38
7/22/2019 Ansys MAXWELL http://slidepdf.com/reader/full/ansys-maxwell 1/38 © 2011 ANSYS, Inc. June 24, 2013 1 Introduction to Low Frequency Electromagnetics Simulation Olivier Roll Application Engineer ANSYS France

Ansys MAXWELL

Embed Size (px)

Citation preview

Page 1: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 1/38

© 2011 ANSYS, Inc. June 24, 20131

Introduction to Low

Frequency ElectromagneticsSimulation

Olivier Roll

Application Engineer

ANSYS France

Page 2: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 2/38

© 2011 ANSYS, Inc. June 24, 20132

Electromechanical Design Flow

Simplorer 

System Design

PP:=6

ICA:

A

A

A

GAIN

A

A

A

GAIN

A

JPMSYNCIA

IB

IC

Torque JPMSYNCIA

IB

IC

Torque

D2D

PExprtMagnetics

RMxprtMotor Design

Q3DParasitics

ANSYSMechanicalThermal/Stress

Model order Reduction

Co-simulation

Field Solution

Model Generation

Maxwell 2D/3DElectromagnetic Components

ANSYS CFD

Page 3: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 3/38

© 2011 ANSYS, Inc. June 24, 20133

Electromechanical (EM)

Applications

Definitions

Page 4: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 4/38

© 2011 ANSYS, Inc. June 24, 20134

EM Application Definitions Electrical Machine

Electromechanical devices converting- Electrical power to mechanical power as motor

- Mechanical power to electrical power as generator

Page 5: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 5/38

Page 6: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 6/38

© 2011 ANSYS, Inc. June 24, 20136

EM Application Definitions Magnetic Sensors

Electromechanical devices that use magnetic field to sense motion

- Proximity sensors to determine the presence of conducting objects

- Microphones that sense air motion

- Linear variable-differential transformers to determine the object position

- Velocity sensors for antilock brakes and stability control

- Hall effect positions

Page 7: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 7/38© 2011 ANSYS, Inc. June 24, 20137

EM Application Definitions Transformers

Electromechanical device that transfers electrical energy from one circuitto another through inductively coupled conductors

Page 8: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 8/38© 2011 ANSYS, Inc. June 24, 20138

EM Application Definitions Semiconductors

Devices

A semiconductor is a material that has an electrical conductivity between that of a

conductor and an insulator. Devices made from semiconductor materials are the

foundation of modern electronics, including radio, computers, telephones, power

conversion devices (converters, inverters, etc.)

Page 9: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 9/38© 2011 ANSYS, Inc. June 24, 20139

Finite Element Solvers (3D/2D)• Transient with Motion

• Eddy Current

• DC Magnetic

• Electrostatic

Coupled Drive & Control Circuit

Equivalent Circuit Generation

Parametric/Optimization

Maxwell®

Page 10: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 10/38© 2011 ANSYS, Inc. June 24, 201310

Maxwell’s Approach 

One type of elements

One formulation per solver

All solid objects are meshed

Adaptive Meshing to back-up

master

slave

Nodal

element

Edge

element

Page 11: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 11/38

© 2011 ANSYS, Inc. June 24, 201311

Maxwell – Auto-Adaptive Meshing

Geometry(no mesh data)

Create Initial Mesh

Calculate Field

Calculate

Field Accuracy

Error Acceptable?

Postprocess

No

 Yes

Refine Mesh

Initial

Final

Page 12: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 12/38

© 2011 ANSYS, Inc. June 24, 201312

Example: Team Problem #20

Small Air Gaps

Page 13: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 13/38

© 2011 ANSYS, Inc. June 24, 201313

Automatic Adaptive Meshing

Measured

Page 14: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 14/38

© 2011 ANSYS, Inc. June 24, 201314

Comparison to Measurement

Measured

Page 15: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 15/38

© 2011 ANSYS, Inc. June 24, 201316

Modeling Capabilities

Equation-

based

surfaces

Equation-based

polylines

Fillet and Chamfer

Page 16: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 16/38

© 2011 ANSYS, Inc. June 24, 201317

Import / Export

Impor ts .sm2 .gds .sm3 .sat .step .iges .dwg .sld .geo.stl .dxf, CATpart, .NAS

Exports directly .sat, .dxf, .sm3, .sm2

Page 17: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 17/38

© 2011 ANSYS, Inc. June 24, 201318

Specific Capabilities

Page 18: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 18/38

© 2011 ANSYS, Inc. June 24, 201319

Induced eddy current

Zero order vector shape functions

Induced eddy current

First order vector shape functions

Coil

Mesh on the plate

Plate

3D Eddy Current High Order Elements

Page 19: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 19/38

© 2011 ANSYS, Inc. June 24, 201320

• Significant memory saving

• Allow to solve large problem

• Develop good pre-conditioners to get efficient speed performance

64 bit machine

(2.83 GHz,16.0 GB of RAM)

Example: Team Workshop Problem #8

Mesh (volume, adaptive) 00:19:26 00:19:26 2.9 G 3,665,594 tetrahedra

Iterative Solver 02:44:37 02:44:19 13.5 G 5,308,396 matrix

Adapt 01:43:22 01:43:19 13.5 G 3,665,594 tetrahedra

Residual tolerance 0.00001

Eddy-Current Problem 

PCG Iterative Solver

Higher Capacity Solver Capabilities

Page 20: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 20/38

© 2011 ANSYS, Inc. June 24, 201321

• Expand the existing algorithm to the

3rd quadrant for demag computation

• Base on the actual user-input B-Hcurve in the 3rd quadrant

• Element by element

B

H0

Load line without

other sources

Demagnetization point

Hc after demagnetization

Load line with

other sources

Initial Br 

Br after 

demag

B

H0

Br  Line b

Line a

p

• Based on the original

non-remnant B-H curve

• Construct line b at the

operating point p, which

is parallel to the line a 

• Br is the intersection of 

line b with B-axis• Element by element

•Allow functional unitvector magnetization

3rd Quadrant Demagnetization 1st Quadrant Magnetization

Functional Vector Magnetization

Demagnetization / Magnetization

Page 21: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 21/38

© 2011 ANSYS, Inc. June 24, 201322

550 W PM generator, 4 pole, 3 phase, 50 Hz AC, ceramic 8D PM

Rated speed, open- to short-circuit fault

Leading edge is weakened significantly

Original

Fault

Dynamic Demagnetization GeneratorFault Example

Page 22: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 22/38

Page 23: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 23/38

© 2011 ANSYS, Inc. June 24, 201324

• Core loss computation includinghysteresis loss with minor loop

• Based on dB/dt instead of f 

• Can have impact on torque to

match power balance

Core Loss Field Effects of LaminatedMaterials

Page 24: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 24/38

Page 25: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 25/38

© 2011 ANSYS, Inc. June 24, 201326

• Automatically connect two parts

of a winding separated by

matching boundary

Automatically identify 3D coil terminal

counterparts and connect them together

Enhanced Boundary Capabilities

Page 26: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 26/38

© 2011 ANSYS, Inc. June 24, 201327

Nodal Force Computation

Applicable to both local andglobal force

Virtual work method with single

field computation

Using shell element

Allow force-computing objectsto directly touch non-force-

computing objects

Page 27: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 27/38

Page 28: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 28/38

© 2011 ANSYS, Inc. June 24, 201329

Electromechanical Design Flow

Simplorer 

System Design

PP:=6

ICA:

A

A

A

GAIN

A

A

A

GAIN

A

JPMSYNCIA

IB

IC

Torque JPMSYNCIA

IB

IC

Torque

D2D

PExprtMagnetics

RMxprtMotor Design

Q3DParasitics

ANSYSMechanicalThermal/Stress

Model order Reduction

Co-simulation

Field Solution

Model Generation

Maxwell 2D/3DElectromagnetic Components

ANSYS CFD

Page 29: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 29/38

Page 30: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 30/38

Page 31: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 31/38

© 2011 ANSYS, Inc. June 24, 201332

The coupling is straightforward and allow the engineer to work like they usually do.

The mesh are independent between Maxwell and Fluent. The Electromagnetic specialist can start the

WorkBench project by creating and doing the simulation of the Electromagnetic part. Once it is done,the CFD specialist will add the Fluent simulation to the WorkBench project, prepare his CFD analysis

like he usually do and simply create the link to use the Maxwell simulation as source for his CFD

simulation.

Coupling between Maxwell and FluentInduction heating example

Design simulated in

Maxwell Thermal results obtained in

Fluent

Results in Maxwell Losses mapped in

Fluent

Page 32: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 32/38

Page 33: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 33/38

34 © 2013 ANSYS, Inc. June 24, 2013 ANSYS Confidential© 2013 ANSYS, Inc. June 24, 2013 ANSYS Confidential

Example: Co-Simulation Magnetic – PneumaticForce Coupling

0

0

0

0 0

S

+

SM_TRB1

F

F_TRB2

MASS_TRB1

V0=0m_per_sec

S0=0.5mm

M=1gram

F

F_TRB1

I        d        e      

 a      l       

STOP

LOWER_LIM=0.01mm

UPPER_LIM=0.195mm

   F

F_mag

F

F_Plunger 

F

F_spring

SPRING_TRB1

C=333

   S

   +

S_TRB1

VALUE=0.185mm

E1

R1

T1

T2T3

T4

smpl_lift

cfd_force

S1

CTRL=S1

D1

MaxwellCosimulation

FLUENT

Cosimulation

0.00 2.50 5.00 7.50 10.00 12.50 15.00Time [ms]

0.00

100.00

200.00

300.00

400.00

500.00

   P  o  s   i   t   i  o  n   [  u  m   ]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

   C  o   i   l   C  u  r  r  e  n   t   [   A   ]

-20.00

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

   P   l  u  n  g  e  r   F  o  r  c  e   [  n  e  w   t  o  n   ]

02_CoSim_MAgnetic_CFDTransient Switching with CFD ANSOFT

Curve Info Y Axis

Current Current

Plunger Force Plunger Force

Posit ion w. CFD Y3

Position w/o CFD Y3

Simplorer Schematic

Page 34: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 34/38

35 © 2013 ANSYS, Inc. June 24, 2013 ANSYS Confidential© 2013 ANSYS, Inc. June 24, 2013 ANSYS Confidential

Specific pre/postprocessing

through UDO (User DefinedOutputs)

Page 35: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 35/38

Page 36: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 36/38

Page 37: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 37/38

© 2012 ANSYS, Inc. June 24, 201338

Electric Machines Design Toolkit

Page 38: Ansys MAXWELL

7/22/2019 Ansys MAXWELL

http://slidepdf.com/reader/full/ansys-maxwell 38/38