D.,M.K.McElwee,H.D.Miller,B.W.Clark,L.A.VanTiem,K.C.Walcott,K.N.ErwinandE.D.Levin,2009.Thetoxicologyofclimatechange:Environmentalcontaminantsinawarmingworld.EnvironmentInternational,35:971-986.

Occhipinti-Ambrogi,A.,2007.Globalchangeandmarinecommunities:Alienspeciesandclimatechange.MarinePollutionBulletin,55:342-352.

Odland,J.O.,A.Carlsen,S.Donaldson,A.Dudarev,C.FurgalandP.Weihe,2009.Riskcommunication.In:AMAPAssessment2009:HumanHealthintheArctic,pp.191-204.ArcticMonitoringandAssessmentProgramme,Oslo,Norway.

OeCd,2008.CO₂emissionsfromfuelcombustion.InternationalEnergyAgency(ieA),OrganizationforEconomicCooperationandDevelopment,OeCdPublishing.

Oskam,I.C.,E.Ropstad,E.Dahl,E.Lie,A.E.Derocher,O.Wiig,S.Larsen,R.WigerandJ.U.Skaare,2003.Organochlorinesaffectthemajorandrogenichormone,testosterone,inmalepolarbears(Ursus maritimus)atSvalbard.JournalofToxicologyandEnvironmentalHealth,66:2119-2139.

Parker,B.R.,R.D.VinebrookeandD.W.Schindler,2008.Recentclimateextremesalteralpinelakeecosystems.ProceedingsoftheNationalAcademyofSciencesUSA,105:12927-12931.

Paterson,G.,K.G.DrouillardandG.D.Haffner,2007.PCBeliminationbyyellowperch(Perca flavescens)duringanannualtemperaturecycle.EnvironmentalScienceandTechnology,41:824-829.

Patra,R.W.,J.C.Chapman,R.P.LimandP.C.Gehrke,2007.Theeffectsofthreeorganicchemicalsontheupperthermaltolerancesoffourfreshwaterfishes.EnvironmentalToxicologyandChemistry,26:1454-1459.

Page 62: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

60 CliMATeCHAnGeAndPOPS:PrediCTinGTHeiMPACTS

Pavlov,V.,2007.Modellingoflong-rangetransportof contaminantsfrompotentialsourcesintheArctic

Oceanbywaterandseaice.In:Orbaek,J.B.,T.Tombre,R.Kallenborn,E.Hegseth,S.Falk-PetersenandA.H.Hoel(Eds.).Arctic-AlpineEcosystemsandPeopleinaChangingEnvironment,pp.329-350.SpringerVerlag.

Pavlov,V.K.andO.A.Pavlova,2008.SeaicedriftsintheArcticOcean.Seasonalvariabilityandlong-termchanges.In:Tewles,K.B.(Ed.),PacificandArcticOceans:NewOceanographicResearch,pp.157-186.nOVASciencePublishers,Inc.Series:ArcticRegionandAntarcticaIssuesandResearch.

Peltonen,H.,M.Kiljunen,H.Kiviranta,P.J.Vuorinen,M.VertaandJ.Karjalainen,2007.Predictingeffectsofexploitationrateonweight-at-age,populationdynamics,andbioaccumulationofPCDD/FsandPCBsinherring(Clupea harengusL.)intheNorthernBalticSea.EnvironmentalScienceandTechnology,41:1849-1855.

Pörtner,H.O.andR.Knust,2007.Climatechangeaffectsmarinefishesthroughtheoxygenlimitationofthermaltolerance.Science,315:95-97.

Powell,J.H.andD.R.Fielder,1982.TemperatureandtoxicityofddTtoseamullet(Mugil-cephalusL).MarinePollutionBulletin,13:228-230.

Pozo,K.,T.Harner,F.Wania,D.C.G.Muir,K.C.JonesandL.A.Barrie,2006.Towardaglobalnetworkforpersistentorganicpollutantsinair:ResultsfromtheGAPSstudy.EnvironmentalScienceandTechnology,40:4867-4873.

Presley,S.M.,T.R.Rainwater,G.P.Austin,S.G.Platt,J.C.Zak,G.P.Cobb,E.J.Marsland,K.Tian,B.Zhang,T.A.Anderson,S.B.Cox,M.T.Abel,B.D.Leftwich,J.R.Huddleston,R.M.JeterandR.J.Kendall,2005.AssessmentofpathogensandtoxicantsinNewOrleans,LAfollowinghurricaneKatrina.EnvironmentalScienceandTechnology,40:468-474.

Prins,G.S.,2008.Endocrinedisruptorsandprostatecancerrisk.Endocrine-RelatedCancer,15(3):649-656.

Pulkrabova,J.,M.Suchanova,M.Tomaniova,V.KocourekandJ.Hajslova,2008.Organicpollutantsinareasimpactedbyfloodingin2002:A4-yearsurvey.BulletinofEnvironmentalContaminationandToxicology,81:299-304.

Reynaud,S.andP.Deschaux,2006.Theeffectsofpolycyclicaromatichydrocarbonsontheimmunesystemoffish:Areview.AquaticToxicology,77:229-238.

Richardson,A.J.andD.S.Schoeman,2004.ClimateimpactonplanktonecosystemsintheNortheastAtlantic.Science,305:1609-1612.

Rigét,F.,A.Bignert,B.Braune,J.StowandS.Wilson,2010.TemporaltrendsoflegacyPOPsinArcticbiota,anupdate.ScienceofTheTotalEnvironment,408:2874-2884.

Ritter,R.,M.Scheringer,M.MacLeod,U.SchenkerandK.Hungerbuhler,2009.AMulti-individualpharmacokineticmodelframeworkforinterpretingtimetrendsofpersistentchemicalsinhumanpopulations:Applicationtoapostbansituation.EnvironmentalHealthPerspectives,117:1280-1286.

Ritter,R.,M.Scheringer,M.MacLeodandK.Hungerbuhler,2011.Assessmentofnon-occupationalexposuretoddTsinthetropicsandthenorth-Relevanceofuptakeviainhalationfromindoorresidualspraying.EnvironmentalHealthPerspectives.doi:10.1289/ehp.1002542,http://dx.doi.org/10.1289/ehp.1002542

Rosenzweig,C.andM.L.Parry,1994.Potentialimpact ofclimate-changeonworldfood-supply.Nature,

367:133-138.Ross,P.,R.DeSwart,R.Addison,H.VanLoveren,J.Vos

andA.Osterhaus,1996.Contaminant-inducedimmunotoxicityinharbourseals:Wildlifeatrisk?Toxicology,112:157-169.

Roze,E.,L.Meijer,A.Bakker,K.VanBraeckel,P.SauerandA.Bos,2009.Prenatalexposuretoorganohalogens,includingbrominatedflameretardants,influencesmotor,cognitiveandbehavioralperformanceatschoolage.EnvironmentalHealthPerspectives,117:1953-1958.

Rylander,L.,A.Rignell-HydbomandL.Hagmar,2005.Across-sectionalstudyoftheassociationbetweenpersistentorganochlorinepollutantsanddiabetes.EnvironmentalHealth,4:28.

Ryther,J.H.andC.S.Yentsch,1957.Theestimationofphytoplanktonproductionintheoceanfromchlorophyllandlightdata.LimnologyandOceanography,2:281-286.

Satpute,N.S.,S.D.Deshmukh,N.G.V.Rao,S.N.Tikar,M.P.MoharilandS.A.Nimbalkar,2007.Temperature-dependentvariationintoxicityofinsecticidesagainstEarias vitella(Lepidoptera:Noctuidae).JournalofEconomicEntomology,100:357-360.

Schecter,A.,N.Shah,J.A.Colacino,S.I.Brummitt,V.Ramakrishnan,T.R.HarrisandO.Papke,2009.PBdesinUSandGermanclothesdryerlint:Apotentialsourceofindoorcontaminationandexposure.Chemosphere,75:623-628.

Schenker,U.,M.ScheringerandK.Hungerbuhler,2007.Includingdegradationproductsofpersistentorganicpollutantsinaglobalmulti-mediaboxmodel.EnvironmentalScienceandPollutionResearch,14:145-152.

Scheringer,M.,1997.Characterizationoftheenvironmentaldistributionbehavioroforganicchemicalsbymeansofpersistenceandspatialrange.EnvironmentalScienceandTechnology,31:2991-2897.

Schiedek,D.,B.Sundelin,J.W.ReadmanandR.W.Macdonald,2007.Interactionsbetweenclimatechangeandcontaminants.MarinePollutionBulletin,54:1845-1856.

Schindler,D.W.andJ.P.Smol,2006.CumulativeeffectsofclimatewarmingandotherhumanactivitiesonfreshwatersofArcticandSubarcticNorthAmerica.Ambio,35:160-168.

Schrum,C.,2001.RegionalizationofclimatechangefortheNorthSeaandBalticSea.ClimateResearch,18:31-37.

Schuster,J.K.,R.Gioia,K.Breivik,E.Steinnes,M.ScheringerandK.C.Jones,2010.TrendsinEuropeanbackgroundairreflectreductionsinprimaryemissionsofPCBsandPBdes.EnvironmentalScienceandTechnology,44:6760-6766.

Seibel,B.A.andP.J.Walsh,2003.Biologicalimpactsofdeep-seacarbondioxideinjectioninferredfromindicesofphysiologicalperformance.JournalofExperimentalBiology,206:641-650.

Silbergeld,E.K.,1973.Dieldrin-effectsofchronicsublethalexposureonadaptationtothermal-stressinfreshwaterfish.EnvironmentalScienceandTechnology,7:846-849.

Simonich,S.L.andR.A.Hites,1995.Globaldistributionofpersistentorganochlorinecompounds.Science,269:1851-1854.

Page 63: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

ReFerenCeS 61

Singh,P.P.,A.S.UdeaanandS.Battu,1992.ddTand HCHresiduesinindoorairarisingfromtheiruse

inmalariacontrolprograms.ScienceoftheTotalEnvironment,116:83-92.

Solomon,G.M.andp.M.Weiss,2002.Chemicalcontaminantsinbreastmilk:Timetrendsandregionalvariability.EnvironmentalHealthPerspectives,110:A339-A347.

Sowers,M.,J.Luborsky,C.Perdue,K.L.Araujo,M.B.GoldmanandS.D.Harlow,2003.Thyroidstimulatinghormone(TSH)concentrationsandmenopausalstatusinwomenatthemid-life:SwAn.ClinicalEndocrinology(Oxford),58:340-347.

Thomann,R.V.,J.P.ConnollyandT.F.Parkerton,1992.Anequilibriummodeloforganicchemicalaccumulationinaquaticfoodwebswithsedimentinteraction.EnvironmentalToxicologyandChemistry,11:615-629.

Tremolada,P.,V.Burnett,D.CalamariandK.C.Jones,1996.AstudyofthespatialdistributionofPCBsintheUKatmosphereusingpineneedles.Chemosphere,32:2189-2203.

Undeman,E.,T.N.Brown,F.WaniaandM.S.McLachlan,2010.Susceptibilityofhumanpopulationstoenvironmentalexposuretoorganiccontaminants.EnvironmentalScienceandTechnology,44:6249-6255.

UneP,2005.Generaltechnicalguidelinesfortheenvironmentallysoundmanagementofwastesconsistingof,containingorcontaminatedwithpersistentorganicpollutants(POPs).BaselConventionSeries.SBCNr.2005/1.

UneP,2009.ReportoftheInternationalConferenceonChemicalsManagementontheworkofitssecondsession.Geneva,11-15May,2009.www.saicm.org

Vaktskjold,A.,B.Deutch,K.SkinnerandS.G.Donaldson,2009.Food,diet,nutritionandcontaminants.In:AMAPAssessment2009:HumanHealthintheArctic,pp.21-48.ArcticMonitoringandAssessmentProgramme,Oslo,Norway.

VanOostdam,J.andS.Donaldson,2009.Humantissuelevelsofenvironmentalcontaminants.In:AMAPAssessment2009:HumanHealthintheArctic,pp61-110.ArcticMonitoringandAssessmentProgramme,Oslo,Norway.

Vasiliu,O.,L.Cameron,J.Gardiner,P.DeguireandW.Karmaus,2006.Polybrominatedbiphenyls,polychlorinatedbiphenyls,bodyweight,andincidenceofadult-onsetdiabetesmellitus.Epidemiology,17:352-359.

vonWaldow,H.,M.MacLeod,M.ScheringerandK.Hungerbuhler,2010.Quantifyingremotenessfromemissionsourcesofpersistentorganicpollutantsonaglobalscale.EnvironmentalScienceandTechnology,44:2791-2796.

Vos,J.G.,E.Dybing,H.A.Greim,O.Ladefoged,C.Lambre,J.V.Tarazona,I.BrandtandA.D.Vethaak,2000.Healtheffectsofendocrine-disruptingchemicalsonwildlife,withspecialreferencetotheEuropeansituation.CriticalReviewsinToxicology,30:71-133.

Walther,G.-R.,E.Post,P.Convey,A.Menzel,C.Parmesan,T.J.C.Beebee,J.-M.Fromentin,O.Hoegh-GuldbergandF.Bairlein,2002.Ecologicalresponsestorecentclimatechange.Nature,416:389-395.

Wania,F.andM.S.McLachlan,2001.Estimatingtheinfluenceofforestsontheoverallfateofsemivolatileorganiccompoundsusingamultimediafatemodel.EnvironmentalScienceandTechnology,35:582-590.

Weber,K.andH.Goerke,2003.Persistentorganic pollutants(POPs)inantarcticfish:levels,patterns,

changes.Chemosphere,53:667-678.Weber,R.,C.Gaus,M.Tysklindand20others,

2008a.Dioxin-andPOP-contaminatedsites–contemporaryandfuturerelevanceandchallenges.EnvironmentalScienceandPollutionResearch,15:363-393.

Weber,R.,M.TysklindandC.Gaus,2008b.Dioxin–contemporaryandfuturechallengesofhistoricallegacies.EnvironmentalScienceandPollutionResearch,15:96-100.

Weisskopf,M.G.,P.Knekt,E.J.O’Reilly,J.Lyytinen,A.Reunanen,F.Laden,L.AltshulandA.Ascherio,2010.PersistentorganochlorinepesticidesinserumandriskofParkinsondisease.Neurology,74:1055-1061.

Wenger,D.,A.C.Gerecke,N.V.Heeb,M.Zennegg,M.Kohler,H.NaegeliandR.Zenobi,2008.Secondaryeffectsofcatalyticdieselparticulatefilters:reducedarylhydrocarbonreceptor-mediatedactivityoftheexhaust.EnvironmentalScienceandTechnology,42:2992-2998.

Wenning,R.J.,S.E.Finger,L.Guilhermino,R.C.Helm,M.J.Hooper,W.G.Landis,C.A.Menzie,W.R.Munns,J.RömbkeandR.G.Stahl,2010.Globalclimatechangeandenvironmentalcontaminants:aSETACcallforresearch.IntegratedEnvironmentalAssessmentandManagement,6:197-198.

wHO,2005.Children’sHealthandtheEnvironment:AGlobalPerspective.WorldHealthOrganization,Geneva.

Wigle,D.,2003.ChildHealthandEnvironment.OxfordUniversityPress.

Wilford,B.H.,M.Shoeib,T.Harner,J.P.ZhuandK.C.Jones,2005.PolybrominateddiphenylethersinindoordustinOttawa,Canada:Implicationsforsourcesandexposure.EnvironmentalScienceandTechnology,39:7027-7035.

Wilken,M.,F.Walkow,E.JagerandB.Zeschmar-Lahl,1994.FloodingareaandsedimentcontaminationoftheriverMulde(Germany)withPCdd/Fandotherorganicpollutants.Chemosphere,29:2237-2252.

Wingfield,J.C.,2008.Comparativeendocrinology,environmentandglobalchange.GeneralandComparativeEndocrinology,157:207-216.

Wrona,F.J.,T.D.Prowse,J.D.Reist,J.E.Hobbie,L.M.J.Levesque,R.W.MacdonaldandW.F.Vincent,2006.Effectsofultravioletradiationandcontaminant-relatedstressorsonArcticfreshwaterecosystems.Ambio,35:388-401.

Wu,R.S.S.,1999.Eutrophication,waterbornepathogensandxenobioticcompounds:environmentalrisksandchallenges.MarinePollutionBulletin,39:11-22.

Yamashita,N.,S.Taniyasu,G.Petrick,S.Wei,T.Gamo,P.K.S.LamandK.Kannan,2008.Perfluorinatedacidsasnovelchemicaltracersofglobalcirculationofoceanwaters.Chemosphere,70:1247-1255.

Zala,S.M.andD.J.Penn,2004.Abnormalbehavioursinducedbychemicalpollution:areviewoftheevidenceandnewchallenges.AnimalBehaviour,68:649-664.

Zebe,E.andD.Schiedek,1996.ThelugwormArenicola marina:amodelofphysiologicaladaptationtolifeinintertidalsediments.HelgolMeeresunters,50:37-68.

Page 64: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

62

Acronyms

γ-HCH Gamma-hexachlorocyclohexane(alsoknownaslindane) 2,3,7,8-TCdd 2,3,7,8-tetrachlorodibenzo-p-dioxin AMAP ArcticMonitoringandAssessmentProgramme BAT Bestavailabletechniques(ortechnologies) BeP Bestenvironmentalpractices CO₂ Carbondioxide dde Dichlorodiphenyldichloroethylene ddT Dichlorodiphenyltrichloroethane GCG GlobalCoordinationGroup GeF GlobalEnvironmentFacility GHG Greenhousegas GMP GlobalMonitoringPlan HBCds Hexabromocyclododecanes HCB Hexachlorobenzene HCH Hexachlorocyclohexane nAO NorthAtlanticOscillation PAHs Polycyclicaromatichydrocarbons PBdes Polybrominateddiphenylethers PCBs Polychlorinatedbiphenyls PCdds Polychlorinateddibenzo-p-dioxins PCdFs Polychlorinateddibenzofurans PeCB Pentachlorobenzene PentaBde Pentabromodiphenylether PFC Perfluorinatedcompound PFOA Perfluorooctanoicacid PFOS Perfluorooctanesulfonates PFOS-F Perfluorooctanesulfonylfluoride POM Particulateorganicmatter POPs Persistentorganicpollutants SCCPs Short-chainedchlorinatedparaffins Tdi Tolerabledailyintake UneP UnitedNationsEnvironmentProgramme UV Ultraviolet

Page 65: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects
Page 66: Cover. Polarized light micrograph of the insecticide DDTchm.pops.int/portals/0/download.aspx?d=unep-pops... · Impact of climate change on toxicological and ecotoxicological effects

Citation:UneP/AMAP,2011.ClimateChangeandPOPs:PredictingtheImpacts.ReportoftheUneP/AMAPExpertGroup.SecretariatoftheStockholmConvention,Geneva.62pp.

Reportproduction:Productionmanagement:SimonWilson,AMAPSecretariatTechnicalandlinguisticediting:CarolynSymon([email protected])Designandlayout:NelPunt([email protected])   ©Photographs:Cover.DavidMalin/ScienceFaction/CorbisPage10.NicoleDuplaix/CorbisPage13.NathanBenn/Ottochrome/CorbisPage17.PaulSouders/CorbisPage18.PaulSouders/CorbisPage21.TomNebbia/CorbisPage26.WendyStone/CorbisPage29.GalenRowell/CorbisPage40.B&CAlexander/ArcticPhotoPage44.PaulHardy/Corbis