161
1 CHE-310 Organic Chemistry I Instructor: Dr. James L. Lyle Office: NSM-D-323 Phone: (310) 243-3388; 243-3376 Office Hours: Will be announced in class; open door policy e-mail: [email protected] 1. Grading: Daily exams = 100 4 exams @ 100 pts = 400 final exam = 100 homework required 600 Letter grades will be assigned on the following basis. Grades are not curved. A = 100-93%, A- = 92-90%, B+ = 89-87%, B = 86-83%, B- = 82-80%, C+ = 79-77%, C = 76-73%, C- = 72-70%, D+ = 69-67%, D = 66-60%, F = 59-0% 2. Required Texts: Organic Chemistry , 6th Ed., Morrison & Boyd. Study Guide for ... Molecular Model Kit Supplement ... 3. Exams. Daily exams will be given at the beginning of most lectures. No make up exams will be given, but the two lowest will be dropped. Attendance is expected. If you miss a daily exam it will count toward one of the two dropped exams. For scheduled hourly exams, no make up exams will be given. You must take the exams on the dates and times as scheduled. 4. Final exam. The final exam will be comprehensive.

CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

  • Upload
    hahuong

  • View
    213

  • Download
    1

Embed Size (px)

Citation preview

Page 1: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

1

CHE-310 Organic Chemistry I

Instructor: Dr. James L. LyleOffice: NSM-D-323Phone: (310) 243-3388; 243-3376Office Hours: Will be announced in class; open door policye-mail: [email protected]

1. Grading:Daily exams = 1004 exams @ 100 pts = 400

final exam = 100 homework required 600

Letter grades will be assigned on the following basis. Grades are not curved.A = 100-93%, A- = 92-90%, B+ = 89-87%, B = 86-83%, B- = 82-80%,C+ = 79-77%, C = 76-73%, C- = 72-70%, D+ = 69-67%, D = 66-60%,F = 59-0%

2. Required Texts: Organic Chemistry, 6th Ed., Morrison & Boyd. Study Guide for ... Molecular Model Kit Supplement...

3. Exams.Daily exams will be given at the beginning of most lectures. No make up exams will be given, but the two lowest will be dropped. Attendance is expected. If you miss a daily exam it will count toward one of the two dropped exams. For scheduled hourly exams, no make up exams will be given. You must take the exams on the dates and times as scheduled.

4. Final exam.The final exam will be comprehensive.

5. Homework.Daily homework will be assigned. It is due at the beginning of the following lecture period. Penalty points will be assigned for missing or late homework.

6. Prerequisites.

Page 2: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

2

The prerequisite for this course is completion of both semesters of General Chemistry. A corequisite is enrolment in CHE-311.

7. Office Hours.The instructor is available at any time outside of class for questions, etc. Do not hesitate to seek help if you need it.

8. Cheating. Don't do it! At best you will receive a failing grade and be put on academic probation, at worst you will be expelled from the university. Review the University Catalog statement on Academic Integrity!

9. Course goals, objectives and requirements are covered in the rest of this syllabus.

Page 3: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

3

CHE-310 TENTATIVE SCHEDULE Fall '02

Meeting Date Chapt. Topic 1. 8/26 1 Introduction/Basic Principles 2. 8/28 1 Basic Principles 3. 8/30 1 Basic Prinicples 9/2 no class 4. 9/4 2 Methane 5. 9/6 2 Methane 6. 9/9 2 Methane/Alkanes 7. 9/11 3 Alkanes 8. 9/13 3 Alkanes 9. 9/16 3 Alkanes10. 9/18 *** EXAM I ***11. 9/20 4 Stereochemistry12. 9/23 4 Stereochemistry13. 9/25 4 Stereochemistry14. 9/27 5 Alkyl Halides15. 9/30 5 Alkyl Halides16. 10/2 5/7 Alkyl Halides17. 10/4 6 Alcohols18. 10/7 6 Alcohols/Ethers19. 10/9 6 Ethers20. 10/11 *** EXAM II ***21. 10/14 8 Alkenes, synthesis22. 10/16 8 Alkenes, synthesis23. 10/18 9 Alkenes, reactions24. 10/21 9 Alkenes, reactions25. 10/23 9 Alkenes, reactions26. 10/25 9 Alkenes, reactions27. 10/28 10 Stereochemistry28. 10/30 11 Dienes29. 11/1 11 Dienes30. 11/4 12 Alkynes31. 11/6 *** EXAM III ***32. 11/8 13 Alicyclics33. 11/11 13 Alicyclics34. 11/13 13 Epoxides35. 11/15 14 Aromatic Hydrocarbons/Benzene36. 11/18 15 Electrophilic Aromatic Substitution37. 11/20 15 Electrophilic Aromatic Substitution38. 11/22 15 Electrophilic Aromatic Substitution39. 11/25 16 Arenes40. 12/27 16 Arenes

11/29 no class, Thanksgiving holiday41. 12/2 16 Arenes

Page 4: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

4

42. 12/4 *** EXAM IV ***43. 12/6 TBA44. TBA *** FINAL EXAM ***

Page 5: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

1

CHEM-310 Information re Exam I

In studying for your first exam in this course, you should first go over all of the homework assignments and make sure that you understand them. In fact, you should be able to do any of the assigned homework problems on the exam. This is more difficult than doing the homework when you have access to your notes, etc. One way to prepare would be to redo all of your homework as if it were an exam. Then, pay particular attention to those problems that you cannot do or do not understand. If you have questions about any of the assigned material you should seek help immediately.

- be able to define important terms.

- from atomic numbers be able to give the numbers of protons and electrons in a neutral atom.

- be able to give spectral notations for neutral atoms.

- be able to identify ionic and covalent bonding.

- be able to draw Lewis dot structures for simple molecules.

- state the types of hybrid orbitals used in simple molecules and give their angles.

- know the relative strengths of some simple acids and bases.

- for acid base reactions, be able to predict if a reaction takes place, or if the reaction is given, label the stronger and weaker acids and bases.

- be able to predict which compounds are polar.

- predict the important products of the reactions of methane.

- be able to name alkanes.

- know the mechanism for free radical halogenation of alkanes. You may be asked to propose a similar mechanism for a reaction you have not done!

- be able to calculate enthalpy changes, given bond dissociation energies.

Page 6: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

2

- be able to graph P.E. changes and label all parts of the graph.

- be able to estimate Energies of activation and predict which step in a mechanism is rate determining. Know the importance of Eact to the rates of chemical reactions.

- be able to draw hypothetical structures for transition states.

- understand the Hammond Postulate

- draw Newman projections for conformations in alkanes.

- be able to write equations to show how you would synthesize alkanes in the laboratory, given the starting materials.

- be able to predict the organic products of the reactions of alkanes.

Page 7: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

3

CHE 310 Information about Exam II

Your second exam will cover the chapters on stereochemistry, alkyl halides, alcohols and ethers. To study for this exam you should go over your homework assignments. It will also help to write your own version of the exam and trade with another student. Try to boil the subject down to the basic principles.

This exam will have a section on stereochemistry. You must be able to correctly specify R/S for stereoisomers (you may bring a model to the exam). You must know the definitions of the terms from this chapter, and understand what is important for each of the types of reactions of chiral molecules that you might encounter.

For alkyl halides, alcohols and ethers, be able to name compounds correctly (nomenclature). Where necessay, be able to specify congiguration in the name.

Know the two new mechanisms that we have learned in these chapters: SN2, SN1. Know which mechanisms go with which reactions under which conditions. Be able to write out all steps in the mechanisms for given reactions and label the RDS.

Be able to predict the organic products of the reactions of alkyl halides, alcohols and ethers. This is where you will be tested on the particulars of a reaction such as rearrangements, stereochemistry, and orientation.

Know how to synthesize any alkyl halide or ether from a given starting material. Some of the methods used in syntheses may also be covered in the part of the exam on reactions or mechanisms.

Pay particular attention to those homework problems that are of the above types. If you have any questions about the material, please do not hesistate to come see me.

J. Lyle

Page 8: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

4

CHE 310 Homework # 1

1. Read Chapter 1 of your text.

2. Define the following terms: Organic chemistry, Pauli exclusion principle, Atomic orbital. 3. For each of the following, state how many protons are there in the nucleus? how many eletrons are there in shells about the nucleus? Give the spectral notation (1s22s2...): Na, Cl, Ne, Cl-, Na+, O, O2-, Br, Ar, Br-, I, C.

5. On page 5 of your text: 1.1 (a,b,c,d), 1.2 (a,b,c,d)

CHE 310 Homework # 2

1. Define the following terms: Ionic bond, Covalent bond.

2. What kind of hybridization is used by the central atom in each of the following compounds and what are the approximate bond angles? CH4 BF3 BeCl2 NH4

+ CH3+ (CH3)3B BF4-

3. Draw Lewis dot structures to show the bonding in the following covalent compounds:

NH3 H2O H3O+ NH4+ CO2

Page 9: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

5

CHE-310 Homework # 3

1. In your text do problems: 1.6 on page 26, 1.9 on page 35, 1.11 (a) page 36, 5 (a thru f).

2. In the following reactions, label the acids and bases involved, and label each as stronger or weaker.

H3O+ + HCO3- ----> H2CO3 + H2O

NaCN + H2O <---- HCN + NaOH

NaCl + HI ----> HCl + NaI

CH3MgBr + H2O ---> CH4 + Mg(OH)Br

3. Define the following terms:Lewis acid, Lewis base,Lowry-Bronsted acid,Lowry-Bronsted base,isomers.

CHE 310 Homework # 4

1. Read Chapter 2

2. Predict the important products of the following reactions; if no reaction takes place, write N.R.: A) CH4 + (xs)O2,flame ----> B) 6CH4 + O2, 1500o ----> C) CH4 + H2O, 850o,Ni----> D) CH4 + Br2,hv ----->

E) CH4 + Cl2 ----> F) CH4 + (xs)Cl2,heat ---->

3. Name the following compunds, giving two names for each:

CH3I CH2Br2 CHCl3 CBr4

Page 10: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

6

4. Write all steps in the free radical substitution mechanism for the chlorination of methane. Label the initiating, propagating, and terminating steps. Label the rate determining step (RDS).

CHE 310 Homework # 5

1. Calculate the enthalpy change (delta H) for the following reaction.

heat CH4 + Br2 ------> HBr + CH3Br

2. Outline all steps in the mechanism for the above reaction, and calculate the delta H for each step in the mechanism.

3. Draw a graph of the potential energy changes in the second step of the above mechanism. (the graph can be free hand, but should have all parts labeled.)

4. Draw a graph of the P.E. changes in the third step of the mechanism.

5. An alternate mechanism for chlorination of methane was proposed by a student and contained the following two propagating steps:

(2) Cl. + CH4 ----> CH3Cl + H.

(3) H. + Cl2 ----> HCl + Cl.

Calculate the delta H for each of the above steps.Why does the chlorination of methane proceed by the mechanism in the text and not by this alternative route?

Page 11: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

7

CHE 310 Homework # 6

The compound HOCl (hypochlorous acid) reacts with the compound C6H5CH3 (toluene) under the influence of ultraviolet light as shown in the following equation:

hv C6H5CH3 + HOCl ------> C6H5CH2Cl + HOH

The bond dissociation energies pertinent to the above system are:

C6H5CH2-H 85; HO-Cl 60; C6H5CH2-Cl 68; H-OH 119 Kcal/mole

1. Calculate the enthalpy change for the reaction.

2. Write a stepwise mechanism for the above reaction and label the initiating and propagating steps. (Take the bond dissociation energy values into account when considering the most likely mechanistic steps.) Write two possible terminating steps.

3. Calculate the enthalpy changes for the steps in your mechanism, where possible.

4. Draw a graph of the potential energy changes for the third step in your mechanism. Label all parts of the graph.

5. Estimate the Energies of Activation for each of the propagating steps in the mechanism.

6. Which of the steps is the RDS (rate determining step)? How do you know?

7. Draw a hypothetical structure for the transition state for step 2 of the mechanism.

Page 12: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

8

CHE-310 Homework # 7

1. Read Chapter 3.

2. Draw the Newman Projections for the following conformations about the C2-C3 bond in n-butane: anti, gauche, CH3-H eclipsed, and CH3-CH3 eclipsed. Which of these are stable conformations?

3. Name the following structures:

CH3 CH3CH2CH2CH2CH3 CH3CH2CH2CH2

CH3 CH3 CH3 CH3CHCH2CHCH2CH3 CH3CH2CCH3 CH3

CH3 CH3 CH2 CH3 CH3 CH3 CH2 CH3CHCH2CH2CHCH3 CH3CH2CHCH2CHCHCH2CH2 CH2 CH2 CH3

4. Draw all nine isomeric heptanes (C7H16) and name each one.

Page 13: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

9

CHE-310 Homework # 8

page 99 3.9, 3.10,3.11

page 121 8, 9 (a,b,c)

CHE-310 Homework # 9

1. In your text: p. 103:3.12;3.14 (predict the products and circle the major product. Do not predict the proportions.)p. 121;10 (and circle the major product.)

2. Outline all steps in the mechanism for the bromination of ethane. Label the RDS.

CHE 310 Homework # 10

1. Read Chapter 4.

2. Define the following terms: stereochemistry, optical acitivity, dextrorotatory, levorotatory, specific rotation, chirality, chiral center, enantiomers, racemic modification,configurations.

3. 4.3; 4.4; 4.5 (a-d); 4.8; 4.10 (a).

CHE-310 Homework # 11(a)

1. Define the following: diasteromers, meso compound, resolution

2. In your text: 4.12 (a,b,h); 4.13.

CHE-310 Homework # 11(b)

1. In your text: 4.24.

Page 14: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

10

2. For each of the following reaction types, write a sentence or two to indicate the sterochemical importance of that type of reaction, or the basic principle to keep in mind about that type of reaction. a) a reaction of achiral compounds in which a chiral center is generated. b) a reaction of a chiral compound in which no bonds to the chiral center are broken. c) a reaction as in c) where a new chiral center is formed. d) a reaction of a chiral molecule with an optically active reagent. e) a reaction of a chiral molecule in which a bond to the chiral center is broken.

CHE-310 Homework # 12

1. Read Chapter 5.

2. In your text: p. 211: 2; 3; 4;

3. Outline all steps in a possible laboratory synthesis of:

a) n-propyl bromide from n-propyl alcohol, TWO WAYS.

b) isopropyl iodide from isopropyl alcohol, THREE WAYS.

CHE 310 Homework # 13

In your text: 5.2; p. 212: 5; 6(a).

Predict the product(s) of the following reaction. You must show the stereochemistry of the product(s).

CH3

¦ SN2 H ---+--- Br + NaOH -----> ¦ CH2CH3

Using "curved arrow formalism", outline all steps in the mechanism for the following reaction and label the RDS.

Page 15: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

11

CH3Br + NaOH -----> CH3OH + NaBr

Draw a hypothetical structure for the transition state of the RDS in the above mechanism. What is the name of this mechanism?

Page 16: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

12

CHE 310 Homework # 14

Predict the product(s) of the following reaction. Show the stereochemistry of the product(s):

CH3

¦ SN1 H ---+--- Br + NaOH -----> ¦ CH2CH3

Using "curved arrow formalism", outline all steps in the mechanism for the following reaction and label the RDS.

CH3 CH3

CH3C-Br + dilute NaOH -----> CH3C-OH + NaBr + alkene CH3 CH3

Draw a hypothetical structure for the transition state of the RDS in the above mechanism. What is the name of this mechanism?

In your text: p. 212 8 (a-h); p. 271 4 (i,j);

CHE 310 Homework # 15

page 245:1;6;

Complete the following reactions: CH3

CH3CHCHCH3 + HBr -----> OH

CH3CH2CH2CH2OH + HI -----> p. 247 read "About Syntheses" 17 (a,b,d,e,h).

Page 17: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

13

CHE-310 Homework # 16

Outline all steps in the mechanism(s) for the reactions: Don;t forget to use "curved arrows" to show the movement of electron pairs. Label the RDS. Name each mechanism!

H+CH3CH2-OH + HCl -----> CH3CH2-Cl + H2O

H+tert-butyl alcohol + HBr -----> tert-butyl bromide + H2O

Give the structures of the organic products expected for the following reactions:

1. n-butyl alcohol witha) sodium bromide, sulfuric acidb) ethyl magnesium bromide (CH3CH2MgBr)c) sodium bicarbonate (NaHCO3)d) K2Cr2O7e) C5H5NHCrO3Clf) CH3SO2Cl,OH-g) acetic acid (CH3COOH),H+

2. sec-butyl alcohol witha) P,I2b) NaOHc) Nad) NaOCl (bleach)e) CrO3f) C6H5COOH,H+

3. tert-butyl alcohol witha) HIb) NaNH2c) Kd) product of c) + ethyl iodidee) KMnO4f) Br2

CHE-310 Homework # 17

Page 18: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

14

page 245: 2;3;7. Outline Williamson Syntheses for each of the ethers in problem 3.

CHE-310 Homework # 18

In your text: 8.1 (a) and name each compound (use E/Z for geometric isomers); 8.2; 8.5 and circle the major product if more than one is formed; 8.6 ( note: you want the alkyl halide that will give only one organic product from the dehydrohalogenation, not a mixture!);

p. 316:6 (a,b,c,e); 7 (a,b,c,e).

Outline all steps in the mechanism for the following reaction. Label the RDS.

CH3CH2Br + KOH(alc) -----> CH2=CH2 + H2O + KBr

CHE 310 Homework # 19

1. Predict the products of the following reactions. If more than one organic product is produced, circle the major product.

a) n-butyl bromide + KOH(alc) ---->

b) n-butyl alcohol + H+ ---->

c) neopentyl alcohol + H+ ---->

d) 2,3-dibromopentane + Zn ---->

2. Outline all steps in the mechanism for the following reaction. Label the RDS. isopropyl alcohol + H+ ----> propylene

3. Why is dehydrohalogenation of an alkyl halide often preferred over dehydration of an alcohol in the synthesis of many alkenes?

4. p. 316: 13.

Page 19: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

15

CHE-310 Homework # 20

In your text: Page 363: 1 (a-j); 3 (a thru e); Page 366:20 (a,b); 21 (a).

Outline all steps in the mechanism for the following reaction: Label the RDS. Name the mechanism.

CH2=CH2 + HBr -----> CH3CH2Br

CHE-310 Homework # 21

In your text: page 363: 1 (k thru n); page 366: 20 (c, d, e); 21 (b, c, d).

CHE-310 Homework # 22

In your text: Page 363:1 (s,t);Page 363: 4.

Outline all steps in the mechanism of the following reaction: Label the RDS. Name of the mechanism?

H+

CH2=CH2 + H2O -----> CH3CH2-OH

Outline all steps in the mechanism for the following reaction: Label the RDS. Name of the mechanism? perox.

CH2=CH2 + HBr -----> CH3CH2Br

CHE-310 Homework # 23

In your text: page 363: 1 (o thru r);16;17 (a);page 366:20 (f);21 (e,f).

Page 20: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

16

CHE-310Homework # 24

Define the following terms:stereospecific reaction, stereoselective reaction.

In your text: 10.1;10.4.

CHE 310 Homework # 25

1. Name the following compounds:

CH2=CH-CH=CH-CH=CH-CH3 CH3-CH=CH-CH2-CH=CH2

CH3

CH2=CH-C=CH2 CH3-CH2 H \ / C = C CH3

/ \ / H C = C / \ H H

2. predict the product(s) of the following reactions:

CH3-CH=CH2 + Br2 -----> heatCH2=CH-CH3 + Br2 ----->

Page 21: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

17

Homework # 26

1.. Give the structures of the organic products expected from the reaction (if any) of 1,3-butadiene with:a) H2, Nib) 2 moles H2, Nic) Br2

d) 2 moles Br2

e) HClf) HBr, peroxidesg) KMnO4

h) Br2, H2O2. Give the structures of the organic products expected from the reaction (if any) of 1,4-pentadiene with each of the reagents shown above in problem 1.

3. In your text: page 422 5 (b,f).

CHE 310 Homework # 27

In your text: p. 441: 1;2;4.

CHE 310 Homework # 28

In your text: p. 488-489:1 (a,f,h);2 (a thru h); 3 (b,h,j,k).

CHE 310 Homework # 29

In your text: 13.1;p. 488-489:1 (b,c,d,e);2 (i thru cc);3 (a,c thru f, i, j, k).

Page 22: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

18

CHE 310 Homework # 29-2

13.27; 13.25; p. 491: 16.

CHE 310 Homework # 30

In your text: page 515-516: 4 (a thru f) note the word theoretical; 9.

CHE 310 Homework # 31

In your text: p. 515: 2 (d,e); p. 546: 1 (all).

CHE 310 Homework # 32 (two days?)

In your text: p. 546: 2 (all); 3 (all); 5.p. 548: 15 (a - g);

Outline all steps in the mechanisms of the following reactions. Label the RDS.

a) nitrationb) sulfonationc) halogenationd) Friedel-Crafts alkylation

CHE 310 Homework # 33

In your text: p. 581: 1 (all); 2 (a-h); 16.2

Page 23: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

19

CHE 310 Homework # 34In your text: p. 581: 3 (all);p. 584: 18 (a,b,d,e);

p. 581: 4 (all).

CHE 310 Homework # 35

In your text:p. 581: problem 4 using phenylacetylene instead of

trans-phenylpropene:(a,b,c,e,f,k,m,H2SO4 + Hg++ + H2O); 5 (all);18 (c,g).

Page 24: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

20

CHE 311 Sylabus

Instructor: Dr. J. L. LyleOffice: NSM D-323Phone: (310)243-3388;243-3376Office Hours: Will be announced in class; open door policy

Required Texts:

Introduction to Organic Laboratory Techniques Pavia, Kriz, Lampman & Engel.CRC Handbook of Chemistry and Physics (highly recommended)Lab notebookSafety goggles

1. Grading: Traditional letter grades will be assigned on the same basis as in CHE-310.

Lab reports 50% Notebook 10% Final Exam 25% Evaluation 15%

2. Lab reports. A typed lab report will be required for each experiment. The report is due one week after the scheduled completion of the lab. These reports are due at the scheduled start time for the lab. Late reports will be penalized one letter grade for the first 24 hours. Lab reports that are submitted more than 24 hours late will not be accepted!Please note that lab reports are not written in the lab notebook, but are separate requirements. You will be given explicit instructions about what each lab report is to contain. Lab reports are to be your own work and not plagiarised from some other student or lab report. Academic dishonesty will not be tolerated!

3. Notebook. A written record of what you are doing in the lab will be kept in your notebook. You are expected to have your notebook with you in the lab. Failure to do so can affect your grade. The notebook entries will be written in ink. The carbon copies that you make will be submitted with your lab reports.

4. Final Exam. A written final exam will be given at the end of the semester. Date and location will be announced later.

Page 25: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

21

5. Evaluation. Part of your grade will be an evaluation of your lab technique, preparedness, punctuality, etc. by the instructor.

6. Safety. You must wear approved eye protection at all times in the lab. Failure to do so will result in expulsion from the lab.

7. Prerequisite. You must have completed both semesters of general chemistry. Corequisite is enrolment in CHE-310.

8. Attendance. You are expected to attend all laboratory sessions. Make ups will only be allowed if arrangements are made prior to the missed lab and for good reason.

9. Course goals, objectives, and requirements are covered elsewhere in this syllabus.

Page 26: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

22

CHE 311 Organic Chemistry Laboratory I

Week:1. Check in/ Orientation to lab

2. Simple distillation P. 706-713

3. Fractional distillation p. 733-744

4. Extraction p. 685-693, p.696-699

5. Steam distillation p.753-761

6. Recrystallization p. 648-663

7. " & melting point p. 666-674

8. Chromatography p. 792-806, p.761-770

9. " p. 808-823

10. Alkyl Halide Syntheses p. 204-211

11. "

12. Dehydration of 4-methylcylcohexanolp. 248-252

13. Nitration of a halobenzene see sylabus

14. "

15. Check out

Page 27: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

23

16. TBA Final Exam

CHEM 311 ORGANIC CHEMISTRY NOTEBOOK

Your notebook is to be with you at all times in the laboratory. This is where you record what you have done and all of the data and obsevations that you take. Note that the lab notebook is not the lab report. Lab reports are written separately and the carbons from your notebook are attached to the end of the report.

Please use the following format for your lab notebook entries:

Title of experiment (be specific) NameDateUnk # (if any)

A step by step description of what you did (it must contain sufficient detail so that the experiment could be repeated by anyone reading your notes). One technique is to write in the steps you propose to do before you get to the lab and then add additional comments and observations as you actually do the lab.

All significant observations and measurements must be recorded directly into the notebook. Do not record data on other sheets of paper for later transcription into the notebook!

The original (white) sheets remain attached in the notebook, the carbon copies (blue or yellow) will be attached to your lab report.

Page 28: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

24

EXPERIMENT: Simple Distillation and Determination of the Boiling Range of an unknow organic liquid

Read p. 706-713 in your lab text!

The principal purposes of this exercise are to familiarize you with the mechanics of the distillation technique and to permit you to observe the behavior of a single substance when it is distilled. You may regard this to be the situation in which a new compound whose actual boiling point is not known has just been made. You are in effect carrying out the last step of the preparative procedure - distilling the compound to purify it and at the same time measuring its boiling range.

You have an “unknown” organic liquid at your desk; record its number in your notebook.

Procedure

All glassware must be dry! (water is a compound!)

Do not wash the glassware that is to be used for the distillation, unless it is obviously dirty. If you do wash them, all glass parts must be thoroughly dried before the apparatus is assembled.

Three ring stands are necessary to construct the distillation assembly described below. Be sure that the ring stand bases face forward (toward you) and are parallel with one another. Three clamps and one iron ring are needed. If they are available, 3-prong clamps should be used to support the condenser and the receiver; a burette clamp is best for the still pot.

1. Select a distilling flask of appropriate size (the still pot should be about half-full initially). The receiver for this distillation is a graduated cylinder large enough to contain the volume of sample you are given. Ordinarily, an Erlenmeyer or round-bottom flask, or even the bottle in which the product is to be packaged, is used as the receiver. You use a graduated cylinder here because you are to obtain a record of distillate volume vs. vapor temperature.

Page 29: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

25

2. Set up the apparatus as shown on page 711 of your lab text and in the sample assembly in the laboratory. Pay particular attention to the following points:

a. Build the apparatus from the "bottom up." Begin by clamping the receiver (a graduated cylinder) to a ring stand.

b. If you are using standard-taper ground-glass-joint glassware, be sure to put a thin film of lubricant on the joint surfaces.

c. Arrange the assembly so that the receiver is as close to the end of the condenser as possible. To ensure that the flow of distillate from the condenser to the receiver is true, a bent adapter may be attached to the end of the condenser. The lower end of the adapter should protrude into the cylinder, but should not be "jammed" into the opening. The junction is not meant to be airtight.

d. Should you find that the receiver is too far from the end of the condenser (with or without an adapter), raise the receiver by clamping it to the ring stand. Do not use books, sponges, inverted beakers, etc., to support any part of the apparatus.

e. Make sure that the space between the flask bottom and the ring stand base below it is sufficient to allow easy placement and removal of the heating device.

f. The thermometer must be perfectly vertical. If it is not, make whatever adjustments are necessary in the angle of the condenser. If you experience any difficulty ask your instructor for help.

g. The top of the thermometer bulb must be level with the bottom of the sidearm opening of the still head.

h. Make certain that there are no kinks or restrictions in the rubber tubing through which the cooling water flows to and from the condenser. The tubing must be long enough to reach from the water source to the inlet tube of the condenser, and from the condenser to the drain. If only short pieces are available, they may be joined with short lengths of fire polished glass tubing or special plastic connecting tubes.

i. Turn on the cooling water cautiously! If the valve if opened too quickly, the pressure may force the rubber tubing from the condenser connection, and you and your neighbors may get an early shower.

Page 30: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

26

3. If a heating mantle is to be used, observe the following precautions:a. The mantle must be of the proper size to fit exactly

around the flask (unless the heating unit is of the type that may be used for several flask sizes). The size is usually specified on a tag attached to the mantle or the cord.

b. The heat input is controlled by means of a variable transformer, to which the mantle cord should be connected. Do not plug the cord directly into the line outlet unless the mantle has a built-in variable control.

c. The mantle should be supported by an iron ring or other suitable device (not books!) so that it is at least several inches above the bench top and can be lowered away from the flask when necessary. Do not rest the mantle directly on the bench surface.

5. Pour the liquid sample into the still pot. Use a funnel with a stem long enough to reach past the sidearm opening.

6. Add three or four boiling chips to the still pot.

7. Make certain that water is flowing in the proper direction through the condenser jacket.

8. Heat the liquid until boiling commences. Adjust the flame or transformer setting so that gentle boiling is maintained. Apply aluminum foil insulation unless you are directed not to do so by your instructor.

9. Distill the liquid and follow the procedure as below.

Note the temperature when the first drop of distillate is collected. Record the temperature when the first volume measurement in the graduated cylinder is feasible, and at intervals of 1 or 2 mL of distillate collected thereafter. Do not distill the liquid to dryness. Stop the distillation

when a few drops remain in the still pot.

10. Stop the distillation by turning off the flame or the transformer. If a heating mantle was used, lower it away from the still pot. Allow the flask to cool for a few minutes before disassembling the apparatus.

Page 31: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

27

11. Pour the distillate and any residue in the still pot back into the bottle in which the sample was received. Return the bottle to the place designated by your instructor.

Interpretation of Results and the Report

In addition to learning the technique of performing a distillation, you have had the opportunity to observe at first hand the behavior of a reasonably pure compound in the distillation process. You also measured quantities (temperatures) whose magnitudes you did not know before-hand.

Your report (see next page) should include the following:

1. A brief introductory discussion, in your own words, of the physical principles involved in the distillation of a liquid.

2. The Experimental section, in which you describe in your own words the procedure you have carried out. A tabulation of the volume and temperature measurements must be presented. The atmospheric pressure at the time of the distillation, if known, should be noted as well.

3. A brief Discussion of Results, excluding details of experimental procedures. This part provides the interpretation of the accumulated data and other pertinent observations. A graph of vapor temperature vs. distillate volume would be most helpful in presenting the conclusions to be drawn from the experimental results. An indication of the relative amount of forerun, if any, and the corresponding temperature range over which it was collected should be cited.

The boiling range of the distillate collected in a single container must be reported. As an example, consider the following distillation in which no forerun was collected separately. The temperature at which the first drop was collected was 110oC. The distillation was stopped when the still-head temperature registered 122oC. The boiling range of the distillate in that case was therefore 110-122oC. (Note that the boiling range has a beginning value and an end value. Thus, the range in the example is not 122o, but is 110-122oC.) If 5 mL of forerun were collected first, and the main body of distillate

Page 32: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

28

(32mL) then collected from 120-122oC, the 120-122oC range is the boiling range of the major portion of the liquid.

Some comment on the appearance of the liquid before and after distillation is in order, as is any other significant observation.

Note: It is not considered good form to use the first person pronouns I or we in chemistry reports. Instead of “I added 30 mL” , write instead “Thirty mL was added.” (Use passive voice)

Page 33: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

29

CHE 311 Lab Report for Simple Distillation

Your lab report for the first experiment should follow the format and consist of the following:

Title(be specific) namedatesection numberUnknown #

Introduction

(give a brief statement about what a simple distillation is and is used for and how it works. Then state concisely what is to be done in this experiment. Do not draw the apparatus! Do not state a "purpose".)

Data(a table of the data collected, suitably labeled)

(a graph of the data. Use mm graph paper and make the graph professional. Do not use pages from the lab notebook!)

Results(a paragraph describing any observations or conclusions.)(See previous page)

Exercises

1. In a short paragraph, describe how simple distillation separates two compounds with different boiling points.

2. If the thermometer is placed below the outlet to the condenser, will the temperature measured be correct? If not, will it be higher or lower than the actual vapor temperature?

3. What are boiling stones and why are they added?

4. Describe the observations that one would make during the simple distillation of a "pure" substance.

5. What happens to the still head temperature during the simple distillation of an "impure" substance.

Page 34: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

30

6. At 30oC, the vapor pressures (in torr) for methanol and ethanol are 350 and 180, respectively. Given a mixture at 30 degrees that contains 0.2 mole of methanol and 0.1 mole of ethanol, compute the partial pressures of each liquid and the total pressure.

7. In a simple distillation, you measure a boiling range that is 110-112 degrees; How pure do you think the liquid sample is? Explain

8. You have just completed a simple distillation and have made observations of the temperature as the distillate is collected. How would you know whether your distillation was successful and that the distillate is reasonably pure?

Answer the questions on Page 716 of your lab text.

Attach the carbon copies from your notebook.

Page 35: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

31

EXPERIMENT: Fractional Distillation of a Two-Component Mixture

Read 733-745 in your lab text!

This exercise is intended to demonstrate the behavior of a pair of miscible liquids in a simple distillation, and to familiarize you with the technique of fractional distillation with a column. You will first carry out and observe the characteristics of a simple distillation of a mixture. Then the same mixture will be distilled through a fractionating column. Please note that the fractional distillation may not be completely effective - the column may not be efficient enough because of the kind and amount of packing used, or because of insufficient length, and heat losses due to inadequate insulation may contribute to less than perfect results. Since the distillation is to be conducted using continuous takeoff (near-zero reflux ratio), the best possible conditions for fractionation cannot be realized.

Bear in mind that the purposes of the experiment are to demonstrate the distillation behavior of a mixture of miscible liquids and to acquaint you with the basic technique of fractional distillation. Your goal is not to determine the boiling point of either component, nor is it to achieve a perfect separation.

Procedure

A. Simple Distillation of the Mixture

All glassware must be dry!

1. Set up a simple distillation apparatus. Use a 250-mL flask as the still pot. A 50-mL graduated cylinder serves as the receiver. Be sure to add boiling chips to the flask.

2. Distill the unknown mixture as in the previous experiment1. Note the still-head temperature when the first drops of

distillate appear, and record the vapor temperature at intervals of 1 or 2 mL of distillate thereafter.

2. Continue the distillation and collection until the still pot is almost dry.

B. Fractional Distillation of the Mixture

Page 36: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

32

1. Set up a fractional distillation apparatus by inserting a fractionating column packed with steel wool between the still pot and the still head adapter.

2. Add a couple of fresh boiling chips to the still pot and using the liquid funnel, add the mixture that you distilled in the simple distillation.

3. Distill the unknown mixture as in the previous experiment, noting the still-head temperature at the first drop and every 1 or 2 mL of distillate thereafter. Continue the distillation until the still pot is almost dry.

4. Allow the still pot to cool. Pour the distillate and the distillation residue back into the sample bottle. Return the bottle to the designated place in the laboratory.

5. Disassemble the apparatus. If your fractionating column is packed with stainless steel sponge, do not wash it with water.

Interpretation of Results and the Report

Follow the same format that was used in writing the report for the exercise on simple distillation of a single liquid.

Of particular importance in the interpretation of your observations is a comparison of the simple distillation of the mixture with the distillation of the same mixture through a fractionating column. A tabulation of temperature-volume data for each distillation serves as the basis for the construction of two graphs, one for the simple and one for the fractional distillation.

Some comment on the efficacy of the distillation using the column should be offered. For example, the data you obtained may have indicated that the fractions collected were mixtures, although of different composition than the original. Thus an ideal separation may not have been achieved because of deficiencies in the apparatus (or your technique?). Some recommendations about improvement of the fractionation assembly and conduct of the distillation are then in order. The primary purpose of the experiment was not a determination of the boiling points of the components, so do not dwell on the aspect of it.

Remember, too, that it is not necessary to go into great detail in either the preliminary discussion or the Experimental section about the simple distillation procedure used in this experiment. It is sufficient to state that the mixture was subjected to a simple distillation and to give the results of

Page 37: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

33

that operation. A full account of the fractional distillation, including details of the apparatus used, should be given since it is being reported by you for the first time.

Page 38: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

34

CHE 311 Report for fractional distillation

1. As before: title (specific) name date CHE 311-0x unknown #

2. In your own words, explain how fractional distillation works to separate volatile liquids.

3. In one or two sentences, summarize what you did in this experiment.

4. Make a table of the data you collected.

5. Attach a graph (neat and professional on mm graph paper) of the still head temp. vs. volume collected for the simple distillation. On the same graph, plot the data for the fractional distillation in a different color.

6. Describe the results you obtained from the simple and fractional distillation. See if you can put into words the data that you collected and the resultant graph.

7. What conclusions can you make from the results of your experiment? Compare the two methods for efficacy. If you have an opinion, back it up with data. See previous page.

8. Answer the following questions:

a. What is Raoult’s Law?

b. What is Dalton’s Lay?

c. Describe how Raoult’s and Dalton’s Laws relate to fractional distillation as a separation technique.

d. What’s the difference between a packed column and an unpacked column a fractional distillation?

e. What is a theoretical plate?

f. On page 735 of your lab text is a temperature composition diagram for mixtures of two compounds, A & B.

Page 39: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

35

(1) From the graph, what are the boiling points of pure A & pure B?

(2) For a mixture that contains 60 mole% A and 40 mole% B, what is the boiling point? what is the composition of the first distillate and if this distillate were to be condensed, what at temperature would it boil? what is the composition of the vapor at this temperature?(3) For a boiling mixture at 70oC, what is the composition of the vapor and the composition of the liquid?

g. At what point do you change receivers during a fractional distillation if you are trying to separate the components?

h. What observations during a simple distillation would cause you to redo the distillation using a fractionating column?

Answer questions 1, 4 on Page 752 of your lab text.

9. Attach notebook carbon copies.

Page 40: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

36

EXTRACTION

Read p. 685-693, 696-699 in your lab text.

Extraction is a separation technique based on differences in solubilaiies of substances in two immiscible solvents (usually water and a water insoluble organic solvent).

solubility in solvent 1Kc = partition coefficient = -------------------------

solubility in solvent 2

example: Given compound A, Kc (ether:water) = 4.0, how much of A can be extracted from a solution of 10.0 g of A in 100 mL of water with a single portion of 100 mL of ether?

X / 100 mL etherKc = 4.0 = --------------------

(10.0 - X) / 100 mL water

X = 8.0 grams of A extracted into the ether

-same as above, but extract two times with 50 mL of ether each time. X / 50 mL ether

first extraction: Kc = 4.0 = ------------------- (10.0 - X) / 100 mL water

X = 6.67 grams of A extracted

Y / 50 mL ethersecond extraction: Kc = 4.0 = -------------------

(3.33 - Y) / 100 mL water

Y = 2.22 grams of A extracted

total extracted = X + Y = 6.67 + 2.22 = 8.89 grams

Page 41: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

37

==> multiple extractions with smaller amounts of solvent are more efficient than a single extraction with the same total amount of solvent.DRYING: an organic liquid that has been in contact with water is "wet" (contains some water). To "dry" it, use an inorganic drying agent. See Table 2.1 in your lab text.

"WASHING": extraction to remove an unwanted compound.

Today's experiment: HCl

CH3CH2CO2-Na+ ------> CH3CH2CO2H

sodium propionate propionic acid (solid) (liquid)

Your unknown contains an unknown % of sodium propionate. It is not necessary to weigh the unknown before you begin the experiment, assume that it weighs 30.0 grams. You will convert the solid sodium propionate into propionic acid by reacting it with hydrochloric acid. Propionic acid is both water and ether soluble, has a bp of 141 oC, and forms an azeotrope with water. To remove the propionic acid from the aqueous solution, you will extract with three 40 mL portions of diethyl ether. Do not throw anything away until you are absolutely certain you have kept the right layers. After combining the three ether extracts, dry them over anhydrous magnesium sulfate. Fractionally distill off the diethyl ether (<100oC). Then set up for simple distillation and simple distill the propionic acid, collecting as your final product all material boiling above 135oC. Package your product and label the bottle according to instructions below. You will turn it in with your report next week.

Note: Propionic acid is a “common” name. The IUPAC name for this compound is propanoic acid. It will be found in the CRC handbook under its IUPAC name.

“Salting Out” The addition of NaCl to an aqueous solution containing an organic compound will decrease the solubility of that compound in the aqueous solution. This is called “salting out.” Apparently, the salt increases the ionic strength of the

Page 42: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

38

solution, making it more polar and the weakly polar or non-polar organic compound is less soluble.

Page 43: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

39

EXPERIMENT: Formation of a Water-Soluble Liquid Organic Acid and Its Extraction from an Aqueous Solution

In this experiment, a simple reaction followed by an extraction to separate the desired product from solution will illustrate a typical application of extraction.

Some liquid organic acids are very soluble in water. The sodium salts of these acids are ionic solids that are also very soluble in water. If an aqueous solution of one such salt is acidified with a strong mineral acid (e.g., hydrochloric or sulfuric acid) the weaker organic acid is produced, as is shown in the following representative equation:

Na+ + CH3CH2CO2- + H3O+ + Cl- ---> CH3CH2CO2H + Na+ + Cl- + H2O sodium propionate hydrochloric propionic acid acid

(AKA propanoic acid)The organic acid is largely unionized in the water solution.

No apparent change will be observed when the reaction is carried out because the solutions of the starting materials are colorless and the resulting solution containing the indicated products is also colorless. The acid is completely soluble in water and, thus, does not separate. Although propionic acid has a boiling point of 141oC, it cannot be separated from the water by fractional distillation because the two liquids form an azeotrope (bp 99.9oC; 17.7% propionic acid, 82.3% water). Therefore, it is necessary to resort to extraction with an organic solvent in which the organic acid is quite soluble. After drying the organic solution, the organic solvent may be removed by fractional distillation and the residual propionic acid purified by a simple distillation.

You will receive about 30 g of an unknown mixture of solid salts which contains 50-90% sodium propionate, the remainder being an inert inorganic salt.

Procedure

1. Place all of the unknown containing sodium propionate in a 250 mL beacker.

2. Add 100 mL of distilled water to the beaker and stir the mixture with a glass rod.

3. Pour 60 mL of 6 M hydrochloric acid into the sodium salt solution, while stirring with a glass rod.

Page 44: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

40

4. Transfer the aqueous solution to a 250-mL separatory funnel. (Be sure that the stopcock is closed and that a beaker is placed beneath the funnel.)

5. The aqueous solution is to be extracted with three 40 mL portions of diethyl ether as follows:a. Add 40 mL of the solvent to the solution in the funnel.

Perform the extraction.b. Drain the lower aqueous layer into the beaker, and pour

the ether solution through the top of the funnel into a 250-mL Erlenmeyer flask.

c. Repeat the extraction twice more with 40 mL of diethyl ether each time.

DO NOT DISCARD ANY OF THE SOLUTIONS UNTIL YOU HAVE REACHED STEP 9.

6. Add just enough anhydrous magnesium sulfate to the combined ether extracts to just cover the bottom of the flask. Seal the flask with a cork stopper that does not extend more than half its length into the flask neck. (Note: If the magnesium sulfate dissolves, you goofed! Go back through your procedure to see where you made the error.) Swirl the contents of the flask gently and allow the mixture to stand for at least 30 minutes. If necessary, you may let the flask stand until the next laboratory period.

7. Set up a fractional distillation apparatus, using a 250-mL round-bottom flask as the still pot. The receiver is a 250-mL Erlenmeyer or round-bottom flask. Surround the receiver with a small plastic bowl containing a mixture of ice and water.

8. Remove the still pot from the assembly and support it on a cork ring. Place a narrow-stem funnel in the flask neck, and insert a small plug of absorbent cotton at the top of the funnel stem.

9. Carefully decant the ether solution from the drying agent through the funnel into the flask. Rinse the Erlenmeyer flask containing residual drying agent with about 10 mL of ether and add the rinsings to the still pot. (Note: None of the drying agent should have entered the still pot. If some did, empty the still pot into the Erlenmeyer flask, and refilter the mixture into the round-bottom flask.)

Page 45: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

41

10. Add three or four boiling chips to the still pot and reattach the flask to the fractionating column.

11. Slowly distill the ether from the solution. When distillate collection slows markedly or stops, or if the still-head temperature reaches 100C, discontinue the distillation. Do not attempt to distill the propionic acid through the fractionating column.

12. Allow the still pot to cool for several minutes. Then remove the fractionating column and receiver from the assembly. Pour the ether from the receiver into the special container labeled Recovered Ether from Extraction or Waste Organic Solvent.

13. Transfer the residual liquid in the still pot to a 50-mL round-bottom flask and incorporate the smaller flask in a simple distillation assembly.

14. Place two or three fresh boiling chips in the still pot and start the simple distillation.

15. Collect as forerun any distillate obtained up to a still-head temperature of 135oC. Then carefully change receivers, placing a preweighed narrow-mouth bottle in position to collect the propionic acid.

16. Continue distilling the product, measuring the boiling range simultaneously. Do not distill the liquid to dryness, but leave a very small amount in the still pot.

17. Reweigh the receiver plus contents to obtain the weight of the distilled propionic acid.

18. Label the bottle in the manner shown below.

PROPIONIC ACID wt.: g br oC

Your name Date

The Report

In addition to a discussion of the principles of simple extraction and the function of drying agents, the Introductory section should include a statement of the problem - what you were to do.

In the Experimental section, be sure to specify the quantities of materials, as well as the weight and boiling range of the final product. The following is an example of how this information may be presented: "Unknown No. 12 (30.4 g) was

Page 46: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

42

dissolved in 100 mL of distilled water. To the salt solution was added 30 mL of 6 M HCL, and no apparent change was observed... . A total of 13.2 g of propionic acid, br 136 - 142oC (lit., 141oC) was obtained."

In the Discussion of Results, offer a comment on the purity of the distilled acid, based on your experimental observations. You may also calculate an approximation of the composition of the unknown mixture. The calculation is based on the balanced equation, which indicates that 1 mole of propionic acid is obtained from 1 mole of sodium propionate.

Calculation of Approximate Composition of Unknown

The balanced equation shows that one mole of sodium propionate yields one mole of propionic acid. From the weight of the propionic acid that you have collected, you must first calculate how many moles of propionic acid you have. That number of moles is the number of moles of sodium propionate that you must have started with. Convert the number of moles of sodium proionate to grams of sodium propionate. That number, divided by the weight of the unkown, times 100% is the approximate percent of the unknown that was sodium propionate. This number is, of course, approximate as (a) not all of the propionic acid was necessarily extracted; (b) mechanical losses of propionic acid were suffered during the distillation; and (c) the propionic acid obtained is not 100% pure, and the weight of the product includes the impurity.

Page 47: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

43

CHE 311 Report for Extraction; Drying Methods

1. As before: name date CHE 311-0x unknown #2. State in a few sentences what you did in this experiment.

3. Include a table containing the following:

Weight of unknown 30.0 g Weight of propionic acid

obtained g Moles of propionic acid moles obtained

Moles of unknown moles as sodium propionate Boiling range of propionic acid oC

Literature value for the boiling point of propionic acid oC % sodium propionate in the original sample as calculated based on the amount of acid recovered % (note the calculation is based on the balanced equation that indicates that 1 mole of propionic acid is produced from 1 mole of sodium propionate.)

4. Answer the following questions:

A. Explain the purpose of reacting the unknown with hydrochloric acid before the extractions?

B. A student made a mistake and did a single extraction with 120 ml of ether instead of three separate extractions with 40 mL of ether each time. How will his results be affected?

C. A student added anhydrous magnesium sulfate to his combined extracts and the magnesium sulfate dissolved. What error did the student make in the experiment? What should he do now?

D. During the second extraction, a student added ether to the layer in the separatory funnel and it did not separate. What mistake did the student make? What should he do now?

Page 48: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

44

E. How pure do you think the propionic acid is that you recovered and how do you know?

F. If, in an extraction, you were uncertain about which layer was the aqueous layer and which layer was the organic layer, how could you quickly settle the issue?

G. Given 200 mL of an aqueous solution containing 10 g of compound A, from which it is desired to separate A, how many grams of A could be removed in a single extraction with 200 mL of diethyl ether? (The distribution coefficient, diethyl ether: water is 5.0).H. How many total grams of A could be removed if two successive extractions with 100 mL each were used in G?

Attach carbons

Page 49: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

45

EXPERIMENT: Steam Distillation

Separation of a Volatile Component from a Mixture

Read p. 753-760 in your lab text!

In certain reactions, it is not feasible to remove the desired compound (or unreacted starting material) from the mixture by simple or fractional distillation, or by other physical methods. Steam distillation very often successfully effects the separation, and does so at a temperature considerably below the boiling point of the compound being removed. Steam distillation is also quite useful in the isolation of natural products.

An artificial mixture is to be steam distilled to recover one of the components. To add an element of mystery, the sample you receive is an "unknown" in that the quantity of the recovered compound is to be determined and reported.

The mixture to be separated is typical of that obtained in one of the methods of preparation of compounds called haloarenes. One byproduct of the reactions is a group of compounds called phenols. (Some other highly colored substances are present as nonvolatile contaminants.) Separation of the product haloarene from the phenol contaminant by fractional distillation is somewhat difficult because of the high boiling points of these compounds. Steam distillation is a more convenient way of isolating the desired product, but a pretreatment of the reaction mixture is necessary because the phenol is somewhat volatile and would also codistill with steam. Fortunately, the phenol is a weak acid and the haloarene is not. Treatment of the mixture with a solution of sodium hydroxide converts the phenol into a water-soluble, nonvolatile ionic salt, as is shown in the following illustrative equation.

C6H5OH + Na+ + OH- ---> C6H5O- + Na+ + HOH phenol base sodium phenoxide (acid) (salt)

The steam distillation is to be carried out using internal steam generation. The experimental procedure involves both the separation of haloarene and an attempted verification of the principles of steam distillation. The latter objective is effected by keeping a record of the vapor temperature during the codistillation process.

The mixture you will receive is

Page 50: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

46

Phenol (C6H5OH), bp=182oC + Chlorobenzene (C6H5Cl), bp=132oCProcedure

1. Set up a simple distillation apparatus with a 500-mL flask as the still pot and a 50-mL graduated cylinder as the receiver.

2. Weigh the unknown. Place the sample in the flask using your liquid funnel, then add about 100 mL of tap water, 40 mL of 6 M NaOH, and two or three boiling chips.

3. Heat the contents of the flask to a vigorous boil. when distillation begins, make a record of the vapor temperature vs. distillate volume.

4. Continue the distillation as long as oily material is collected. If droplets of the oil remain in the condenser and cling to the walls they may be flushed out by the following procedure:a. Turn off the flow of cooling water through the condenser

jacket. b. Remove the rubber tube from the water tap and allow the

water to drain from the condenser jacket. c. Reconnect the tube to the water outlet, but do not turn

on the water yet. when steam begins to issue from the lower end of the condenser, turn on the cooling water again.

5. If it is not apparent from the vapor-temperature readings that no more organic material is distilling, the following test may be performed. Remove the receiver and collect a few milliliters of the distillate in a small test tube, then replace the receiver. Examine the liquid in the test tube for the presence of oily drops. If none appear (distillate is water only), the distillation may be stopped.

6. Read the volume of organic material in the graduated cylinder as best you can and enter the value in your notebook.

7. Transfer the distillate to a separatory funnel and add about 50 mL of water. Do not shake! Allow the layers to separate, and then draw off the organic liquid and weigh it. Return the wet organic compound to your instructor in the same container in which the unknown was received.

The Report

A brief discussion of the basic principles of steam distillation should be followed by an account of your observations and measurements. If your sample is considered to be an "unknown," report the approximate volume of recovered compound. The Experimental section should, of course, contain full details

Page 51: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

47

of the method by which you carried out the steam distillation as well as all relevant data. The Discussion of Results should include some comment on the observed vapor temperatures and their significance.

CHE-311 Report for Steam Distillation

1. Include the normal heading.

2. Discuss the basic principles of steam distillation.

3. State what you did in this experiment in one or two sentences; be explicit.

4. Tabulate all relevant data. Include the weight percent chlorobenzene in the unknown.

5. Discuss your data and observations. See previous page.

6. Questions:

a) What properties must a compound have in order to be steam distillable?

b) What properties do non-steam distillable compounds have?

c) What was the purpose of adding sodium hydroxide to the still pot?

d) When would you use a steam distillation as a method of separation and purification?

f) define Dalton’s Law and discuss how Dalton's Law is relevant to steam distillation.

Answer questions 1, 2, 3 on pages 760-761 of your lab text.

Page 52: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

48

EXPERIMENT: Recrystallization

Read p. 648-674 in your lab text!

This experiment offers a taste of organic preparative work which includes a recrystallization as the final step. While you have no prior experience and certainly would not, at this stage, be expected to understand the chemistry involved in the reaction, you can carry out the preparation if you follow directions.

The type of compound to be made is called an amide, which is formed by the reaction of an amine with an acid anhydride (one of several ways by which an amide may be prepared). The reaction is represented by the following general equation:

RNH2 + (CH3CO)2O ----> CH3CONHR + CH3CO2H amine acetic amide acetic anhydride (substituted acid acetamide)

In the formula for the amide, the R represents any organic group and NH2 is the amine group. The specific amide you are to prepare is a derivative of the compound acetamide (CH3CONH2), which is but one of the many compounds in the general class of amides. Different amides can be obtained by using different anhydrides or related reagents.

You will receive a sample of an "unknown" amine which is to be converted to the corresponding amide following the general procedure outlined below. The product of the reaction is then to be purified by recrystallization. Identification of the purified amide will be made by means of the melting point and mixture-melting-point determinations.

Procedure

Note: The type of amine to be used in this experiment has a tendency to undergo oxidative changes in storage, resulting in the formation of colored impurities. Most of the latter will be removed during the reaction, and the final purification of the product by recrystallization should eliminate any residual impurity.

The reaction is a relatively simple one; it requires no special apparatus and takes a relatively short time. The acetic anhydride is added to the amine salt solution. However, the anhydride will react only with the amine, and not with the salt that was formed by dissolving the amine in the hydrochloric acid

Page 53: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

49

solution. The acidic salt must therefore be neutralized to free the amine, and this is accomplished by adding the sodium acetate solution:

RNH2 + H3O+ + Cl- ---> RNH3+ + Cl- + H2O

base acid acid base

RNH3+ + Cl- + Na+ + C2H3O2- ------> RNH2 + HC2H3O2 + Na + Cl-acid base base acid

A. Reaction

Before carrying out the reaction, it is necessary to make up a solution that will be needed in a later step. Dissolve 8 g of sodium acetate trihydrate (NaC2H3O2 3 H2O) in 25 mL of water in a small beaker and set aside.

1. Prepare a solution of 5 mL concentrated hydrochloric acid in 125 mL water in a 250-mL beaker.

2. Weigh about 6 g of the liquid or solid amine into a 50-mL beaker. It is not necessary to measure out exactly 6.00 g, but the actual weight used should be recorded in your notebook. If the amine is liquid, a clean medicine dropper pipet may be used to transfer the compound from the vial to the beaker.

3. Transfer the amine to a 500-mL Erlenmeyer flask. Rinse the 50-mL beaker with small portions of the dilute hydrochloric acid you prepared, and add the rinsings to the flask. Pour any remaining hydrochloric acid solution into the flask. Swirl the flask carefully to dissolve the amine. Gentle warming may be necessary, and some insoluble matter may remain.

4. Carefully warm the solution of the amine in hydrochloric acid on a hot plate or steam bath. Place a thermometer in the solution, and when the temperature reaches 50-55oC, remove the flask from the heat source.

5. Caution: In this step you are to add the reagent acetic anhydride, which is both a lachrymator (induces the flow of tears) and corrosive. The reagent must be handled carefully. Should any of the liquid come into contact with your skin or clothing, wash the affected area immediately with large quantities of water.

Page 54: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

50

Measure out 6 mL of acetic anhydride in a dry graduated cylinder and carefully add the reagent to the warm acid solution of the amine. Swirl the mixture gently until the anhydride is completely dissolved.

6. Immediately add the sodium acetate solution you previously made and set aside, and thoroughly mix the reactants by swirling the flask. Allow the flask to stand for about 5 minutes, while occasionally stirring the contents.

7. Place the flask in an ice-water bath and stir the mixture vigorously with a glass rod. Within a few minutes a solid should separate from the solution. In some cases the product initially appears as an oil, but this should be no cause for concern at this stage. Allow the flask to remain in the cooling bath for 15 minutes.

B. Isolation and Preliminary Purification of Crude Product

1. While the reaction mixture is cooling, arrange a suction filtration apparatus. Be sure to clamp the flask to a ring stand or other support. Place a disk of filter paper in the funnel and moisten the paper with water.

2. Filter the crude product through the Buchner funnel. Rinse the Erlenmeyer flask with small quantities of ice-cold water to remove any solid that sticks to the walls.

Note: If the product separated as an oil and did not solidify after standing in the ice-water bath, carefully decant as much of the supernatant liquid as possible. Add a few grams of crushed ice to the oil in the flask and stir the mixture vigorously while cooling the flask in the ice-water bath. If the oil does not solidify, add about 20 mL of water, shake the mixture, and let it stand for a minute or two. Carefully decant the upper aqueous layer and repeat the treatment with ice, with somewhat longer cooling periods in the ice-water bath, until solidification occurs.

3. Leave the crude solid in the Buchner funnel and wash the filter cake with 50 mL of ice-cold water. Resume the suction for about 5 minutes.

C. Purification

The amides may be recrystallizable from a number of different solvents, including water. Unless you are instructed otherwise, the solvent selection in this situation is restricted to water, methanol, and ethanol. Some of the amides that were prepared can

Page 55: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

51

be crystallized from one of these solvents, while others may require a mixed system (water plus either methanol or ethanol).

If it is known that a crude product is to be recrystallized from water or a water-miscible organic solvent, then it is not necessary that the solid be absolutely dry before carrying out the purification. Such is the case in this preparation. (On the other hand, if there is a possibility that a solvent which is not itself soluble in water will be needed, then steps must be taken to remove the residual water from the crude product.)

1. Selection of the solvent: try water first, followed by methanol and then ethanol, using fresh samples of crude in each case. If it is found that the solid is not sufficiently soluble in water, but too soluble in both of the alcohols, then it is necessary to try the mixed solvent approach.

2. Recrystallize the crude product following the general directions given below:

Recrystallization.

1. Select the appropriate solvent for recrystallization. Sometimes you can find data on solubility for your compound or related compounds in the CRC Handbook or in the chemical literature. Test one or more possible solvents using small amounts in test tubes. The compound you are trying to recrystallize should be insoluble in the cold solvent, dissolve in the solvent when heated, and recrystallize when the solvent is cooled. A mixed solvent may be required.

2. On a hot plate, heat some of the solvent you have selected in an erlenmeyer flask. Put the impure, solid compound in a beaker. Placing the beaker on the hot plate, quickly add a small amount of the hot solvent. If the compound does not completely dissolve, add additional small amounts of the solvent until complete dissolution is achieved. You want to use a minimum of the hot solvent to dissolve the compound. Do not needlessly boil off the solvent; if the compound is going to dissolve it will do so in a few seconds.

3. Once the impure compound is totally dissolved you must decide whether to decolorize or not. If necessary, add a small amount of decolorizing carbon to the hot solution. Place your stemless glass funnel in the top of a beaker. Fold a fluted filter paper (page 46 of your lab text) and place it in the stemless funnel.

Page 56: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

52

Add a few mL of the pure solvent to the beaker. Put the hot filtration assembly on the hot plate and add the hot, decolorized solution of your compound to the filter. The purpose of the stemless funnel, beaker, and hot plate is to keep the compound to be purified in solution while you filter out the carbon.

4. Let the hot solution cool to room temperature on the bench top. Then use an ice-water bath to cool the solution even more. If crystallization does not begin, try scratching the wall of the beaker with your glass rod.

5. Vacuum filter the cooled solution to recover the recrystallized solid. You may want to wash the compound with a small amount of cold solvent if the compound is not too soluble in the cold solvent.

6. After air drying for a couple of days you can weigh and take the melting point of the purified compound before packaging it.

D. Identification

When the product is completely dry, you are to determine the melting range. Positive identification can be made by means of the mixture-melting-range determination. Until this can be done, put your dry purified product in a clean, dry, wide mouth bottle or vial of appropriate size (the bottle should be at least half full), which has been weighed while empty. Reweigh the bottle plus contents to obtain the net weight of product, and record this information in your notebook.

After you have determined what the compound is, label the package as indicated below, or as directed by your instructor.

Your name DateName of compoundObserved melting rangeNet weight

You will turn in the product with your lab report.

Interpretation of Results and the ReportThe experiment involved both the preparation and purification

of an organic compound. The primary objective was the purification of the product by recrystallization, and so very little need by said about the chemistry of the preparative

Page 57: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

53

reaction. Greater emphasis should be placed on the determination of the best solvent system and the results of the purification process in terms of percentage recovery. Because identification of the compound by the mixture-melting-point technique is required, the actual writing of the report must be deferred until that operation is completed. A qualitative statement about the degree of purity as estimated from the observed melting range and comparison with the literature value is also in order. The Experimental section should, of course, provide complete details on the method that you actually followed.

Purified Substituted AmideIn the experiment, you prepared a substituted amide from an "unknown" amine. The melting range determination will indicate how pure your product is, and the identity of the compound may be verified by the mixed-melting-point method. 1. Determine the melting range of your product. 2. Refer to table on the next page, which lists the melting

points of a number of amides, including the compound you have made. Select those which have melting points close to the range you determined for your product. Use a mixture-melting-point determination, employing authentic samples of the amides that may be identical to your compound, to find out which amide you prepared (Notes 1 and 2).

Notes

1. Even if you find that the first mixture tested shows no depression of the melting point, you still must carry out the mixture-melting-point determinations with the other possibilities in order to eliminate them with certainty.

2. The actual melting points of the authentic samples may not coincide with the literature values because the samples may not be 100% pure. The samples may nevertheless be utilized for the purpose intended. Do not measure the melting range of any of the standards, but accept the literature values given in the tables or listed on the container labels.

Melting Pointsof Some N-Substituted Acetamides

Amide (CH3CONHR) mp (oC)

m-chloroacetanilide 78o-ethoxyacetanilide 78

Page 58: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

54

o-methoxyacetanilide 58o-chloroacetanilide 87o-methylacetanilide 110o-ethylacetanilide 111acetanilide 1142,4-dimethylacetanilide 130p-methoxyacetanilide 1302,3-dimethylacetanilide 135p-ethoxyacetanilide 1372,5-dimethylacetanilide 139p-methylacetanilide 153m-nitroacetanilide 155

Interpretation of Results and the Report

The results of the mixture-melting-point determinations should be presented in tabular form. List all of the possibilities tested and the corresponding measurements in such a way that your conclusions are obvious from your experimental results.

Page 59: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

55

CHE 311 Report for recrytallization/mp determination

1. As before: name date CHE 311-0x unknown #

2. In your own words, explain what recrystallization is and how it works to separate solid compounds. Describe how the appropriate solvent is selected for recrystallization.

3. In a few sentences, summarize what you did in this experiment, be specific.

4. Write balanced equations for the reactions.

5. Make a table:

weight of the unknown g weight of product g observed melting range of unknown amide list of possible compounds and their literature mp's, and the observed mixed mp's with your product.

6. Conclusion as to the identity of the product amide and unknown amine? Justify your answer.

7. How pure do you think the product is? Explain?

8. Answer the following questions:

a) For the following reported melting points, comment on the purity of the sample:

i) 78-89 oCii) 299-301 oC

Page 60: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

56

iii) 178 oC decomposesiv) 137-139 oC

b) If, in any recrystallization, an "oil" (liquid phase) comes out of solution rather than a solid, why did this happen? What can you do about it? Please note that although this is discussed in your lab text, the answer is not correct!

c) What happens in this experiment if more than the minimum of hot solvent is used in the recrystallization?

d) Based on the structure of the now known amine and amide, calculate the % yield of your product.

Note: % yield = (actual yield / theoretical yield) * 100%

You will have to convert to moles and use the balanced equation to calculate theoretical yield!

e) What was the purpose of the hot filtration? Why didn’t you use gravity or suction filtration at this point?

f) Questions on page 664 of your lab text: 1, 2, 3, 4.

g) In the CRC Handbook, look up 1-bromo-2-nitrobenzene (look under benzene) and list the mp, crystal form, and the solvent used in the recrystallization of this compound.

9. Attach the blue carbons from your notebook.

10. Package, label and turn in your product. name, date, contents, weight, mp or bp, %yield.

Page 61: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

57

CHE-311 Chromatography

chromatography ("colored writing")

separations based on differences in absorption on a stationary phase and differences in solubility in a moving phase.

I. Thin Layer Chromatography (tlc)

stationary phase = thin layer of solid silica gel, alumina, etc.

moving phase = liquid solvent (capillary action)

------------------------ +---------+ ¦ +---------+ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ +---------¦ ¦ ¦ ¦ ¦ ¦ o ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ o ¦ ¦ ¦ ¦ ¦ ¦ o ¦ ¦ mark--> + o ¦ initial ¦ + ¦ ¦ ¦ ¦ spot +----+---------+---¦ solvent +---------+ +------------------+ +---------+ mark--> +---------¦ - ¦ o ¦ - ¦ ¦ ¦ ¦ ¦ ¦ o ¦ - ¦ ¦ ¦ o ¦ - ¦ ¦ ¦ ¦ ¦ x1¦ x2¦ x3¦ y¦ ¦ ¦ ¦ ¦ ¦ ¦ + ¦ ------------------ ¦ ¦ +---------+ distance component traveled Rf = retention factor = ----------------------------- distance traveled by solvent front

Rf1 = x1/y; Rf2 = x2/y; etc.

Page 62: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

58

application:

a) analysis of mixture : number of components(solids & non volatile liquids)

b) separation of mg amounts

c) identification (Rf's or direct comparison)

II. Column Chromatography

stationary phase = column of solid silica gel, alumina,etc.

moving phase = liquid solvent ¦ ¦

column preparation ¦ ¦ loading the mixture solvent->¦ ¦ development ¦ ¦ collection of fractions +---¦ analysis of fractions ¦ ¦ (tlc) absorbent->¦ ¦ ¦ ¦ ¦ ¦ +---¦ +---+ +---+ ¦ fractions +----¦ +----¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ +----¦ ¦ ¦ +----+ +----+ +----+ +----+

applications:

a) analysis of mixture(solids and liquids)

Page 63: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

59

b) separations of 0.1 gram quantities

Page 64: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

60

III. Gas Liquid Chromatography (glc)

stationary phase = column of non volatile liquid (carbowax,DNP, SE-30, etc.) on solid support.

moving phase = gas

Oven Recorder +------------------------+ +----------+ ¦ ¦ +-------¦ ¦ +---¦ +-+ +-+ +-+ +-+ +---+ ¦ ¦ injection¦ +--+ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ +---¦ + ¦ +------+ ¦ +---¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ +---+ +-¦ +-+ ¦ ¦ +-+ +-+ +-+ +-+ +-+ ¦ detector ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ +------+ ¦ +------------------------+ ¦ Gas

Gas Chromatograph:

+----------------------------------------------+ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ +----------------------------------------------+

distance after injectionretention time = ---------------------------

chart speed

area A%A = ------------------------------ X 100%

area A + area B + area C + etc.

Page 65: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

61

area A = height X width (at half height)

applications:

a) analysis of mixture, # of components(volatile liquids or gases)

b) separation of mg samples

c) identification (retention time)

d) per cent composition

IV. Today's experiments:

1. tlc

do tlc on your unknown on both silica gel and alumina.

use each of the two solvent systems.

2. glc

glc on known 50/50 mixture of alcohol and ketone

glc on pure alcohol

glc on your unknown mixture of alcohol and ketone

Page 66: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

62

EXPERIMENT: Thin-Layer and Column Chromatography

Read 792-807 in your lab text!

The following experiments include both thin-layer and column chromatographies that are based solely on the adsorption process. The main intent is to familiarize you with the techniques. Once you have learned the basic idea and procedure, you will be in a position to utilize one or both of these methods if you occasion arises during your later experiences with the preparative experiments.

You will obtain an "unknown" mixture consisting of a minimum of two solid compounds; one or more of the components may be colorless. a sample is to be subjected to thin-layer chromatography to determine the number of components and their Rf. (The same mixture could then be chromatographed in a column in an effort to separate and recover the individual compounds. Progress of the column chromatography could to be determined by thin-layer chromatography of each eluate fraction. You might also evaporate each eluate that is known to contain dissolved solid and determine the melting range of the residue; a comparison with the melting range of the original mixture would then be done.) It is quite possible that you will not achieve a complete separation by column chromatography because (a) the solvent system that is specified is not the best, (b) an insufficient number of eluate fractions are collected, (c) the adsorbent is not the optimum choice, or (d) the column is not long enough. Nevertheless, exposure to the method will provide experience in carrying out the chromatography and may well point up some of the difficulties that can be faced. If there were enough time, it is very probable that you could work out the optimum conditions for separation of your sample.

A. Thin-Layer Chromatography of the Original Mixture

The effectiveness of two different adsorbents, silica gel and alumina, will be compared using two solvent systems.

Procedure

1. Obtain a 5- or 10-mL beaker or a vial of similar capacity, two TLC strips coated with aluminum oxide, and two TLC strips coated with silica gel. Use a sharp pencil to carefully mark the top of each strip (e.g., A and S, respectively) so that they can be distinguished.

Page 67: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

63

2. Place about 10 mg (estimated; do not weigh!) of the solid mixture in the small container and add about 1 mL of acetone to dissolve the sample.

3. Spot the solution on each of the strips. Mark the top of one alumina strip 1:1 and the other 1:3; do the same to the silica gel strips.

4. Develop the silica gel chromatograms using ethyl acetate-cyclohexane (1:1) for one and 25% ethyl acetate-75% cyclohexane (1:3) for the other. Develop the alumina strips in the same way. Note: Ethyl acetate alone is too polar and cyclohexane too nonpolar. One or both of the specified solvent mixtures may prove to be satisfactory, or neither may be the most desirable solvent system. A different single solvent or combination of solvents may be superior, but for expediency you are restricted to the two solutions indicated above.

Follow the instructions given. (Note that the solvent moves more slowly through the alumina then it does through silica gel.)

5. Calculate Rf values for all observed spots.

The Report

The introductory section should include the usual background discussion of the theoretical principles underlying the procedures, as well as a statement of the problem. Be sure to include all observations and measurements (Rf values) in the Experimental section. All thin-layer strips should be taped or stapled to a sheet of paper and attached to the report.

The discussion of results should provide a comparison of the thin-layer chromatographies on alumina and on silica gel and the two solvent systems. In the event that you did not obtain a complete separation of components, offer some possible reasons therefore and some suggestions as to how separation could be done more effectively if you were to repeat the attempt.

Page 68: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

64

Che 311 Chromatography reports

You will submit two reports for the chromatography experiments, one for tlc/column and one for glc. Both of these reports will be due two weeks from today.

Thin Layer and Column Chromatography.

1. Include the regular heading.

2. Explain in your own words what chromatography is and how it works; with emphasis on tlc and column.

3. In a few sentences state what you did in this experiment; be specific.

4. Make a table showing the Rf values for each component for each adsorbent and each solvent system you used in the tlc.

5. Which adsorbent would you select for a column chromatography separation of your unknown and why? Which component would elude from the column last?

6. Discuss the results of your experiment.

7. Staple or tape all of the tlc strips to a piece of paper and label each one. This will be included as part of your report.

8. Answer questions:a) Two components, A and B, were separated by tlc. When the solvent front had moved 10.0 cm above the level of the original spot, the spot corresponding to A was 3.5 cm and that of B was 4.1 cm above the original spot. What are the retention factors for A and B? Which component would elude first from a column chromatography using the same absorbant and solvent?b) Describe how thin layer chromatography could be used to analyze a urine sample for the presence of cocaine if you had a known sample in the lab.c) Why is it important that the sample to be analzed by tlc be dry?d) Why must the solvent level be below the original spot on the tlc plate?e) Why must the cap be in place on the bottle during the tlc separation?

Page 69: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

65

Answer questions 1, 2, 3, 4 on page 807 of your lab text.

9. Attach the carbons from your notebook.

Gas-Liquid Chromatography

EXPERIMENT: Analysis of Alcohol-Ketone Mixtures

Read p. 808-823 in your lab text!

A ketone is a type of organic compound that is represented by the general formula I; it is related to another kind of compound, a secondary alcohol (II).

I. R-C=O II. R-C-OH | |

R’ R’

A ketone can be made from the corresponding alcohol by oxidation; conversely, reduction of a ketone results in the formation of the secondary alcohol. (You need not be overly concerned with the chemistry of these substances now. The relationships just described will be amplified at the appropriate point later in the course.)

When a ketone is prepared from the alcohol, or vice versa, it is possible that not all of the starting material is converted to the end product. The final product may therefore be contaminated with some of the starting material. The difference between the boiling points of the alcohol and the ketone becomes smaller as their molecular weights increase, making it more difficult to separate them by conventional distillation procedures. Analysis by GLC, however, readily indicates the presence of the contaminant.

You will receive a mixture of a ketone and the corresponding secondary alcohol. Carry out a GLC analysis following the general instructions given and whatever special instructions are provided for the instrument available in your laboratory. You will also need to measure the chart speed (inches/minute or cm/min).

If your sample was given to you as an "unknown," compute the approximate percentage composition by measuring the areas of the peaks. If authentic samples of the various possibilities are available, attempt an identification of the components of your mixture. In this case, you need use either an authentic ketone or alcohol, but not both.

Page 70: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

66

Page 71: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

67

Gas Chromatography Report

1. Include the regular heading.

2. Explain in your own words the physical basis for gas chromatography and how it works to separate and purify compounds.

3. State in a few sentences what you did. Be sure to give information about the column(s) used and the temperature(s).

4. Make a table:

stationary phase:

column temperature:

carrier gas:

detector:

4-methyl-2-pentanol retention time =

Known: retention height width-1/2h area calculated time (sec) (units) (units) (units) weight %

4-methyl-2-pentanol

4-methyl-2-pentanone

Unknown: retention height width-1/2h area calculated time (sec) (units) (units) (units) weight %

4-methyl-2-pentanol

4-methyl-2-pentanone

5. Discuss the results of your experiment.

6. Attach the chromatograms that you ran, suitably labeled.

Page 72: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

68

(show your calculations!)

7. Attach the notebook carbons.

8. Answer the following questions:

In a glc three peaks are observed and their areas are calculated as follows: A, 13.5 mm2; B, 20.2 mm2; C, 4.6 mm2. What is the % composition of each component in this mixture?Describe how the identity of each of the components could be determined if known samples of two of the compounds were available.

In the known 50%/50% mixture of alcohol and ketone, why are the areas of the two peaks not equal?

Page 823 of your lab text: problems 1, 2, 4.

Page 73: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

69

CHE 311 Preparative reaction pre-labs

For all preparative reaction lab experiments you will have to submit a pre-lab writeup as well as the usual post-lab report. The pre-lab is due at least 24 hours before the lab. Failure to submit the pre-lab will result in your not being allowed to begin the synthesis in lab.

For the first preparative experiment, prepare the pre-lab in your notebook (the carbons should be submitted prior to the lab; turn them into my mailbox in the Chem. Office, NSM B-202).

The pre-lab should include the following:

1. A balanced equation for the reaction as you are going to carry it out.

2. A table of the physical properties (see lab handout) of the reactants/solvents and products. (a copy of the CRC is in the reserve book room and there is one in the lab)

3. A step by step procedure for the reaction as you are going to carry it out.

CHE-311 Syntheses of Alyl Halides

In this experiment you will synthesize two alkyl halides, a primary bromide (1-bromobutane) and a tertiary chloride (2-chloro-2-methyl-butane). You will have two weeks to complete both syntheses. The first lab period you will begin the synthesis of 1-bromobutane; once the reaction mixture is refluxing, you will start the synthesis of 2-chloro-2-methylbutane. Both syntheses will be finished during the second lab period.

Note: you must submit prelabs for both syntheses prior to the start of the lab!

See pages 204-211 in your text.

Page 74: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

70

TABLE OF PHYSICAL PROPERTIES (This table must be completed before coming to lab!)

Reactants and fw Moles weight volume density bp mp solubilitysolvents (g) (mL) (g/mL)

sodium bromide 103 0.17 17.0 -- -- 1390 755 sw, sls al

water 18 0.94 17 17 1.00 100 0 --

1-butanol 74 0.109 8.1 10 0.81 117 -89 sw,sal

sulfuric acid 98 0.26 25.8 14 1.84 338 10 sw,d al

(HBr) 81 (0.17) (13.8) -- -- -67 -88.5 sw,sal

calcium chloride 183 -- -- -- -- -- 568 I ace; s eth(anhyd.)

Product(s)

1-bromobutane 137 (0.109) (14.9) (11.7) 1.28 102 -112 iw,sal

NaHSO4 120 (0.109) (13.1) -- -- d >315 sw,sls al

water 18 (0.109) (2.0) (2.0) 1.00 100 0 --

Page 75: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

71

(theoretical)

CH3CH2CH2CH2-OH + NaBr + H2SO4 ---> CH3CH2CH2CH2-Br + NaHSO4 + H2O

Page 76: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

72

TABLE OF PHYSICAL PROPERTIES (This table must be completed before coming to lab!)

Reactants and fw Moles weight volume density bp mp solubilitysolvents (g) (mL) (g/mL)

Product(s)

Page 77: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

73

Report for syntheses of 1-bromobutane name

1. Balanced equation for reaction as you carried it out:

2. Step-wise mechanism for the reaction. Use curved arrow formalism and label the RDS. Show how each product is formed if more than one product is possible. Use additional paper if necessary. Give the name of the mechanism.

3. weight of the starting material

moles of alcohol

weight of the product halide

moles of product

% yield

boiling point (range) of the product

literature values for the bp of the expected product(s)

Page 78: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

74

4. Discussion of results.

5. a) Why did you wash the crude product with 2M NaOH?

b) Why did you then wash it with water?

c) Why was the 1-bromobutane treated with anydydrous magnesium sulfate?

d) State two purposes of the simple distillation of the product?

e) Was the product produced by an Sn1 or an Sn2 mechanism? How could you verify this?

f) What role did the sulfuric acid play in this experment? Explain! equations!

Answer questions 1, 2, 3, 5, 6 on p. 210-211 of your lab text.

Page 79: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

75

6. Attach the carbons from your notebook, the pre-lab carbons, and table of physical properties. Label and turn in your product.

Page 80: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

76

Report for syntheses of 2-chloro-2-methylbutane name

1. Balanced equation for reaction as you carried it out:

2. Step-wise mechanism for the reaction. Use curved arrow formalism and label the RDS. Name the mechanism! Show how each product is formed if more than one product is possible. Use additional paper if necessary.

3. weight of the starting material

moles of alcohol

weight of the product halide

moles of product

% yield

boiling point (range) of the product

literature values for the bp of the expected product

Page 81: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

77

4. Discussion of results. Be sure to compare the synthesis of 1-bromobutane with that of 2-chloro-2-methylbutane.

Include a table showing the following for the syntheses of n-butyl bromide and for tert-butyl choloride:

time of reactiontemperature of reactioncatalyst%yieldclass of alcoholmechanism

5. a) Draw all of the isomeric butanols. Number them in order of decreasing reactivity with conc. HCl.

b) Why did you wash the crude product in this experiment with aqueous sodium bicarbonate?

c) Why didn't you wash it with aqueous NaOH?

d) Why were you able to wash the crude 1-bromobutane with NaOH?

e) What is one major disadvantage of washing with sodium bicarbonate?

f) Neopentyl alcohol reacts with conc. HCl to produce tert-pentyl chloride. Outline all steps in the mechanism to show how this product is formed.

g) Why does 1-pentanol produce only 1-bromopentane and not 2-bromopentane when reacted with HBr?

h) Solid sodium hydroxide is a drying agent. Why did we not use it in place of magnesium sulfate when drying the crude product?

i) What were the two purposes for the simple distillation at the end of this synthesis?

Answer questions 2, 3, 4, 5 on page 211 of your lab text.

Page 82: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

78

6. Attach the carbons from your notebook, the pre-lab carbons,and table of physical properties. Label and turn in your product.

Page 83: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

79

TABLE OF PHYSICAL PROPERTIES (This table must be completed before coming to lab!)

Reactants and fw Moles weight volume density bp mp solubilitysolvents (g) (mL) (g/mL)

Product(s)

Page 84: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

80

Page 85: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

81

name

Report for dehydration of 4-methylcyclohexanol

1. Balanced equations for the reactions as you carried them out:

2. Step-wise mechanism for the reaction. Use curved arrow formalism and label the RDS. Name of the mechanism?

3. weight of the limiting reagent

moles of limiting reagent

weight of the product

moles of product

% yield

boiling range of the product

literature value for the bp of the

Page 86: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

82

expected product(s)

4. How pure is your product? How do you know?

5. Discuss your results.

6. a) Predict the product(s) for the dehydration of 3-methyl-2-butanol.

b) Predict the product(s) of the dehydration of each of the following alcohols: 1-butanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcylcohexanol, neopentyl alcohol, 4-methyl-1-pentanol.

7. Attach the carbons from your notebook, the pre-lab carbons. Don't forget to label and turn in your product.

Page 87: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

83

TABLE OF PHYSICAL PROPERTIES (This table must be completed before coming to lab!)

Reactants and fw Moles weight volume density bp mp solubilitysolvents (g) (mL) (g/mL)

Product(s)

Page 88: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

84

Page 89: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

85

CHE 311 Nitration of a halobenzeneThis will be your third preparative experiment. Remember that the pre-lab writeup is due 24 hours before the lab.

Notes:

1. Use your largest Erlenmeyer flask as the reaction vessel.

2. Include a magnetic stirrer in the apparatus. Leave roon between the bottom of the flask and the top of the stirrer base for insertion of a plastic bowl (water bath).

3. Wear rubber gloves to protect your hands, not only against the concentrated acids, but also the product which is a skin irritant.

4. If two or more products are expected (e.g. as from chlorobenzene), calculate the theoretical yield of the mixture as if it were a single substance. Calculate the percent yield of the actual product as if it were exclusively formed.

You will use 0.1 mole of the following halobenzene as the starting material:

desk number

1,10,20,4 bromobenzene 6,16,11 chlorobenzene

2,12,22,9 1,4-dichlorobenzene 7,17,21 1,4-dibromobenzene

3,13,23,19 1,3-dichlorobenzene 8,18,14 1,2-dichlorobenzene

5,15,24 1-bromo-4-chlorobenzene

Page 90: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

86

Nitration of a Haloarene: Experimental Procedure

The starting haloarenes for this synthesis are either liquid or solid, but the desired product in each case is a solid. For some, only one possible product may be formed; some may react to form a mixture of two products, one of which predominates. The remaining compounds may theoretically be converted to a mixture of two or more products. Included in your assignment is the isolation and determination of the identity of the major product.

A.Apparatus

The standard-taper assembly described below could be used for this preparation. However, it is also possible to carry out the procedure in an Erlenmeyer flask (which you will do) but it is necessary to carry out the reaction in a fume hood.

1. A 500-mL Erlenmeyer flask will serve as the reaction vessel. The thermometer is placed in the flask, with its bulb resting on the bottom. When you must stir or shake the reaction mixture, hold the thermometer in place by grasping the neck of the flask and the thermometer simultaneously with one hand.

[alternatively: a. Fit a 250-mL two-neck flask with a Claisen adapter or use a

500-mL three-neck flask. If you are provided with a magnetic stirrer, place a magnetic stirring bar in the flask.

b. Place a thermometer in the angled side neck of the flask and position the bulb so that it will be immersed in the reaction mixture. Attach a reflux condenser to the other side neck and connect the top opening of the condenser to a gas trop (oxides of nitrogen may be evolved).

c. Attach a dropping funnel to the center neck if the compound to be nitrated is a liquid. If your starting material is a solid, the center neck is to be plugged with a glass stopper.]

2. Surround the flask with a plastic bowl containing some tap water. Obtain some crushed ice in a separate container and keep it handy for cooling the reaction mixture as needed.

B. Reaction

Page 91: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

87

3. Begin the preparation of the nitrating agent by pouring 20 mL (28.5 g; 0.32 mole) of concentrated nitric acid through a narrow-stem funnel into the flask. Do not use the addition funnel, if one is included in your assembly. Carefully add in small portions of 20 mL (37 g; 0.36 mole) of concentrated sulfuric acid. Stir the mixture mechanically or swirl the flask by hand while you are adding the sulfuric acid. When all of the sulfuric acid has been added, cool the mixture to 25-30oC by adding some ice to the water bath, if necessary. Do not cool the solution below 25oC.

If the temperature of the nitrating agent is allowed to fall much below 25oC it is possible that insufficient energy will be available to initiate the reaction. Continued addition of the substance to be nitrated will permit the concentration of unreacted starting material to build up. when the reaction does begin, and heat is evolved, all of the aromatic compound present may interact with the nitrating agent and the reaction may get out of control because of the excessive evolution of heat.

4. Measure out a quantity equivalent to 0.1 mole of the starting material you were assigned. Add the aryl halide to the nitrating agent as directed below. Stir or swirl the reaction mixture to mix the reactants thoroughly. Use the cooling bath to control the temperature so that it does not rise above 60oC, but do not allow the temperature to fall below 30oC. If the temperature does get too low, remove the cooling bath temporarily and allow the reaction mixture to warm up before continuing the addition.

5. Continue to add the starting material in the manner described above until all of it is consumed.

6. When the temperature of the reaction mixture no longer rises spontaneously, heat the mixture on a steam bath or hot water bath for 30 minutes. A heating mantle may also be used, but be certain to wipe the outside of the flask first to remove any adhering water. Heat the mixture to a temperature between 60 and 100oC.

7. Remove the flask from the heat source and allow the mixture to cool to room temperature. You may help it along by using a cooling bath.

C. Isolation and Preliminary Purification

Page 92: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

88

8. Put a mixture of 150 mL of water and enough crushed ice to bring the volume to 200 mL into a 400- or 600-mL beaker. Carefully pour the contents of the flask into the cold water while stirring the mixture with a glass rod. Rinse the reaction flask with a small amount of ice water and add the rinsings to the beaker.

9. The crude product should separate as a solid. If it does so, it can be isolated by suction filtration. If the crude product separates from the aqueous phase as an oil, the following measures may be taken. a. Carefully decent as much of the aqueous phase as

possible, leaving the oily material behind. Add some crushed ice and vigorously stir the mixture with a glass rod. If this treatment does not effect solidification of the material, see step b (below).

b. Dissolve the crude oily product in about 50 mL of diethyl ether or dichloromethane by adding the solvent directly to the beaker that contains the product-water mixture. Transfer the contents of the beaker to a separatory funnel and separate and discard the aqueous phase. After completing step 11, continue with step 12b.

10. The reaction mixture contained a strongly acidic solution, some of which will remain admixed with the crude product. The product must therefore be washed thoroughly with water. A solid may be washed while it is in the Buchner funnel; a product in solution should be washed in a separatory funnel.

D. Purification

11.a. The product is a solid, so a recrystallization is in order. Select a recrystallizing solvent from among those available to you in the laboratory.

b. If the crude product was dissolved in an organic solvent, that solvent must be removed at this point. A rotary evaporator would be best for this purpose, but any other suitable means may be employed. If the residue is still liquid, it may still be subjected to a crystallization procedure, just as if it were solid.

E. Verification of Identity and Purity

12. Determine the melting range of your product. 13. The product will be analyzed by thin-layer chromatography on

silica gel, with the eluting solvent 9:1 (v:v)

Page 93: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

89

hexane:chloroform. Pure samples of most of the possible reaction products are available, you should attempt an identification by comparison of Rf values for the authentic material(s) run alongside the reaction product on the same TLC strip.

14. Package the product and turn it in.

The Report

The Introductory section of the report should include a discussion of the reaction mechanism. A description of the intent of the experimental work, naming the specific compound to be nitrated, and a description of the anticipated outcome should precede the Experimental section and the Discussion of Results. In the latter, be sure to interpret the experimental results (including spectra) and to state conclusions about such steric and inductive effects as are applicable.

Page 94: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

90

Report for nitration of a halobenzene name 1. Balanced equation for the reaction as you carried it out:

2. Step-wise mechanism for the reaction. Use curved arrow formalism and label the RDS. Name of the mechanism? Show how each product is formed if more than one product is possible. Use additional paper if necessary.

3. weight of the limiting reagent

moles of limiting reagent

weigt of the product

moles of product

% yield

melting point (range) of the product

literature values for the mps of the expected products

(name of each!)

Page 95: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

91

tlc: substrate solvent

identity (if possible for each spot)

rf for each spot

4. What products did you expect this reaction to form? Explain the effect that the group(s) present in the starting material have on reactivity and orientation in this reaction and why. How many were actually formed? What evidence do you have for this? How did you identify them? If the number formed is different from the number expected, explain.

5. How pure is your product? How do you know?

6. Discuss your results further.

7. a)In the nitration of bromobenzene, the product after purification by recrystallization contains mostly the para-bromonitrobenzene and little of the ortho-isomer. Explain.

b) Bromo is a deactivating group in EAS but an ortho/para director. Use resonance structures to explain why no detectable amounts of the meta isomer are obtained.

Page 96: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

92

8. Attach the carbons from your notebook, the pre-lab carbons, and the tlc. Don't forget to label and turn in your product.

Page 97: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

93

CHE-311 Information for Final Exam

This exam is 20 questions long and consists of short essays and a few calculations (bring your calculator).

To study for this exam, go over each of the techniques that you have learned for separating and purifying organic compounds. You are expected to know the terminology and basic physical principles behind each method and technique. Know which methods you should use under which circumstances. You should also look at each of the preparatory experiments and know why you did each of the operations that you did.

Calculations that you should be capable of doing include:

partition coefficient in extractions

Rf

retention times

% in gas chromatography

% yield

Page 98: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

94

CHE 312 Organic Chemistry II

Instructor: Dr. James L. LyleOffice: NSM D-323Phone: (310) 243-3388, (310) 243-3376e-mail: [email protected] hours: TBA; open door policy.

Text: Organic Chemistry, 6th Edition, Morrison & Boyd. Study Guide for... Model kit

1. Grading:

Traditional letter grades will be assigned. A = 100-93%, A- = 92-90%, B+ = 89-88, etc.

Daily exams = 100 4 exams @100 pts = 400 final exam = 100 600

2. Exams. No make up exams will be given.

3. Final exam. The final exam will be will be comprehensive.

4. Homework.

Homework is very important to doing well in this class and mastering organic chemistry. Homework is not going to be collected, but it should be done on a regular basis. Suggested problems are attached. Many of these problems are lengthy. You should be selective in which ones you do. If you have any questions, see the instructor.

5. Office hours.

The instructor is available at any time outside of class for questions, etc. Do not hesitate to seek help if there is anything you do not understand!

6. Prerequisite. Completion of the first semester of Organic Chemistry, lecture and laboratory. Corequisite is enrolment in CHE-313.

Page 99: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

95

7. Academic Integrity. Please review the statement on Academic Integrity in your University Catalog. Cheating will not be tolerated.

8. Course goals, objectives and requirements are covered in the rest of this syllabus.

9. Attendance is expected. Two of the daily exams scores will be dropped to allow for unavoidable absences.

Page 100: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

96

CHE-312 TENTATIVE SCHEDULE Spring '03

meeting date subject text

1. 1/27 Infrared Spectroscopy 17.1,17.3-17.7 2. 1/29 Nucl. Mag. Resonance 17.9-17.13,17.22 3. 2/3 4. 2/5 Aldehydes & Ketones 18 5. 2/10 6. 2/12 2/17 no class 8. 2/19 EXAM I 9. 2/24 Carboxylic acids 19 10. 2/26 Functional derivatives 19/20 11. 3/3 12. 3/5 Carbanions I 21 13. 3/10 14. 3/12 Carbanions II 25 15. 3/17 Michael Addition 27 16. 3/19 EXAM II 17. 3/24 Amines, syntheses 22 18. 3/26 3/31-4/4 Spring Break, no class 19. 4/7 Amines, reactions 23 20. 4/9 21. 4/14 Phenols 24 22. 4/16 Aryl halides 26 23. 4/21 EXAM III 24. 4/23 Molecular Orbitals 28 25. 4/28 26. 4/30 Polynuclear Aromatics 27. 5/5 Heterocyclics 30 28. 5/7 29. 5/12 Carbohydrates 34 30. 5/14 EXAM IV 45. TBA FINAL EXAM

Page 101: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

97

CHE-312 HOMEWORK ASSIGNMENTS

Athough homework is not required to be turned in, it is required that you do it. You will not pass this course if you do not conscientiously do the homework assignments. Some of the following problems have multiple parts. It may not be necessary to do every part, but you should be able to do any homework problem, or problems similar to them, on the exams. The answers are in the Study Guide and should be consulted. You should also do the homework on a regular basis after every lecture. There is too much to do and learn if you put it off. If you have any questions see the instructor.

Subject Assignment

IR: please note that in some later printingsOf the text the problems in this chapterare off by .1; 17.2 (which starts Whatis... ) may be 17.3 in your text,17.3 (which starts give the... ) may be17.4, etc., 17.5.(Note: spectra are analyzed at the end ofthe Study Guide.)Handout.

nmr: 17.8(a-f),17.11,17.13,17.12,17.15,17.16,17.29,p. 643: 1(a thru i).

aldehydes p. 701: 1,2, outline syntheses of each of the& ketones compounds in problem 2 using as many methods as

possible for each from your choice of startingmaterials.p. 702: 3,4,5,18.16,6,10(a thru h).p. 706: 30,32,33.Outline all steps in the mechanisms fornucleophilic addition and acid catalyzed nucl-eophilic addition. Which mechanisms go withwhich reactions of aldehydes & ketones?

carboxylic p. 747: 1,2,3,4,6,7,13,15(a,b,c),27.acids

func. deriv. p. 787: 1,2,3,4,5,6,7,20,21.Outline all steps in the mechanisms for nucl-eophilic acyl substitution and acid catalyzed

Page 102: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

98

nucleophilic acyl substitution for appropriatereactions.

carbanions: 21.11(mechanisms), 21.18,p 817: 1,2,3,6, mechanismfor 6(a,d),25.1(a),25.8,25.10(a,b,c),25.16,25.19(a-d),25.20(a-d),27.1,p.985: 2,3,7.

amines: p.843: 1,2,22.5,22.6,3.p.878: 1,2,4,5,9,7,11,12,29,30,32.

phenols: p.913: 1,4,5,8,33.

aryl halides: p. 968: 1,2,3,8.Outline mechanisms for nucleophilic aromatic sub-stitution (bimolecular) and the benzyne mechanism.

molecular handout, 28.3,28.6,28.7,28.10.orbitals:

heterocycles: know the names of common heterocycles.p 1074: 1,2.

polynucleararomatics:

1. Reactions. Predict the structures and names of the products (if any) of naphthalene with:

a) CrO3, acetic acidb) O2,V2O5c) Na,C2H5OH,refluxd) Na,C5H11OH,refluxe) H2,Ni,heat,pressuref) HNO3,H2SO4g) Br2h) conc. H2SO4, 80oi) conc. H2SO4, 160oj) acetyl chloride,AlCl3,CS2k) acetyl chloride,AlCl3,C6H5NO2l) succinic anhydride,AlCl3,C6H5NO2

Page 103: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

99

2. Reactions. Predict the structures and names of the products of the reaction of:

anthracene with:a) K2CrO7,H2SO4b) Na,C2H5OH,refluxc) Br2

phenanthrene with:a) K2CrO7,H2SO4b) Na,C5H11OH,refluxc) Br2d) Br2,FeBr3

3. Predict the products of nitration of the following compounds:

a) 1-methylnaphthaleneb) 2-methylnaphthalenec) 1-nitronaphthalened) 2-nitronaphthalenee) 1-naphthalenesulfonic acidf) 2-naphthalenesulfonic acidg) N-(1-naphthyl)acetamideh) N-(2-naphthyl)acetamidei) alpha-naphtholj) beta-naphthol

4. Outline syntheses of the following from naphthalene:

a) alpha-naphtholb) beta-naphtholc) alpha-naphthylamined) beta-naphthylaminee) 1-iodonaphthalenef) 2-iodonaphthaleneg) 1-nitronaphthaleneh) 2-nitronaphthalenei) alpha-naphthoic acidj) beta-naphthoic acidk) 4-(1-naphthyl)butanoic acidl) alpha-naphthaldehydem) beta-naphthaldehyden) 1-phenylazo-2-naphtholo) 4-amino-1-naphthol

Page 104: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

100

p) 1-bromo-2-methoxynaphthaleneq) 1,5-diaminoanaphthalener) 4,8-dibromo-1,5-diiodonaphthalenes) 5-nitro-2-naphthalenesulfonic acidt) 1,2-diaminonaphthaleneu) 1,3-diaminonaphthalenev) ortho-aminobenzoic acidw) phenanthrenex) anthraceney) 9,10-anthroquinone

5. Haworth syntheses of the following starting with compounds with fewer rings:

a) 2-methylnaphthaleneb) 1-methylnaphthalenec) 1,4-dimethylnaphthalened) 1,7-dimethylnaphthalenee) 1,6-dimethylnaphthalenef) 1,4,6-trimethylnaphthaleneg) 1-phenylnaphthaleneh) anthracenei) phenanthrenej) 9-methylanthracenek) 2-methylanthracenel) 9-methylphenanthrenem) 4-methylphenanthrenen) 1-methylphenanthrene

carbohydrates: define the following terms and give examples:

carbohydratemonosaccharide, disaccharide,polysaccharidealdose, ketosepentosereducing sugarTollen's reagentFehling's reagentBenedict's solutionepimersRuff degradationKiliani-Fischer synthesisD, Lglucosidealpha-glucoside

Page 105: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

101

beta-glucosideanomers

Page 106: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

113

CHE-313 TENTATIVE SCHEDULE Spring '03

section topic reference

313-01 313-02

1. 1/27 1/28 check in 2. 1/29 1/30 oxidation/IR & nmr supplement 3. 2/3 2/4 cont. p. 842-845

Appendix 3 4. 2/5 2/6 cont. p. 855-858

Appendix 4 5. 2/10 2/11 ID of unknown ketone supplement 6. 2/12 2/13 cont. p. 888-889

2/17 2/18 no lab 7. 2/19 2/20 Reduct. of acetophenone supplement 8. 2/24 2/25 cont. 9. 2/26 2/27 Grignard synthesis supplement10. 3/3 3/4 of toluic acids supplement11. 3/5 3/6 Esterification p. 96-99

3/10 3/11 cont.13. 3/12 3/13 Aldol condensation p. 409-41114. 3/17 3/18 cont.15. 3/19 3/20 Diels Alder supplement16. 3/24 3/25 cont.17. 3/26 3/27 α,β-unsaturated ketone p. 413-417

3/31,4/1 4/2,4/3 no lab18. 4/7 4/8 cont.19. 4/9 4/10 Lidocaine supplement20. 4/14 4/15 cont.21. 4/16 4/17 cont.22. 4/21 4/22 Qualitative analysis p. 485-53323. 4/23 4/2424. 4/28 4/29 25. 4/30 5/1 26. 5/5 5/627. 5/7 5/8 28. 5/12 5/1329. 5/14 5/15

Page 107: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

114

CHEM-313 SYLABUS

Instructor: Dr. J. L. LyleOffice: NSM D-323Phone: (310)243-3388;243-3376Office Hours: Will be announced in class; open door policy

Required Texts:

Introduction to Organic Laboratory Techniques Pavia, Kriz, Lampman & Engel.CRC Handbook of Chemistry and Physics (highly recommended)Lab notebookSafety goggles

1. Grading: Traditional letter grades will be assigned on the same basis as in CHE-312.

Lab reports 75% Notebook 10% Evaluation 15%

2. Lab reports and prelabs. A prelab is to be turned in 24 hours before the scheduled lab (see futher below for format). A typed lab report will be required for each experiment. The report is due one week after the scheduled completion of the lab. These reports are due at the scheduled start time for the lab. Late reports will be penalized one letter grade for the first 24 hours. Lab reports that are submitted more than 24 hours late will not be accepted!Please note that lab reports are not written in the lab notebook, but are separate requirements. You will be given explicit instructions about what each lab report is to contain. Lab reports are to be your own work and not plagiarised from some other student or lab report. Academic dishonesty will not be tolerated!

3. Notebook. A written record of what you are doing in the lab will be kept in your notebook. You are expected to have your notebook with you in the lab. Failure to do so can affect your grade. The notebook entries will be written in ink. The carbon copies that you make will be submitted with your lab reports.

4. Evaluation. Part of your grade will be an evaluation of your lab technique, preparedness, punctuality, etc. by the instructor.

Page 108: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

115

5. Safety. You must wear approved eye protection at all times in the lab. Failure to do so will result in expulsion from the lab.

6. Prerequisite. You must have completed CHE-310 and CHE-311. Corequisite is enrolment in CHE-310.

8. Attendance. You are expected to attend all laboratory sessions. Make ups will only be allowed if arrangements are made prior to the missed lab and for good reason.

9. Course goals, objectives, and requirements are covered elsewhere in this syllabus.

Pre-labs:

For each preparative lab you are required to submit at least 24 hours before the lab a pre-lab writeup. The pre-lab is to be written in your lab notebook and the carbon copies submitted for review. These carbon copies will later be attached to your lab report.

1. Title (be specific, eg. "Reduction of Acetophenone with Sodium Borohydride"), name & date.

2. Balanced chemical equation(s) for the reaction(s) that you are going to carry out.

3. Table of Physical Properties summarizing the physical properties of the reactants, solvents, and products. Make photocopies of the sample provided, or make up your own.

4. A step-by-step procedure for the reaction, separation, and purification. Be specific as to amounts (moles & weight or volume).

5. For multistep syntheses prepare a separate Table of Physical Properties for each reaction in the sequence.

You may turn in pre-labs directly to the instructor or they may be placed in his mailbox in the Chemistry Office (NSM B-302). If you have not submitted a pre-lab before the lab you will not be allowed to begin the experiment until the pre-lab has been

Page 109: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

116

completed and okayed. Failure to submit pre-labs on time can severely affect your grade.

Lab Reports

A typed lab report is required for each experiment. Reports are due one week after the scheduled completion of the experiment at 1:00 pm for section 01 and 9:00 am for section 02. Labs turned in after these times will be penalized 10% per day late.

Follow the following format for preparative reports:

1. Title, name & date (unknown #)

2. Balanced equation(s) for the reaction(s) you carried out.

3. Step-wise mechanism(s) for the reaction(s).

4. Physical data for your product(s) (weight, mp or bp, %yield, & literature mp or bp for comparison).

5. Tabulation of spectral data. (Tables summarizing the IR and nmr spectra and your interpretation). see attached.

6. Conclusions, comments, deviations, etc. Discuss your results.

7. Answers to the questions at the end of each preparation.

8. Attach to the end of the report:

a) the pre-lab including table of physical properties

b) any additional carbon copies from your lab notebook

c) IR & nmr spectra, gc's, etc.

Products

Page 110: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

117

With your lab reports you are to turn in the products that you have synthesized in the laboratory. Note, the labels must contain your name, the date, the identity of the contents, the net weight, and the mp or bp. Solid products should be in wide-mouth bottles and liquids in narrow-mouth containers.

Page 111: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

118

TABLE OF PHYSICAL PROPERTIES (This table must be completed before coming to lab!)

Reactants and fw Moles weight volume density bp mp solubilitysolvents (g) (mL) (g/mL)

Product(s)

Page 112: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

119

Page 113: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

120

TABLE OF PHYSICAL PROPERTIES (This table must be completed before coming to lab!)

Reactants and fw Moles weight volume density bp mp solubilitysolvents (g) (mL) (g/mL)

Product(s)

Page 114: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

121

Page 115: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

122

CHE-313 Reporting IR and nmr spectra

Report the results of infrared and nmr spectroscopy in tabular form. See example below:

For the nmr:

1. Draw the structure of the compound and label the groups of hydrogens that give rise to each signal using a, b, c ... (let a = most upfield).

2. Make a table showing the chemical shift, integration and splitting pattern for each group of hydrogens assigned to the structure.

example: ethoxybenzene Ph-O-CH2CH3 c b a

a 1.3 ppm 3H triplet

b 3.9 ppm 2H quartet

c 6.6-7.2 ppm 5H complex

For the IR:

Make a table listing in decreasing order all of the absorbances and identify those that are important.

example: ethoxybenzenefrequency (cm - ) interpretation

3040 C-H stretch unsaturation, Ar-H30002940 C-H stretch saturation1600 C=C stretch, aromatic ring15801500 C=C stretch, aromatic ring1480 C-H bend, saturated1390 " " "1300124011701120 C-O stretch, ether1050 880 800 C-H out of plane bend -

Page 116: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

123

750 mono-substitution 690

Page 117: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

124

Oxidation of a side chain & introduction to IR and nmr

You will oxidize an unknown arene with KmnO4 to a benzoic acid. See the procedure in this supplement. Because the starting material is an unknown, the table of physical properties is a little different from the ones you have previously prepared. You will be given (on the unknown bottle) the molecular formula of your unknown. Calculate the gram formula weight and the number of moles contained in 1.0 grams. The amount of KMnO4 you will use is based on the formula of your unknown.

You will identify the unknown arene from the melting point of the acid product and the IR and nmr spectra of the unknown. Be sure to balance your chemical equations correctly. No mechanism is required for this report. Include the answers to the following questions in your report.

Answer the following questions:

1. Write a balanced chemical equation for the permanganate oxidation of p-xylene under basic conditions. See your general chem text for review of balancing oxidation-reduction equations.

2. Write a balanced chemical equation for the permanganate oxidation of tolune.

3. Write chemical equations to show how you would oxidize toluene to benzaldehyde rather than benzoic acid. see M&B

4. Why is benzoic acid more soluble in base than in aced?What is this difference in solubility used for?

5. Tert-butylbenzene is not oxidized by permanganate to benzoic acid. Why not?

6. a) Draw all of the arenes with formula C7H7Br and show the products of oxidation for each one. b) Look up the mp of each product. c) Can you identify every isomer based on the melting point of the carboxylic acid derivative? Explain.

7. Write a balanced equation for the reaction of potassium permanganate with sodium bisulfite.

Page 118: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

125

Identification of an unknown arene by oxidation to the carboxylic acid; introduction to IR and nmr spectroscopy.

A classical approach to the identification of some aromatic compounds is the oxidation of side chains to carboxylic acid groups. Measurement of the derivative's melting point and comparison with the known melting points of different benzoic acids provided a means of identifying or eliminating certain possible structures. For example: if a compound was found to have the formula C8H10, it could be four different compounds: ethyl benzene, o-xylene, m-xylene, or p-xylene. If you look up the boiling points of these four compounds, they are very close to each other. On the other hand, the melting points of the corresponding carboxylic acids produced from the oxidation of the side chains are distinctly different. When combined with additional information, such as the IR and nmr spectra, the melting point of the derivative will usually be sufficient to determine the structure of the unknown.

You will be given a small sample of an unknown arene for which the only information provided is the molecular formula. You are to carry out the permanganate oxidation in alkalai solution and isolate the carboxylic acid. You will measure the melting point of the acid and compare it to the melting points of the possible derivatives from your molecular formula. In addition, you will obtain the IR spectrum of your original uknown and the nmr spectrum.

procedure:

1. The apparatus consists of a 250 mL round-bottom flask fitted with a reflux condenser.2. Place about 1 gram (40 drops) of the unknown into the flask.3. Add approx. 80 mL of water and 1-2 mL of 6M NaOH to the flask.4. Using the powder funnel, introduce the required amount of potassium permanganate (see table below) into the flask and add a couple of boiling chips.

compound formula g KMnO4/g unknownC7H8 4 gC8H10 6 gC9H12 8 g

Page 119: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

126

5. Attach the reflux condenser and begin heating the mixture with a heating mantle. Be careful when the mixture first starts to boil as it has a tendency to "bump".6. Continue the reflux for 2-3 hours. At the end of the first period, cool the flask, label it, cork it, and place it in one of the hoods until next lab.

7. Suction filter the contents of the round-bottom flask to remove the solid MnO2.8. Transfer the filtrate to a 250 mL beaker. Place the beaker in a ice bath, and after the solution has cooled for 10 minutes, acidify with 10 mL of 6 M H2SO4, while stirring. (If the solution is still purple due to excess permanganate, destroy it by adding no more than about 2 mL of 20% sodium bisulfite.9. Test the solution with litmus to verify that it is acidic; if not add more sulfuric acid.10. Filter the precipitated acid with suction through a small buchner funnel and wash with a few mL of cold water. (If no acid has precipitated, consult with the instructor). 11. Recrystallize the acid from a suitable solvent (try water first).12. Let the product air dry, weigh it, package it, and obtain its melting point.

Page 120: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

127

Identification of an unknown carbonyl

In this experiment you will be given an unknown aldehyde or ketone. You will obtain the IR and nmr spectra, do the Tollen's test, and prepare two solid derivatives. In the report, identify the unknown and compare the experimental values with the ones given in the text; make a TABLE for comparison. Be sure to include balanced equations for the Tollen's test, the preparations of the derivatives, as well as appropriate mechanisms. Do not weigh derivatives or calculate % yield.

Prepare the 2,4-dinitrophenylhydrazone derivative of your unknown. The reagent is already prepared. Mix 10 drops (0.5 mL) of your unknown in 20 mL of 95% ethanol. To this solution, add 15 mL of the 2,4-DNPH reagent. Shake the mixture vigorously. If a precipitate does not form immediately, let it stand for 15 minutes. Suction filter the solid derivative and recrystallize from 95% ethanol. After air drying, obtain the mp.

Make an additional derivative, the semicarbazone, according to the directions on page 888 and obtain the mp.

Test the unknown with Tollen's Reagent (p 511) to see if it is a ketone or an aldehyde. Page 878-879 lists possible aldehydes in increasing order of boiling point and the melting points of easily prepared derivatives. Ketones are listed in the table on pages 879-880.

Do a simple distillation to measure the boiling point of your unknown carbonyl compound.

Obtain the IR and nmr spectra of your unknown carbonyl compound.

Answer the following questions:

1) An unknown organic compound (b. 212-216 oC) gives a positive 2,4-DNPH test and is positive with Tollen's reagent. A semicarbazone derivative is made that melts at 228-232 oC. What is the identity of the unknown? What would you do next?

2) Predict the products of the reaction of the following with silver nitrate in ammonium hydroxide:

cylcohexanoneformaldehydeacetone

Page 121: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

128

acetophenonebutyraldehyde

3) In the reaction of an aldehyde or ketone with derivatives of ammonia, the reaction can be catalyzed by sulfuric acid. However, it is important that the pH not be too low since the reaction will slow down at very high acid concentrations. Explain.

4) Ketones do not oxidize readily. However, cyclohexanone will react with powerful oxidizing agents at high heat to adipic acid (HO2C-(CH2)4-CO2H). The reaction is not really one of the ketone, but the enol. Write equations to show how this is possible.

Page 122: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

129

Reduction of acetophenone to 1-phenylethanol

- 1.2 g NaBH4 + 25 mL EtOH (95%)

- dropwise (controlled addition; keep temperature < 50o ) of 12 mL of acetophenone

- let stand 15 minutes

- acidify with 10 mL (3M) HCl

- boil down on hot plate until you have two layers

- extract with (1) 20 mL Et2O (2) 10 mL Et2O

-dry combined ether extracts over anh. MgSO4 TWICE!

-distill off Et2O ( waste bottle )

-residue = crude product (bp 102.5 – 103.5 @ 19 Torr), do not distill

IR, nmr of product AND acetophenone

We will not purify the product with vacuum distillation. After the removal of the diethyl ether, package, weigh and label the crude product. Obtain IR and nmr on both the acetophenone and the product.

Answer the following questions:

1. What was the molar ratio of NaBH4 to acetophenone that you used in the experiment. What is the theoretical ratio? Why did you use more than the theoretical ratio?

2. After the reaction of the carbonyl with sodium borohydride, the mixture is treated with water and acid to produce the desired alcohol. Indicate the source of the alcoholic hydrogen in the product.

3. Although sodium borohydride reacts slowly with methanol, when mineral acid was added, it rapidly decomposed with the evolution of hydrogen. Explain.

Page 123: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

130

4. Why is 1-phenylethanol more prone to dehydration than 2-phenylethanol?

5. What is the structure of the white precipitate that forms in the reaction of acetophenone with NaBH4?

6. Write an equation for the reaction of the white ppt with water and HCl.

7. Draw the structure of the products of the reduction of each of the following with NaBH4:

a) cyclohexanoneb) 3-cyclohexen-1-onec) 1,4-butanediald) 4-oxohexanal

8. Draw the structure of the products for the reduction of each of the compounds in question 7 with excess hydrogen gas over Nickel.

9. Why does the concentration of the ethanolic reaction mixture, followed by the addition of HCl, result in the formation of two layers?

Page 124: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

131

Organometallics

You will be running a Grignard synthesis of a carboxylic acid from the reaction of a Grignard Reagent and carbon dioxide. See your lab text: p. 280-283 & p. 285-288. You will modify the procedure to make either p-tolyl or o-tolyl magnesium bromide from p-bromotoluene (section 01) or o-bromotoluene (section 02) and react it with carbon dioxide in the form of dry ice. Modify the procedure in your text for the synthesis of phenyl magnesium bromide as follows:

Take one-fifth of the required amounts of the bromotoluene and diethyl ether and place the mixture in a dry test tube. Add some of the magnesium metal. Scratch and break up the metal with a stirring rod to begin the reaction. Once the reaction has started, add the mixture to the ether and remaining magnesium in the round bottom flask with 10 mL of diethyl ether. Begin the slow addition of the bromotoluene/ether mixture as detailed in the lab text.

Answer the following questions:

1) Where in the nmr spectrum would you see the carboxylic acid hydrogen?

2) Why must all equipment be dry when reacting tolyl magnesium bromide with carbon dioxide? (show equations)

3) a) Explain the difference between "inverse" and "normal" addition of organometallics and substrates.

b) Which was done in this experiment? Why?

4) Write chemical equations to show all of the different methods that can be used to synthesize tertiary alcohols with Grignard reagents.

4) Write all steps in the mechanism for the reaction of an ester with a Grignard reagent.

5) What side reactions are possible during the formation of a Grignard reagent? Write structures. How were these separated from the product?

6) p-Toluic acid cannot be made from p-xylene by oxidation. Explain.

Page 125: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

132

Answer questions 1, 2, 5 on page 288.

Page 126: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

133

Esterification

You will make isopentyl acetate (banana oil) according to the instructions in your lab text on page 96. Obtain the IR and nmr spectra of the product.

Answer the following questions as part of your report:

1) a) If the Keq for the esterification of acetic acid with isopentyl alcohol is 3.0, what is the maximum amount of isopentyl acetate that can be recovered at equilibrium if a 1:1 mole ratio of acid:alcohol is used?

b) If a 1:5 mole ratio is used?c) 5:1 mole ratio?

2) What role does sulfuric acid play in this reaction? Explain; show equations.

3) Tell what effect doubling the concentration of sulfuric acid would have on the yield of the ester.

4) Why were the contents of the round bottom flask after reflux poured into 10 mL of water?

5) Why do we wash the ester with sodium carbonate solution?

6) Why would solid NaOH not be a good drying agent for the ester?

7) How would you distinguish between the nmr spectra of methyl benzoate and phenyl acetate?

Page 127: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

134

Aldol condensation

You are to prepare anisalacetophenone (AKA 4-methoxychalcone) via an aldol condensation according to the directions on page 411 of your lab text. You will recrystallize the crude product from 95% ethanol. Run the nmr and IR (CCl4) spectra of your product.

answer the following questions:

1) In the aldol condensation you ran:a) Why doesn't the ketone undergo a self-condensation?b) Why doesn't the aldehyde undergo the Cannizzaro reaction?c) Write equations for both of the above reactions.

2) Are there geometric isomers of the product of this synthesis? Draw them. Is the reaction stereoselective or stereospecific? Which product is actually formed and why.

3) Predict the products of the following:

a) butyraldehyde, dil. NaOHb) formaldehyde, conc. NaOHc) acetone, p-tolualdehyde(2 mol), dil NaOHd) 2,2-dimethylpropanal, formaldehyde, conc. NaOHe) benzaldehyde, methyl acetate, sodium methoxide

4) Why does the intermediate in the synthesis undergo spontaneous dehydration?

5) Show the stereochemistry of the hydroxylation with potassium permanganate of trans- anisalacetophenone using Fischer projections.

Answer question 4 on page 412 of your lab text.

Page 128: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

135

Diels Alder

Read pages 427-433.

Run the Diels Alder condensation reaction between alpha-phellandrene and maleic anhydride according to the directions below. Obtain IR (KBr pellet) spectrum of the product.

Write up a pre-lab for the condensation of α-phellandrene (2-methyl-5-isopropyl-1,3-cyclohexadiene) and maleic anhydride.You won't find the product in the CRC.

The α-phellandrene that we have is not pure, it only contains 70% α-phellandrene by weight. You will need to figure how much of the impure compound to weigh out that will contain 0.050 mole of the α-phellandrene.

In a 100-mL round-bottom flask put 0.050 mole of maleic anhydride and the weight of impure α-phellandrene that contains 0.050 mole. Add 25 mL of ethyl acetate, attach a reflux condenser, and heat on a hot water wath for one hour. Cool in an ice-water bath and then suction filter. Recrystallize the product from ethyl acetate, vacuum filter, let air dry, weigh, package, and obtain the IR spectrum (KBr method).

answer the following questions:

1) Why is the endo product usually preferred in Diels-Alder condensations?

2) In your product, which way is the isopropyl group pointed? Explain.

3) The product of your synthesis has three chiral centers. Draw the product and label each chiral center with and asterisk (*). How many stereosiomers are theoretically possible? Only one stereoisomer is actually formed in this reaction, explain.

4) Predict the products of the following:

a) 1,3-butadiene + 2-butyneb) 1,3-cyclopentadiene + cis-2-butenec) 1,3-butadiene + dimethyl maleate(methyl ester of maleic acid)d) (2 mol)1,3-cyclopentadiene + p-benzoquinonee) dicylopentadiene + heat (retro Diels-Alder)

Page 129: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

136

5) Explain why the diene must be in the sigma-cis conformation in order to undergo a Diels-Alder reaction.Preparation of an α,β-unsaturated ketone via Michael Addition combined with an aldol condensation .

The procedure for this experiment is in your text: p. 413-416. You will obtain the IR spectrum of the product.

Answer questions 1-4 on page 416.

Page 130: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

137

Lidocaine

You will synthesize lidocaine via a series of synthetic reactions according to the instructions below. A single report is required with IR and nmr spectra of the final product. Be sure to calculate % yield for each step of your synthesis as well as the overall % yield.

multistep synthesis of lidocaine

first lab:

Reduction of 1,3-dimethyl-2-nitrobenzene to 2,6-dimethylaniline

Ar-NO2 + SnCl2.2H2O, HCl ---> Ar-NH3

+,Cl- + SnCl4

-make up the following two solutions:

solution 1: 0.10 mole (22.6 g) SnCl2.2H2O in 40 mL of conc.

HCl (warm to dissolve)

solution 2: 0.033 mole (5 g, 4.5 mL) 1,3-dimethyl-2-nitrobenzene in 50 mL acetic acid

-mix the two solutions and let stand for 15 minutes

-after fifteen minutes, cool in ice bath and vacuum filter

Ar-NH3+,Cl- + KOH ---> Ar-NH2

-tranfer solid to a flask and add 25 mL of water, make strongly basic with 40-50 mL of 8M KOH (caution!)

-cool to room temperature with ice bath

-extract with (1) 25 mL diethyl ether(2) 10 mL diethyl ether

-wash combined ether extracts with 10 mL water; repeat

-dry over anh. K2CO3

-filter into pre-weighed RB flask and remove diethyl ether by distillation (ether --> waste bottle)

Page 131: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

138

-reweigh flask

α-chloro-2,6-dimethylacetanilide

Ar-NH2 + Cl-CH2COCl ---> Ar-NHCOCH2-Cl

-residue from above + 25 mL acetic acid

-add (3.7 g, 2.6 mL) α-chloroacetyl chloride (caution!)

-warm to 40-50oC

-add solution: (5 g NaO2CCH3.3H2O in 100 mL water)

-cool, vacuum filter, air dry, weigh, mp

second lab:

lidocaine

Ar-NHCOCH2-Cl + NH(CH2CH3)2 Ar-NHCOCH2-N(CH2CH3)2

-note: all reagents and apparatus must be dry!

-in a 250 mL RB flask, combine the α-chloro-2,6-dimethylacetanilide from above with 45 mL toluene

-calculate the number of moles of α-chloro-2,6-dimethylacetanilideand add three times that number of moles of diethylamine to the RB.

-attach a water cooled condenser and reflux for 90 minutes.

-cool in an water bath and vacuum filter off the solid that forms. (this is not your product!)

-transfer the filtrate to a separatory funnel and extract with two 25 mL portions of 3M HCl.

-combine the aqueous layers in a 250 mL Erlenmeyer flask and add 50 mL of 8 M KOH to make the solution stronly basic.

Page 132: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

139

-warm the mixture and blow across the surface to remove any excess diethylamine

-cool in an ice bath, continuing to blow and scratch until crystals form.

-vacuum filter the crude lidocain, wash the crystals with cold water and remove from the filter paper immediately.

-let dry on a watch glass, package, weigh, mp, IR & nmr spectra.

Answer the following questions:

1) Write a balanced chemical equation for the reduction of nitrobenzene with Fe in HCl to form aniline. (Fe --> FeCl3)

2) Draw the structures of at least two by-products produced in the reaction in 1).

3) Why does 2,6-dimethylaniline react with chloroacetyl chloride to produce an amide rather than a secondary amine?

4) Lidocaine is commercially sold in the form of the hydrogen chloride salt. Why?

5) In the reduction of 2,6-dimethylnitrobenzene with stannous chloride, what is the structure of the ppt that is collected by suction filtration?

6) What is the precipitate collected by filtration after the reaction with diethylamine?

7) Why do we use three moles of diethylamine for every mole of the anilide?

Page 133: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

140

Qualitative analysis

You will receive three unknown organic compounds which you are to identify by a traditional qualitative analysis scheme. The report will consist of a form that you will fill out. Read p 485-490 in your text.

Qualitative Organic Analysis

The analysis experiment is equivalent to identifying a substance about which you have absolutely no information: the contents of an unlabeled bottle; a natural product isolated from the leaf of a tropical plant; a component of a competitor's formulated product; etc. Such an analysis requires a systematic approach, as is described in in your text.

1. Prior to receiving your unknown sample, a practice sodium fusion (analysis for constituent elements) must be done.

Read: page 500-502

A solid "known" mixture of organic compounds that contains nitrogen, sulfur, and halogen (N, S, X) is to be used. After you have observed the demonstration of the sodium fusion technique, you are to perform the sodium fusion with the "known" mixture, and then test the resulting aqueous solution for the constituent ions.

NOTE: Do not carry out the procedures to determine the identity of the halogen (or halogens) in the known or in your unknown. If you do get a positive test for halogen with Ag+, you will be able to determine if the X is F, Cl, Br, or I (or a combination) from subsequent tests and/or clever reasoning.

2. When you have completed the practice sodium fusion and ion tests, obtain a numbered vial containing your unknown from the instructor. Record the unknown number in your notebook immediately!

3. Perform the analysis according to the list on page 485, including the indicator tests according to the attached handout.

Page 134: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

141

4. If you wish to carry out any classification or functional group tests with known compounds, ask the instructor who will cheerfully fulfill your request.

5. Consult the Handbook of Tables for Organic Compound Identification and the tables in your text (p. 878-888).

Page 135: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

142

Qualitative Analysis -- preliminary classification

Solubility tests: To carry out the solubility tests, approximately 0.1 g or 0.1 mL of the substance is added to 3 mL of the solvent. If most of the material appears to dissolve, the compound is considered soluble. If there is no immediate change, especially with a solid unknown, the mixture should be thoroughly stirred with a glass rod and at least 2 minutes allowed to elapse before a decision is made.

The solubility tests must be applied in the sequence given below to avoid misleading observations.

a. Solubility in water. A compound that is soluble in water must be at least somewhat polar.

b. Solubility in ether. A compound that dissolves in water is tested for solubility in diethyl ether. Organic compounds that contain more than one polar functional group are not likely to dissolve in ether. Only compounds that have one polar group and a relatively small number of carbon atoms are expected to dissolve in both polar and nonpolar solvents.

c. Solubility in aqueous acid or base. A water-insoluble organic acid should dissolve in an aqueous base; an organic base that is not soluble in water should dissolve in aqueous acid. The observed solubility in each case is the result of the formation of an ionic salt which remains dissolved in the aqueous medium. It should be obvious that these tests are applied only if the original compound does not dissolve in water. If the substance is found to be soluble in 5% NaOH, indicating that it is an acid, it is tested further with 5% sodium hydrogen carbonate. Only acids stronger than carbonic acid will dissolve. A compound may therefore be classified as a strong or weak acid on the basis of these two solubility tests. An organic base can be identified by its solubility in 5% hydrochloric acid. No further classification is possible. If a compound is found to be an acid, it should also be tested with hydrochloric acid on the chance that it may contain both acidic and basic functional groups (e.g., an amino acid).

d. Solubility in sulfuric acid. A compound that is insoluble in water, hydrochloric acid, and sodium hydroxide is considered to be neutral. Those substances that contain nitrogen or sulfur are not tested further and are classed as nitrogen-sulfur neutrals (class M). Other compounds are tested for solubility in concentrated

Page 136: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

143

sulfuric acid. In this test, a solution in the sense of an ordinary aqueous solution is not necessarily formed. If heat is evolved, a color develops, or any other change indicative of a reaction is seen, it is concluded that the substance is "soluble" in H2SO4.

Solubility classification of some organic compounds:

S1 : soluble in water and soluble in diethyl etheroxygen and nitrogen compounds having less than five carbon

atoms: monofunctional alcohols, aldehydes, amines, carboxylic acids, ketones.

S2 : soluble in water and insoluble in diethyl etherpolyfunctional oxygen and nitrogen compounds: diols, triols,

etc.; polyamines; dicarboxylic acids.

A1 (weak acids) : soluble in dilute sodium hydroxidephenols, beta-diketones.

A2 (strong acids) : soluble in dilute sodium bicarbonatecarboxylic acids, polynitrophenols, polyhalophenols, acyl

halides.

B (bases) : soluble in dilute hydrochloric acid amines (except diaryl and triarylamines)

N1 (neutrals) : soluble in conc. sulfuric acidalkenes, some arenes, ethers, water-insoluble: alcohols,

aldehydes, esters, ketones.

N2 (neutrals) : insoluble in conc. sulfuric acidalkanes, halides, diarylethers.

M (nitrogen-containing neutrals)

amides, nitrocompounds, diaryl- and triarylamines, nitroarylamines.

Page 137: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

144

Indicator Classification Method:

The solubility method suffers from several shortcomings. One is that it is difficult to estimate solubility in borderline cases. There are also some instances in which a solid substance dissolves, only to react with the solvent to form an insoluble product. The indicator method overcomes these difficulties and also provides a more specific classification. That is, it is possible to classify an acid as weak, intermediate, or strong, rather than just weak or strong as in the solubility system. Bases can also be classified as weak, intermediate, or strong.

A set of four indicators, A-I, A-II, B-I, and B-II is required. To carry out the test, 1 mL of the indicator is placed in a small test tube and one drop of a liquid or about 30 mg or a solid (about as much as can be carried on the tip of a small spatula) is added to the indicator. The effect on each indicator solution is described below:

A-I Indicator (original color: purple)

If the color changes from purple to yellow, the compound is an intermediate acid (Ai) or a strong acid (As). If the color change is from purple to green, the unknown is a weak acid (Aw). To distinguish between Ai and As, you must use the A-II indicator.

A-II Indicator (original color: blue-violet)

A change from blue-violet to yellow occurs if the unknown is an intermediate acid. A strong acid causes a change from blue-violet to a shade of red.

B-I Indicator (original color: Purple)

Any base changes the color from purple to yellow.

B-II Indicator (original color: Yellow)

A weak base (Bw) has no effect (color remains yellow), while an intermediate base (Bi) produces a change from yellow to blue-violet. (There are relatively few strong organic bases. Although it is possible to detect strong organic bases by special treatment of the indicators, they will not be considered here.

Page 138: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

145

Caution: The indicators are made up in nonaqueous solvents. The addition of water to any of the indicators may cause a color change. It is imperative therefore that a clean, dry test tube be used for each test, and the sample tested must be free of water.

Indicator Classification of Some Organic Compounds:

Strong acids (As): acyl halides, some carboxylic aicds, nitrophenols.

Intermediate acids (Ai): carboxylic acids, o- and p-hydroxyaromatic aldehydes and ketones, polyhalophenols.

Weak acids (Aw): phenols, beta-diketones, some aryl esters.

Intermediate bases (Bi): aliphatic amines, heterocyclic amines.

Weak bases (Bw): primary arylamines, arylalkylamines, heterocyclic amines.

Neutrals (do not contain nitrogen): hydrocarbons, halides, alcohols, aldehydes, ketones, esters, ethers.

Neutrals (contain nitrogen): diarylamines, triarylamines, nitriles, nitrocompounds, amides, polynitroarylamines, polyhaloarylamines.

Page 139: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

146

Chemistry 313QUALITATIVE ORGANIC ANALYSIS REPORT

Name Date

Unkn. No. Identity of Compound 1. Physical properties of purified material:

physical state color

b.p. m.p.

refractive index (liq. only) other

2. Elemental Analysis: elements in addition to C, H, O

3. Preliminary Classificationa) Solubility tests (write "s" if soluble; "i" if insoluble).

H2O Et2O HCl NaOH NaHCO3 H2SO4

Classification b) Indicator tests (note the color change, if any)

A-I A-II

B-I B-II

Classification:

4. Functional Group Tests

On a separate sheet of paper, prepare a table with the column headings: Reagent, Result, and Inference. In the appropriate spaces, list the actual reagent and observed result of every functional group test applied to the unknown, and the inference drawn in each case. (See sample below.)

Reagent Result Inference 2,4-DNPH orange ppt; red color with alc.KOH carbonyl groupTollens no silver mirror or ppt ketone(no aldehyde)NH2OH, KOH no purple color no ester group

5. Probable Compounds: List all compounds with m.p. or b.p. within 5o of that of the unknown, which could be identical to the unknown. Also list the useful derivatives and their m.p.'s.

Page 140: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

147

6. Derivatives made: List the derivatives of the unknown that were actually prepared and their observed m.p.'s.

7. Spectroscopic Data: Tabulate ir and nmr data, if obtained.

Page 141: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

148

Chemistry 313QUALITATIVE ORGANIC ANALYSIS REPORT

Name Date

Unkn. No. Identity of Compound 1. Physical properties of purified material:

physical state color

b.p. m.p.

refractive index (liq. only) other

2. Elemental Analysis: elements in addition to C, H, O

3. Preliminary Classificationa) Solubility tests (write "s" if soluble; "i" if insoluble).

H2O Et2O HCl NaOH NaHCO3 H2SO4

Classification b) Indicator tests (note the color change, if any)

A-I A-II

B-I B-II

Classification:

4. Functional Group Tests

On a separate sheet of paper, prepare a table with the column headings: Reagent, Result, and Inference. In the appropriate spaces, list the actual reagent and observed result of every functional group test applied to the unknown, and the inference drawn in each case. (See sample below.)

Reagent Result Inference 2,4-DNPH orange ppt; red color with alc.KOH carbonyl groupTollens no silver mirror or ppt ketone(no aldehyde)NH2OH, KOH no purple color no ester group

5. Probable Compounds: List all compounds with m.p. or b.p. within 5o of that of the unknown, which could be identical to the unknown. Also list the useful derivatives and their m.p.'s.

6. Derivatives made: List the derivatives of the unknown that were actually prepared and their observed m.p.'s.

Page 142: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

149

7. Spectroscopic Data: Tabulate ir and nmr data, if obtained.

Page 143: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

150

Chemistry 313QUALITATIVE ORGANIC ANALYSIS REPORT

Name Date

Unkn. No. Identity of Compound 1. Physical properties of purified material:

physical state color

b.p. m.p.

refractive index (liq. only) other

2. Elemental Analysis: elements in addition to C, H, O

3. Preliminary Classificationa) Solubility tests (write "s" if soluble; "i" if insoluble).

H2O Et2O HCl NaOH NaHCO3 H2SO4

Classification b) Indicator tests (note the color change, if any)

A-I A-II

B-I B-II

Classification:

4. Functional Group Tests

On a separate sheet of paper, prepare a table with the column headings: Reagent, Result, and Inference. In the appropriate spaces, list the actual reagent and observed result of every functional group test applied to the unknown, and the inference drawn in each case. (See sample below.)

Reagent Result Inference 2,4-DNPH orange ppt; red color with alc.KOH carbonyl groupTollens no silver mirror or ppt ketone(no aldehyde)NH2OH, KOH no purple color no ester group

5. Probable Compounds: List all compounds with m.p. or b.p. within 5o of that of the unknown, which could be identical to the unknown. Also list the useful derivatives and their m.p.'s.

6. Derivatives made: List the derivatives of the unknown that were actually prepared and their observed m.p.'s.

Page 144: CHE-310 Organic Chemistry I_chemistry.csudh.edu/faculty/noel/jim/supplement.doc · Web viewTo study for this exam, go over each of the techniques that you have learned for separating

151

7. Spectroscopic Data: Tabulate ir and nmr data, if obtained.