Additional Axes and Stand Alone Controller

Embed Size (px)

Citation preview

  • 8/17/2019 Additional Axes and Stand Alone Controller

    1/208

    AB B Rob ot ics

    Application manual Additional axes and stand alone controller

  • 8/17/2019 Additional Axes and Stand Alone Controller

    2/208

  • 8/17/2019 Additional Axes and Stand Alone Controller

    3/208

  • 8/17/2019 Additional Axes and Stand Alone Controller

    4/208

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    The information in this manual is subject to change without notice and should not beconstrued as a commitment by ABB. ABB assumes no responsibility for any errors thatmay appear in this manual.

    Except as may be expressly stated anywhere in this manual, nothing herein shall beconstrued as any kind of guarantee or warranty by ABB for losses, damages to persons

    or property, fitness for a specific purpose or the like.In no event shall ABB be liable for incidental or consequential damages arising fromuse of this manual and products described herein.

    This manual and parts thereof must not be reproduced or copied without ABB's writtenpermission, and contents thereof must not be imparted to a third party nor be used forany unauthorized purpose. Contravention will be prosecuted.

    Additional copies of this manual may be obtained from ABB at its then current charge.

    © Copyright 2004-2010 ABB All rights reserved.

    ABB ABRobotics Products

    SE-721 68 VästeråsSweden

  • 8/17/2019 Additional Axes and Stand Alone Controller

    5/208

    Table of Contents

    33HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    Overview of this manual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Product documentation, M2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    1 Introduction 131.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.3 General guidelines and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    2 Getting started 17

    2.1 Get started with additional axes, servo guns and non-ABB robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    3 Installation 19

    3.1 Additional axes and servo guns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.1.1 Standard additional axis (Option selected). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.1.2 Template files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.1.3 Serial measurement system configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    3.2 Non ABB robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.2.2 Drive module for non-ABB robots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.2.3 Kinematic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    3.2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.2.3.2 Kinematic model XYZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.2.3.3 Kinematic model C(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.2.3.4 Kinematic model B(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.2.3.5 Kinematic model XYZB(Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.2.3.6 Kinematic model XYZC(Z)B(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.2.3.7 Kinematic model XYZC(Z)B(Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.2.3.8 Kinematic model XYZB(X)A(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.2.3.9 Kinematic model XYZB(Y)A(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.2.3.10 Kinematic model XYZC(Z)B(X)A(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343.2.3.11 Kinematic model XYZC(Z)B(Y)A(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.2.3.12 Kinematic model XYZC(Z)A(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363.2.3.13 Kinematic model XYZC(Z)A(Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.2.3.14 Kinematic model XZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.2.3.15 Kinematic model XZC(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393.2.3.16 Kinematic model XZB(X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.2.3.17 Kinematic model XZB(Y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.2.3.18 Kinematic model XZC(Z)B(X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.2.3.19 Kinematic model XZC(Z)B(Y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    3.2.3.20 Kinematic model XZB(X)A(Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443.2.3.21 Kinematic model XZB(Y)A(Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.2.3.22 Kinematic model XZC(Z)B(X)A(Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.2.3.23 Kinematic model YZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.2.3.24 Kinematic model YZC(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483.2.3.25 Kinematic model YZB(X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.2.3.26 Kinematic model YZB(Y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503.2.3.27 Kinematic model YZC(Z)B(X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.2.3.28 Kinematic model YZC(Z)B(Y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.2.3.29 Kinematic model YZB(X)A(Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533.2.3.30 Kinematic model YZB(Y)A(Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.2.3.31 Kinematic modelYZC(Z)B(X)A(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    3.2.3.32 Kinematic model YZC(Z)B(Y)A(Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.2.3.33 Kinematic model YE(Y)D(Y)B(Y)A(Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

  • 8/17/2019 Additional Axes and Stand Alone Controller

    6/208

    Table of Contents

    4 3HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.34 Kinematic model YE(Y)D(Y)C(Z)B(Y)A(Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.2.3.35 Doppin Feeder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    3.2.4 Creating a stand alone controller system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603.2.5 Modify a Stand Alone Controller package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    4 Configuration 67

    4.1 Basic settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.1.1 Limit peripheral speed of external axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.1.2 Minimal configuration of additional axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694.1.3 Minimal configuration of servo gun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714.1.4 Minimal configuration of non-ABB robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    4.2 Advanced settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784.2.1 Disconnect a servo motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784.2.2 Servo Tool Change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.2.3 Defining relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814.2.4 Defining brake behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824.2.5 Supervision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854.2.6 Independent joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864.2.7 Soft servo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874.2.8 Activate force gain control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884.2.9 Activate notch filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894.2.10 Defining parameters for general kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    4.3 Coordinated axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914.3.1 About coordinated axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914.3.2 Coordinated track motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    4.3.2.1 How to get started with a coordinated track motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924.3.2.2 Defining the base frame for a track motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

    4.3.3 Coordinated positioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964.3.3.1 How to get started with a coordinated (moveable) user coordinate system . . . . . . . . . . . 964.3.3.2 Defining the user frame for a rotational single axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974.3.3.3 Defining the user frame for a multi axes positioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    5 Commutation 103

    5.1 Commutate the motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    6 Tuning 105

    6.1 Tuning the commutation offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    6.2 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076.2.2 Defining signals in Test Signal Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086.2.3 Tuning of axes, complete procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106.2.4 Initial tuning of Kv, Kp and Ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136.2.5 Specifying the inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196.2.6 Tuning of Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206.2.7 Tuning of resonance frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226.2.8 Tuning of Nominal Acceleration and Nominal Deceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236.2.9 Final tuning of Kp, Kv and Ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266.2.10 Tuning of the soft servo parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    6.3 Additional tuning for servo guns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306.3.2 Protecting the gun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1316.3.3 Position Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1336.3.4 Tuning ramp times for force ramping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

  • 8/17/2019 Additional Axes and Stand Alone Controller

    7/208

    Table of Contents

    53HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    6.3.5 Speed versus force repeatability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1366.3.6 Tuning the speed limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376.3.7 Improving the results for poor programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1396.3.8 Tuning the calibration routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1406.3.9 Force ready detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    7 Error handling 143

    7.1 Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1437.2 How to use the Microsoft HyperTerminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    8 System Parameters 147

    8.1 Acceleration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1478.2 Arm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1488.3 Arm Calib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1498.4 Arm Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1508.5 Brake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1518.6 Force Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1528.7 Force Master Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1538.8 Joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1548.9 Lag Control Master 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1558.10 Measurement Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1578.11 Mechanical Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1588.12 Motion Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1598.13 Motion System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1608.14 Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1618.15 Motor Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1628.16 Motor Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638.17 Relay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

    8.18 Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1668.19 SG Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1678.20 Single . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1698.21 Single Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1708.22 Stress Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1718.23 Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1728.24 Supervision Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1738.25 Transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1758.26 Uncalibrated Control Master 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

    9 Hardware 177

    9.1 Configuration of the drive system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1779.2 Transformers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1819.3 Drive units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1829.4 Measurement System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1849.5 Serial Measurement Link examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1859.6 Equipment for additional axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1889.7 Motors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1909.8 Simple dimensioning of the motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1929.9 Resolvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1959.10 Serial measurement cables and connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

    Index 203

  • 8/17/2019 Additional Axes and Stand Alone Controller

    8/208

    Table of Contents

    6 3HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

  • 8/17/2019 Additional Axes and Stand Alone Controller

    9/208

    Overview of this manual

    73HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    Overview of this manual

    About this manualThis manual details the setup of additional axes and non-ABB robots.

    UsageThis manual can be used as a brief description of how to install, configure and tune additionalaxes and non-ABB robots. It also provides information about related system parameters.Detailed information regarding system parameters, RAPID instructions and so on can befound in the respective reference manual.

    Who should read this manual?This manual is primarily intended for advanced users and integrators.

    Prerequisites

    The reader should...

    • be familiar with industrial robots and their terminology

    • be familiar with controller configuration and setup

    • be familiar with the mechanical and dynamic properties of the controlled mechanism.

    Organization of chaptersThe manual is organized in the following chapters:

    References

    Chapter Contents

    1. Introduction Introduction to additional axes and stand alone controller.

    2. Getting Started Brief overview on how to get started with additional axes,servo gun and non ABB robots.

    3. Installation Installation and setup of the software.

    4. Configuration Describes how to configure system parameters.

    5. Commutation Describes the service routine Commutation.

    6. Tuning Describes how to tune axes.

    7. Error handling Describes fault localization.

    8. System parameters Describes system parameters.

    9. Hardware Describes the hardware e.g. drive system andmeasurement system.

    Reference Document ID

    Application manual - Motion functions and events 3HAC18152-1

    Application manual - Servo motor control 3HAC020436-001

    Operating manual - RobotStudio 3HAC032104-001

    Operating manual - IRC5 with FlexPendant 3HAC16590-1

    Technical reference manual - RAPID Instructions, Functions

    and Data types

    3HAC16581-1

    Technical reference manual - System parameters 3HAC17076-1

    Continues on next page

  • 8/17/2019 Additional Axes and Stand Alone Controller

    10/208

    Overview of this manual

    3HAC021395-001 Revision: L8

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    Revisions

    Product manual - IRC5 3HAC021313-001

    Product Manual - Motor Unit 3HEA800973-001

    Product specification - Controller IRC5 with FlexPendant 3HAC021785-001

    Reference Document ID

    Revision Description

    - First edition

    A Tuning commutation offset, tuning of the servo parameters and additionaltuning for servo guns has been added to the chapter Tuning of Axes.

    B Reorganized the chapters and added information about stand alone controller.

    C Installation: More information about stand alone controller.

    System Parameters: Added information about Single .Hardware: Rewritten information about equipment for additional axes.

    D Information about stand alone controller and MultiMove, enabling the user toconfigure and run several mechanical units on the same drive module.Improvement of Getting Started, Installation and Configuration chapters.

    E Introduction: Added the section General guidelines and limitations.

    F Minor corrections made

    G Improvements to Stand alone controller made.

    H New drive system. Drive System 04 and Drive System 09 exists in parallel.

    J Added information about Drive System 09, including new drive units MDU-430Aand ARU-430A. Units previously called HV MDU and HV ADU are renamed to

    MDU-790A and ADU-790A.Explanations added and table corrected in section Drive unit connection .Information added in section Configuration of the drive system on page 177 .Information added in section Drive units on page 182 .

    K Added information about template files for general kinematics, affectingsections Template files on page 20 and Defining parameters for generalkinematics on page 90 .New drive units added to section Drive unit connection on page 179 .Corrections and updated information in section Drive units on page 182 .Updated safety signal graphics for the levels Danger and Warning .

    L Removed information about Drive System 04. All systems now have DriveSystem 09.

    Changes in information about template files for general kinematics, affectingsection Template files on page 20 .

    Continued

  • 8/17/2019 Additional Axes and Stand Alone Controller

    11/208

    Product documentation, M2004

    93HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    Product documentation, M2004

    Categories for manipulator documentationThe manipulator documentation is divided into a number of categories. This listing is basedon the type of information in the documents, regardless of whether the products are standardor optional.

    All documents listed can be ordered from ABB on a DVD. The documents listed are valid forM2004 manipulator systems.

    Product manualsManipulators, controllers, DressPack/SpotPack, and most other hardware will be deliveredwith a Product manual that generally contains:

    • Safety information.

    • Installation and commissioning (descriptions of mechanical installation or electricalconnections).

    • Maintenance (descriptions of all required preventive maintenance proceduresincluding intervals and expected life time of parts).

    • Repair (descriptions of all recommended repair procedures including spare parts).

    • Calibration.

    • Decommissioning.

    • Reference information (safety standards, unit conversions, screw joints, lists of tools ).

    • Spare parts list with exploded views (or references to separate spare parts lists).

    • Circuit diagrams (or references to circuit diagrams).

    Technical reference manualsThe technical reference manuals describe the manipulator software in general and containrelevant reference information.

    • RAPID Overview : An overview of the RAPID programming language.

    • RAPID Instructions, Functions and Data types : Description and syntax for allRAPID instructions, functions, and data types.

    • RAPID Kernel : A formal description of the RAPID programming language.

    • System parameters : Description of system parameters and configuration workflows.

    Continues on next page

  • 8/17/2019 Additional Axes and Stand Alone Controller

    12/208

    Product documentation, M2004

    3HAC021395-001 Revision: L10

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    Application manuals

    Specific applications (for example software or hardware options) are described inApplication manuals . An application manual can describe one or several applications.

    An application manual generally contains information about:

    • The purpose of the application (what it does and when it is useful).

    • What is included (for example cables, I/O boards, RAPID instructions, system parameters, CD with PC software).

    • How to install included or required hardware.

    • How to use the application.

    • Examples of how to use the application.

    Operating manuals

    The operating manuals describe hands-on handling of the products. The manuals are aimedat those having first-hand operational contact with the product, that is production celloperators, programmers, and trouble shooters.

    The group of manuals includes (among others):

    • Emergency safety information

    • General safety information

    • Getting started, IRC5 and RobotStudio

    • Introduction to RAPID

    • IRC5 with FlexPendant

    • RobotStudio• Trouble shooting , for the controller and manipulator.

    Continued

  • 8/17/2019 Additional Axes and Stand Alone Controller

    13/208

    Safety

    113HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    Safety

    Safety of personnelA robot is heavy and extremely powerful regardless of its speed. A pause or long stop inmovement can be followed by a fast hazardous movement. Even if a pattern of movement is

    predicted, a change in operation can be triggered by an external signal resulting in anunexpected movement.

    Therefore, it is important that all safety regulations are followed when entering safeguardedspace.

    Safety regulations

    Before beginning work with the robot, make sure you are familiar with the safety regulationsdescribed in the manual Operating manual - General safety information .

  • 8/17/2019 Additional Axes and Stand Alone Controller

    14/208

    Safety

    3HAC021395-001 Revision: L12

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

  • 8/17/2019 Additional Axes and Stand Alone Controller

    15/208

    1 Introduction

    1.1. Overview

    133HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    1 Introduction

    1.1. Overview

    PurposeThe additional axes option is used when the robot controller needs to control additional axes

    besides the robot axes. These axes are synchronized and, if desired, coordinated with themovement of the robot, which results in high speed and high accuracy.

    Stand alone controller is an ABB controller delivered without an ABB robot. The purpose isto use it to control non-ABB equipment.

    When the controller is used in a robot system with external axes or a non-ABB manipulator,the system requires configuration and tuning as detailed in this manual. This manual can also

    be useful when such a system needs to be upgraded.

    As external axes and non-ABB robots consume more power the drive system needs a more powerful transformer, rectifier and capacitor. In addition, suitable drive units must beinstalled in the controller. The hardware setup must also be configured with software to makethe system functional.

    Basic approachThis is the basic approach for the setup of additional axes or a stand alone controller.

    • Installation

    • Configuration

    • TuningFor a detailed description of how this is done, see the respective section.

    For more information on the hardware components see Hardware on page 177 .

    WARNING!

    The manual mode peripheral speed of the external axis must be restricted to 250 mm/s for personal safety reasons. The speed is supervised at three different levels, which means thatthree system parameters need to be set up. For more information see Limit peripheral speedof external axis on page 67 .

  • 8/17/2019 Additional Axes and Stand Alone Controller

    16/208

    1 Introduction

    1.2. Definitions

    3HAC021395-001 Revision: L14

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    1.2. Definitions

    RobotA robot is a mechanical unit with a tool center point (TCP). A robot can be programmed bothin Cartesian coordinates (x, y and z) of the TCP and in tool orientation.

    Non-MultiMove system

    A non-MultiMove system can have

    • only one motion task

    • only one robot

    • up to 6 additional axes (which can be grouped in an arbitrary number of mechanicalunits)

    • up to 12 axes in total (located in one or two drive modules)

    TIP!

    In a non-MultiMove system, semi-independent programming of individual mechanical unitsor axes can be achieved through the option Independent Axes . However, MultiMove isnormally preferred when independent programming is desired.

    MultiMove systemA MultiMove system can have

    • up to 6 motion tasks (each task has the same limitations as in a non-MultiMovesystem)

    • up to 4 robots• up to 4 drive modules (i.e. up to 36 axes including the robot axes)

    Additional axes

    The robot controller can control additional axes besides the robot axes. These mechanicalunits can be used for Non-MultiMove and MultiMove systems alike. They can be jogged andcoordinated with the movements of the robot. The system may have a single additional axis,e.g. a motor, or a set of additional axes such as a two axis positioner.

    Stand alone controller Stand alone controller means an ABB controller delivered without an ABB robot. The standalone controller can be used to control non-ABB equipment, usually TCP robots. It can beused for Non-MultiMove and MultiMove systems alike. MultiMove makes it possible toconfigure and run multiple mechanical units on the same drive module.

  • 8/17/2019 Additional Axes and Stand Alone Controller

    17/208

    1 Introduction

    1.3. General guidelines and limitations

    153HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    1.3. General guidelines and limitations

    Use integer gear ratioThe transmission gear ratio between motor and arm of a continuously rotating axis shall bean integer in order not to cause calibration problems when updating revolution counters.

    When the revolution counter is updated, the number of motor revolutions is reset. In order forthe zero position of the motor to coincide with the zero position of the arm, independent ofnumber of revolutions on the arm side, the gear ratio needs to be an integer (not a decimalnumber).

    Example: Gear ratio = 1:81 (not 1:81.73).

    This problem will only be visible when updating revolution counters with the arm side rotatedn turns from the original zero position. I.e. an axis with mechanical stops will not have this

    problem.

  • 8/17/2019 Additional Axes and Stand Alone Controller

    18/208

    1 Introduction

    1.3. General guidelines and limitations

    3HAC021395-001 Revision: L16

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

  • 8/17/2019 Additional Axes and Stand Alone Controller

    19/208

    2 Getting started

    2.1. Get started with additional axes, servo guns and non-ABB robots

    173HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    2 Getting started

    2.1. Get started with additional axes, servo guns and non-ABB robots

    OverviewThis section describes the steps to get started with:

    • additional axes

    • a servo gun

    • non-ABB robots

    Step by step

    Action See

    1. Mount the hardware, such as motor unit, connection boxcables and connectors.

    2. For additional axes and servo guns there are varioustemplate files available depending on the setup of thehardware. If the user does not already have a specifictemplate file, see information on what file to use.

    Template files on page 20 .

    3. For a non-ABB robot find the Kinematic model to beused.

    Kinematic models on page 25 .

    4. Install the robotware software and create a system usingRobotStudio.

    Creating a stand alonecontroller system on page 60 .

    5. Download the system to the robot controller.

    6. Use Robot Studio or the FlexPendant for a basic config-uration of system parameters.

    Limit peripheral speed ofexternal axis on page 67 .Minimal configuration ofadditional axes on page 69or Minimal configuration of servogun on page 71or Minimal configuration of non-

    ABB robots on page 74 .

    7. Check if any advanced setting needs to be done. Advanced settings on page78 .

    8. When configuration is done the system needs to be finecalibrated and tuned.

    Commutate the motor on page 103 .Tuning on page 107 .

  • 8/17/2019 Additional Axes and Stand Alone Controller

    20/208

    2 Getting started

    2.1. Get started with additional axes, servo guns and non-ABB robots

    3HAC021395-001 Revision: L18

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

  • 8/17/2019 Additional Axes and Stand Alone Controller

    21/208

    3 Installation

    3.1.1. Standard additional axis (Option selected)

    193HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3 Installation

    3.1 Additional axes and servo guns

    3.1.1. Standard additional axis (Option selected)

    Overview Normally all necessary configuration parameters regarding drive unit, rectifiers andtransformers are pre-loaded at ABB, and do not need to be re-installed. For more informationon how to add options to the system, see Operating manual - RobotStudio .

    Option number The option number for Additional axes is 907-1.

    Peripheral equipmentIf the supplier of Track Motion or other peripheral equipment supplies configuration filesthese files should be used instead of the standard files. See enclosed documentation.

  • 8/17/2019 Additional Axes and Stand Alone Controller

    22/208

    3 Installation

    3.1.2. Template files

    3HAC021395-001 Revision: L20

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.1.2. Template files

    OverviewThis section details the template files for respective hardware. Normally you only need tochange the motor data in these files. For more information on how to change these files, seeOperating manual - RobotStudio . The files are located in the directoryMediapool\RobotWare_5.XX.XXXX\Utility\AdditionalAxis . They can also befound in the stand alone controller package.

    MotorsThere are template files used to connect the motors to the drive system and measurementsystem.

    Listed below are files for motors connected to drive module 1 (located in

    Mediapool\RobotWare_5.XX.XXXX\Utility\AdditionalAxis\DriveSystemXX\General\DM1 ). Similar template files exist for drive modules 2-4. These files areadjusted for additional axes on the same drive unit as a robot.

    There are also common template files for a general purpose. These files exist for drive module1-4 (but are rarely used for drive module 1 since axes 1-6 for drive module 1 are usually used

    by the robot). Listed below are these files for drive module 2 (located inMediapool\RobotWare_5.XX.XXXX\utility\AdditionalAxis\IRC_U\DM2 ).

    Template files for defining general kinematics can be found inMediapool\RobotWare_5.XX.XXXX\utility\AdditionalAxis\GeneralKinemati

    cs\DM1 . These files exist for drive module 1-4. The measurement link, board position andmeasurement node are all configured as for a regular robot. The manipulator XZB(X) ischosen as it is composed of two linear and one rotating axis thus highlighting the importsettings described in section Defining parameters for general kinematics on page 90 .

    Listed below are the configuration files for drive module 1. Primarily the "_11"-files should be used. The other files exist to support the case when the XZB(X) manipulator is connectedtogether with for example another XZB(X) manipulator on the same drive module.

    File name Measurement link Board position Measurement node

    M7L1B1_DM1.cfg 1 1 7

    M7L1B2_DM1.cfg 1 2 7

    M7L2B1_DM1.cfg 2 1 7

    M8L2B1_DM1.cfg 2 1 5

    M9L2B1_DM1.cfg 2 1 4

    File name Measurement link Board position Measurement node

    M1_DM2 1 1 1

    M2_DM2 1 1 2

    M3_DM2 1 1 3

    M4_DM2 1 1 4

    M5_DM2 1 1 5M6_DM2 1 1 6

    Continues on next page

  • 8/17/2019 Additional Axes and Stand Alone Controller

    23/208

    3 Installation

    3.1.2. Template files

    213HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    Load all four "_11"-files (or all "_12"-files if it is the second XZB(X), "_13" for the third and"_14" for the fourth) and then restart the controller.

    Servo Gun / Track motionThe template files for Servo Gun and Track motion are all prepared for drive module 1-4. Thefiles contain default data for Servo Gun and Track motion. Motor data etc. for selected motormust be changed. Listed below are the template files for drive module 1.

    Servo Gun template files located in:Mediapool\RobotWare_5.XX.XXXX\utility\AdditionalAxis\DriveSystemXX\ServoGun

    Track motion template files located in:Mediapool\RobotWare_5.XX.XXXX\utility\AdditionalAxis\DriveSystemXX\Track

    Recommended combinationsThe following combination of configuration files for motor 7, 8 and 9 are the recommendedcombinations in one drive module.

    NOTE!

    See examples in Serial Measurement Link examples on page 185 .

    File name

    EXT_XZB(X)_TEMPLATE_11.cfg

    INT_XZB(X)_TEMPLATE_11.cfg

    SEC_XZB(X)_TEMPLATE_11.cfg

    UNCALIB_11.cfg

    File name Measurement link Board position Measurement node

    M7L1B1S_DM1.cfg 1 1 7

    M7L2B1S_DM1.cfg 2 1 7

    M8L2B1S_DM1.cfg 2 1 5

    File name Measurement link Board position Measurement node

    M7L1B1T_DM1.cfg 1 1 7

    M7L1B2T_DM1.cfg 1 2 7

    M8L2B1T_DM1.cfg 2 1 5

    Motor 7 Motor 8 Motor 9

    M7L1B1_DM1.cfg M8L2B1_DM1.cfg M9L2B1_DM1.cfg

    M7L1B2_DM1.cfg M8L2B1_DM1.cfg M9L2B1_DM1.cfg

    M7L2B1_DM1.cfg M8L2B1_DM1.cfg M9L2B1_DM1.cfg

    Continued

  • 8/17/2019 Additional Axes and Stand Alone Controller

    24/208

    3 Installation

    3.1.3. Serial measurement system configuration

    3HAC021395-001 Revision: L22

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.1.3. Serial measurement system configuration

    OverviewThe following section details how to configure the measurement link.

    Measurement ChannelThe Measurement Channel parameters can easily be changed via RobotStudio or theFlexPendant. Select the configuration topic Motion and the type Measurement Channel .Another alternative is to edit the parameters in the file MOC.cfg and load this file to thecontroller. For information about how to load a cfg file, see Operating manual - RobotStudio .

    NOTE!

    Each node (1 to 7) must not be used more than once on each serial measurement link.

    Action Info/Illustration

    1. Select the serial measurement link by changing the valueof the parameter measurement_link .

    selectable values: 1 or 2

    2. Select the SMB placement by changing the value of theparameter board_position .

    selectable values: 1 or 2

    3. Select the measurement node by changing the value ofthe parameter measurement_node .

    selectable values: 1 to 7

  • 8/17/2019 Additional Axes and Stand Alone Controller

    25/208

    3 Installation

    3.2.1. Introduction

    233HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2 Non ABB robots

    3.2.1. Introduction

    OverviewThis section details how to create and install a stand alone controller system, i.e. a system to

    be used with non-ABB robots. The basic steps to do this are as follows:

    • Find the correct drive unit configuration.

    • Find the appropriate kinematic model.

    • Install RobotWare and the stand alone controller software on your PC.

    • Create a stand alone controller system with the selected kinematic model.

    • Download the system to the robot controller.

    This section also details how to modify and distribute a stand alone package for easyinstallation and startup at a customer.

  • 8/17/2019 Additional Axes and Stand Alone Controller

    26/208

    3 Installation

    3.2.2. Drive module for non-ABB robots

    3HAC021395-001 Revision: L24

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.2. Drive module for non-ABB robots

    Drive unit configurationThe table shows the different drive units available for non-ABB robots.

    For definitions of drive units and power stages see Drive units on page 182 .

    No of axes Corresponding robot Drive units

    6 IRB 140, 1410, 260, 1600, 2400 MDU-430A

    4 IRB 360 MDU-430A

    6 IRB 2600, 4400, 4600, 660, 66xx, 7600 MDU-790A

    4 IRB 4400, 66xx (with only 4 active drives) MDU-790A

  • 8/17/2019 Additional Axes and Stand Alone Controller

    27/208

    3 Installation

    3.2.3.1. Introduction

    253HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3. Kinematic models

    3.2.3.1. Introduction

    OverviewThis section describes the different built-in kinematic models available in the controller. Itserves as a guideline for choosing the appropriate model for the current robot system.

    Model groups

    The table below describes the different groups of kinematic models.

    Model notationThe specific kinematic models within a model group are designated with a combination ofcapital letters. The table below details the meaning of this notation.

    NOTE!

    The base frame is orientated so that the linear motions are parallel to the directions of the baseframe axes X, Y and Z.

    Related informationUseful information:

    • Read about base and world coordinates in Operating manual - IRC5 with FlexPendant , section Jogging .

    Notation: Indicates:

    Single Axes one axis

    Area three to six axesLinear two to five axes

    TopLoader four to six axes

    Doppin Feeder two or three axes

    Notation: Indicates:

    X, Y, Z linear motion A, B, C, D, E, F rotational movement

    A(X) rotational movement around X-axis

    A(Y) rotational movement around Y-axis

    A(Z) rotational movement around Z-axis

  • 8/17/2019 Additional Axes and Stand Alone Controller

    28/208

    3 Installation

    3.2.3.2. Kinematic model XYZ

    3HAC021395-001 Revision: L26

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.2. Kinematic model XYZ

    DescriptionThe kinematic model is based on an area gantry concept, with three linear motions and norotations.

    Illustration

    xx0300000614

    D World frame

    E Base frame

    F Tool frame

    X X-linear motion

    Y Y-linear motion

    Z Z-linear motion

  • 8/17/2019 Additional Axes and Stand Alone Controller

    29/208

    3 Installation

    3.2.3.3. Kinematic model C(Z)

    273HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.3. Kinematic model C(Z)

    DescriptionThe kinematic model is based on an area gantry concept, with three linear motions and onerotation.

    Illustration

    xx0300000616

    D World frame

    E Base frame

    F Tool frame

    X X-linear motion

    Y Y-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

  • 8/17/2019 Additional Axes and Stand Alone Controller

    30/208

    3 Installation

    3.2.3.4. Kinematic model B(X)

    3HAC021395-001 Revision: L28

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.4. Kinematic model B(X)

    DescriptionThe kinematic model is based on an area gantry concept, with three linear motions and onerotation.

    Illustration

    xx0300000617

    D World frame

    E Base frame

    F Tool frame

    X X-linear motion

    Y Y-linear motion

    Z Z-linear motion

    B B rotating around X axis in base frame

    a offset_z of arm robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    31/208

    3 Installation

    3.2.3.5. Kinematic model XYZB(Y)

    293HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.5. Kinematic model XYZB(Y)

    DescriptionThe kinematic model is based on an area gantry concept, with three linear motions and onerotation.

    Illustration

    xx0300000618

    D World frame

    E Base frame

    F Tool frame

    X X-linear motion

    Y Y-linear motion

    Z Z-linear motion

    B B rotating around Y axis in base frame

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    32/208

    3 Installation

    3.2.3.6. Kinematic model XYZC(Z)B(X)

    3HAC021395-001 Revision: L30

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.6. Kinematic model XYZC(Z)B(X)

    DescriptionThe kinematic model is based on an area gantry concept, with three linear motions and tworotations.

    Illustration

    xx0500002122

    D World frame

    E Base frame

    F Tool frame

    X X-linear motion

    Y Y-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

    B B rotating around X axis in base frame

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    33/208

    3 Installation

    3.2.3.7. Kinematic model XYZC(Z)B(Y)

    313HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.7. Kinematic model XYZC(Z)B(Y)

    DescriptionThe kinematic model is based on an area gantry concept, with three linear motions and tworotations.

    Illustration

    xx0500002122

    D World Frame

    E Base Frame

    F Tool Frame

    X X-linear motion

    Y Y-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

    B B rotating around Y axis in base frame

    a offset_z of arm robx_6

  • 8/17/2019 Additional Axes and Stand Alone Controller

    34/208

    3 Installation

    3.2.3.8. Kinematic model XYZB(X)A(Z)

    3HAC021395-001 Revision: L32

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.8. Kinematic model XYZB(X)A(Z)

    DescriptionThe kinematic model is based on an area gantry concept, with three linear motions and tworotations.

    Illustration

    xx0300000619

    D World frame

    E Base frame

    F Tool frame

    X X-linear motion

    Y Y-linear motion

    Z Z-linear motion

    B B rotating around X axis in base frame

    A A rotating around Z axis in base frame if B is zero

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    35/208

    3 Installation

    3.2.3.9. Kinematic model XYZB(Y)A(Z)

    333HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.9. Kinematic model XYZB(Y)A(Z)

    DescriptionThe kinematic model is based on an area gantry concept, with three linear motions and tworotations.

    Illustration

    xx0300000620

    D World frame

    E Base frame

    F Tool frame

    X X-linear motion

    Y Y-linear motion

    Z Z-linear motion

    B B rotating around Y axis in base frame

    A A rotating around Z axis in base frame if B is zero

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    36/208

    3 Installation

    3.2.3.10. Kinematic model XYZC(Z)B(X)A(Z)

    3HAC021395-001 Revision: L34

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.10. Kinematic model XYZC(Z)B(X)A(Z)

    DescriptionThe kinematic model is based on an area gantry concept, with three linear motions and threerotations.

    Illustration

    xx0300000621

    D World frame

    E Base frame

    F Tool frame

    X X-linear motion

    Y Y-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

    B B rotating around X axis in base frame when C is zero

    A A rotating around Z axis in base frame if B is zeroa offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    37/208

    3 Installation

    3.2.3.11. Kinematic model XYZC(Z)B(Y)A(Z)

    353HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.11. Kinematic model XYZC(Z)B(Y)A(Z)

    DescriptionThe kinematic model is based on an area gantry concept, with three linear motions and threerotations.

    Illustration

    xx0500002211

    D World frame

    E Base frameF Tool frame

    X X-linear motion

    Y Y-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

    B B rotating around Y axis in base frame when C is zero

    A A rotating around Z axis in base frame if B is zero

    a offset _z of arm”robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    38/208

    3 Installation

    3.2.3.12. Kinematic model XYZC(Z)A(X)

    3HAC021395-001 Revision: L36

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.12. Kinematic model XYZC(Z)A(X)

    DescriptionThe kinematic model is based on an area gantry concept, with three linear motions and tworotations.

    Illustration

    xx0500002202

    D World frameE Base frame

    F Tool frame

    X X-linear motion

    Y Y-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

    A A rotating around X axis in base frame

  • 8/17/2019 Additional Axes and Stand Alone Controller

    39/208

    3 Installation

    3.2.3.13. Kinematic model XYZC(Z)A(Y)

    373HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.13. Kinematic model XYZC(Z)A(Y)

    DescriptionThe kinematic model is based on an area gantry concept, with three linear motions and tworotations

    Illustration

    xx0500002203

    D World frameE Base frame

    F Tool frame

    X X-linear motion

    Y Y-linear motion

    Z Z-linear motion

    C C rotating around z axis in base frame

    A A rotating around y axis in base frame

  • 8/17/2019 Additional Axes and Stand Alone Controller

    40/208

    3 Installation

    3.2.3.14. Kinematic model XZ

    3HAC021395-001 Revision: L38

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.14. Kinematic model XZ

    DescriptionThe kinematic model is based on a linear gantry concept, with two linear motions.

    Illustration

    xx0500002110

    D World Frame

    E Base Frame

    F Tool Frame

    X X-linear motion

    Z Z-linear motion

  • 8/17/2019 Additional Axes and Stand Alone Controller

    41/208

    3 Installation

    3.2.3.15. Kinematic model XZC(Z)

    393HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.15. Kinematic model XZC(Z)

    DescriptionThe kinematic model is based on a linear gantry concept, with two linear motions and onerotation.

    Illustration

    xx0500002115

    D World Frame

    E Base Frame

    F Tool Frame

    X X-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

  • 8/17/2019 Additional Axes and Stand Alone Controller

    42/208

    3 Installation

    3.2.3.16. Kinematic model XZB(X)

    3HAC021395-001 Revision: L40

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.16. Kinematic model XZB(X)

    DescriptionThe kinematic model is based on a linear gantry concept, with two linear motions and onerotation.

    Illustration

    xx0500002111

    D World Frame

    E Base Frame

    F Tool Frame

    X X-linear motion

    Z Z-linear motion

    B B rotating around X axis in base frame

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    43/208

    3 Installation

    3.2.3.17. Kinematic model XZB(Y)

    413HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.17. Kinematic model XZB(Y)

    DescriptionThe kinematic model is based on a linear gantry concept, with two linear motions and onerotation.

    Illustration

    xx0500002113

    D World Frame

    E Base Frame

    F Tool Frame

    X X-linear motion

    Z Z-linear motion

    B B rotating around Y axis in base frame

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    44/208

    3 Installation

    3.2.3.18. Kinematic model XZC(Z)B(X)

    3HAC021395-001 Revision: L42

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.18. Kinematic model XZC(Z)B(X)

    DescriptionThe kinematic model is based on a linear gantry concept, with two linear motions and tworotations.

    Illustration

    xx0500002116

    D World Frame

    E Base Frame

    F Tool Frame

    X X-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

    B B rotating around X axis in base frame

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    45/208

    3 Installation

    3.2.3.19. Kinematic model XZC(Z)B(Y)

    433HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.19. Kinematic model XZC(Z)B(Y)

    DescriptionThe kinematic model is based on a linear gantry concept, with two linear motions and tworotations.

    Illustration

    xx0500002118

    D World Frame

    E Base Frame

    F Tool Frame

    X X-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

    B B rotating around Y axis in base frame

    aoffset_z

    of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    46/208

    3 Installation

    3.2.3.20. Kinematic model XZB(X)A(Z)

    3HAC021395-001 Revision: L44

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.20. Kinematic model XZB(X)A(Z)

    DescriptionThe kinematic model is based on a linear gantry concept, with two linear motions and tworotations.

    Illustration

    xx0500002112

    D World Frame

    E Base Frame

    F Tool Frame

    X X-linerar motion

    Z Z-linear motion

    B B rotating around X axis in base frame

    A A rotating around Z axis in base frame

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    47/208

    3 Installation

    3.2.3.21. Kinematic model XZB(Y)A(Z)

    453HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.21. Kinematic model XZB(Y)A(Z)

    DescriptionThe kinematic model is based on a linear gantry concept, with two linear motions and tworotations.

    Illustration

    xx0500002114

    D World Frame

    E Base Frame

    F Tool Frame

    X X-linear motion

    Z Z-linear motion

    B B rotating around Y axis in base frame

    A A rotating around Z axis in base frame

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    48/208

    3 Installation

    3.2.3.22. Kinematic model XZC(Z)B(X)A(Z)

    3HAC021395-001 Revision: L46

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.22. Kinematic model XZC(Z)B(X)A(Z)

    DescriptionThe kinematic model is based on a linear gantry concept, with two linear motions and threerotations.

    Illustration

    xx0500002117

    D World Frame

    E Base Frame

    F Tool Frame

    X X-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

    B B rotating around X axis in base frame if C is zero A A rotating around Z axis in base frame

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    49/208

    3 Installation

    3.2.3.23. Kinematic model YZ

    473HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.23. Kinematic model YZ

    DescriptionThe kinematic model is based on a linear gantry, with two linear motions and no rotation.

    Illustration

    xx0300000622

    D World frame

    E Base frame

    F Tool frame

    Y Y-linear motion

    Z Z-linear motion

  • 8/17/2019 Additional Axes and Stand Alone Controller

    50/208

    3 Installation

    3.2.3.24. Kinematic model YZC(Z)

    3HAC021395-001 Revision: L48

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.24. Kinematic model YZC(Z)

    DescriptionThe kinematic model is based on a linear gantry, with two linear motions and one rotation.

    Illustration

    xx0300000623

    D World frame

    E Base frame

    F Tool frame

    Y Y-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

  • 8/17/2019 Additional Axes and Stand Alone Controller

    51/208

    3 Installation

    3.2.3.25. Kinematic model YZB(X)

    493HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.25. Kinematic model YZB(X)

    DescriptionThe Y_Z_B(X) is a kinematic model, based on a linear gantry, with two linear motions andone rotation.

    Illustration

    xx0300000624

    D World frame

    E Base frame

    F Tool frame

    Y Y-linear motion

    Z Z-linear motion

    B B rotating around X axis in base frame

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    52/208

    3 Installation

    3.2.3.26. Kinematic model YZB(Y)

    3HAC021395-001 Revision: L50

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.26. Kinematic model YZB(Y)

    DescriptionThe kinematic model is based on a linear gantry, with two linear motions and one rotation.

    Illustration

    xx0300000625

    D World frame

    E Base frame

    F Tool frame

    Y Y-linear motion

    Z Z-linear motion

    B B rotating around Y axis in base frame

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    53/208

    3 Installation

    3.2.3.27. Kinematic model YZC(Z)B(X)

    513HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.27. Kinematic model YZC(Z)B(X)

    DescriptionThe kinematic model is based on a linear gantry concept, with two linear motions and tworotations.

    Illustration

    xx0500002119

    D World Frame

    E Base Frame

    F Tool Frame

    Y Y-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

    B B rotating around X axis in base frame if C is zero

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    54/208

    3 Installation

    3.2.3.28. Kinematic model YZC(Z)B(Y)

    3HAC021395-001 Revision: L52

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.28. Kinematic model YZC(Z)B(Y)

    DescriptionThe kinematic model is based on a linear gantry concept, with two linear motions and tworotations.

    Illustration

    xx0500002120

    D World Frame

    E Base Frame

    F Tool Frame

    Y Y-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

    B B rotating around Y axis in base frame

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    55/208

    3 Installation

    3.2.3.29. Kinematic model YZB(X)A(Z)

    533HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.29. Kinematic model YZB(X)A(Z)

    DescriptionThe kinematic model is based on a linear gantry, with two linear motions and two rotations.

    Illustration

    xx0300000626

    D World frame

    E Base frame

    F Tool frame

    Y Y-linear motion

    Z Z-linear motion

    B B rotating around X axis in base frame

    A A rotating around Z axis in base frame if B is zero

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    56/208

    3 Installation

    3.2.3.30. Kinematic model YZB(Y)A(Z)

    3HAC021395-001 Revision: L54

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.30. Kinematic model YZB(Y)A(Z)

    DescriptionThe kinematic model is based on a linear gantry, with two linear motions and two rotations.

    Illustration

    xx0300000627

    D World frame

    E Base frame

    F Tool frame

    Y Y-linear motion

    Z Z-linear motion

    B B rotating around Y axis in base frame

    A A rotating around Z axis in base frame if B is zero

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    57/208

    3 Installation

    3.2.3.31. Kinematic modelYZC(Z)B(X)A(Z)

    553HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.31. Kinematic modelYZC(Z)B(X)A(Z)

    DescriptionThe kinematic model is based on a linear gantry, with two linear motions and three rotations.

    Illustration

    xx0300000628

    D World frame

    E Base frame

    F Tool frame

    Y Y-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

    B B rotating around X axis in base frame when C is zero

    A A rotating around Z axis in base frame if B is zero

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    58/208

    3 Installation

    3.2.3.32. Kinematic model YZC(Z)B(Y)A(Z)

    3HAC021395-001 Revision: L56

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.32. Kinematic model YZC(Z)B(Y)A(Z)

    DescriptonThe kinematic model is based on a linear gantry, with two linear motions and three rotations.

    Illustration

    xx0500002223

    D World frame

    E Base frame

    F Tool frame

    Y Y-linear motion

    Z Z-linear motion

    C C rotating around Z axis in base frame

    B B rotating around Y axis in base frame when C is zero

    A A rotating around Z axis in base frame if B is zero

    a offset_z of arm “robx_6”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    59/208

    3 Installation

    3.2.3.33. Kinematic model YE(Y)D(Y)B(Y)A(Z)

    573HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.33. Kinematic model YE(Y)D(Y)B(Y)A(Z)

    DescriptionThe five axes kinematic model is based on a TopLoader concept. It consists of a manipulatorwith five rotating axes that can move with a linear movement. The home position is shown inthe figure below.

    Illustration

    xx0500002224

    F World frame

    G Base frameH Tool frame

    Y Joint robx_1 linear along Y axis in base frame

    E Joint robx_2 rotating around Y axis in base frame

    D robx_3 rotating around Y axis in base frame

    B Joint robx_5 rotating around Y axis in base frame if the others arezero

    A Joint robx_6 rotating around Z axis in base frame if the others arezero

    a offset_z of arm robx_6

    b offset_z of arm robx_4c offset_z of arm robx_3

    d offset_z of arm robx_2

  • 8/17/2019 Additional Axes and Stand Alone Controller

    60/208

    3 Installation

    3.2.3.34. Kinematic model YE(Y)D(Y)C(Z)B(Y)A(Z)

    3HAC021395-001 Revision: L58

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.34. Kinematic model YE(Y)D(Y)C(Z)B(Y)A(Z)

    DescriptionThe six axes kinematic model is based on a TopLoader concept. It consists of a manipulatorwith five rotating axes that can move with a linear movement. The home position is shown inthe figure below.

    Illustration

    xx0300000629

    F World frame

    G Base frame

    H Tool frame

    Y Joint robx_1 linear along Y axis in base frame

    E Joint robx_2rotating around Y axis in base frame

    D robx_3 rotating around Y axis in base frame

    C Joint robx_4 rotating around Z axis in base frame if the others arezero

    B Joint robx_5 rotating around Y axis in base frame if the others arezero

    A Joint robx_6 rotating around Z axis in base frame if the others arezero

    a offset_z of arm “robx_6”

    b offset_z of arm “robx_4”

    c length of arm “robx_3”

    d length of arm “robx_2”

  • 8/17/2019 Additional Axes and Stand Alone Controller

    61/208

    3 Installation

    3.2.3.35. Doppin Feeder

    593HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.3.35. Doppin Feeder

    DescriptionThe Doppin Feeder is a two or three axes kinematical model. (doppin_2: 2 axes, doppin_3: 3axes)

    Home position for this model is with the arm "robx_2" pointing vertically upwards.

    IllustrationThe figure below illustrates the kinematic model for the Doppin Feeder.

    Note! The moving revolute joint robx_2 will result in a non-linear motion of the tool frameif the length of the arm "robx_2" is not equal to the length of the arm "robx_3". The linearmotion along robx_1 and robx_3 moves the whole mechanism.

    xx0300000630

    E Base frame

    F Tool frame

    Y Joint robx_1 linear along Y axis in base frame

    A Joint robx_2 rotating around Y axis in base frame

    Z Joint robx_3 linear along Z axis in base frame

    a offset_z of arm "robx_2"

    b offset_x of arm "robx_2"

    c length of arm "robx_2"

    d length of arm "robx_3"

  • 8/17/2019 Additional Axes and Stand Alone Controller

    62/208

    3 Installation

    3.2.4. Creating a stand alone controller system

    3HAC021395-001 Revision: L60

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.4. Creating a stand alone controller system

    OverviewThis section describes how to create a stand alone controller system. To do this you use therobot’s software CD and the System Builder in RobotStudio.

    General procedure

    Follow these basic steps to create a stand alone controller system. For more information onhow to install RobotWare, create a new system and add additional options see Operatingmanual - RobotStudio .

    System Builder procedure

    General information about creating a new system is available in the Help menu inRobotStudio. This section gives information specific for the stand alone controller option.

    Action

    1. Install RobotWare from the robot’s software CD to your PC, as described in Operatingmanual - RobotStudio .

    2. Run setup.exe located in the folder Additional Options/StandAloneController on the CD.

    3. Create a stand alone controller system using the System Builder in RobotStudio. Howto do this is detailed in System Builder procedure on page 60 .

    4. Download the system to the robot controller by using System Builder. See Installationof system to robot controller on page 62 .

    Action

    1. In RobotStudio, open System Builder and click the Create New button.

    2. In one of the dialogs a key for the additional option should be entered. Browse toMediapool/SAC_5.XX.XXXX on your PC, where the option key file is located. Selectthe key file (.kxt) and click Open .

    Continues on next page

  • 8/17/2019 Additional Axes and Stand Alone Controller

    63/208

    3 Installation

    3.2.4. Creating a stand alone controller system

    613HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3. The succeeding dialog is used to modify options. Check that Additional motors or NoIRB Manipulator is selected as Drive module application for all drive modules to be used

    for non- ABB equipment. Drive module type should be selected as well. The illustrationshows where in the option tree this is done.

    en0600002987

    4. In the same dialog select the appropriate kinematic model to be used under Select DriveModule for Kinematic Model . The illustration shows where in the option tree this is done.

    en0500002433

    Action

    Continued

    Continues on next page

  • 8/17/2019 Additional Axes and Stand Alone Controller

    64/208

    3 Installation

    3.2.4. Creating a stand alone controller system

    3HAC021395-001 Revision: L62

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    Installation of system to robot controller Download the system to the robot controller by using System Builder in RobotStudio.Information on how to do this is available in the Help menu. At the end of the installation

    process you are asked if you want the controller to restart. Confirm and wait until the systemhas started up.

    Errors at start up

    When the system is ready with start-up inform yourself on system status by studying the eventlog on the FlexPendant or in RobotStudio. A system with non-ABB equipment needsconfiguration to become functional, and it is even quite likely that your system is in systemfailure state at this point. Ignore any errors until you are ready with the configuration

    procedure described in section Minimal configuration of non-ABB robots on page 74 . If thereare remaining errors after configuration is done find out more about error localization insection Error management on page 143 .

    5. If the system has several mechanical units, a kinematic model for each one of themshould be selected. In the illustration below a Doppin Feeder has been selected as a

    second kinematic model for drive module 1. If the system has several drive modulescontinue by selecting kinematic models for Drive Module 2 etc.

    en0600002979

    6. When the system has been created, take a look at System Properties in SystemBuilder. Verify that Kinematic models etc. are correct. If something needs to be changedclick Modify and proceed with modification of system properties.

    Action

    Continued

  • 8/17/2019 Additional Axes and Stand Alone Controller

    65/208

    3 Installation

    3.2.5. Modify a Stand Alone Controller package

    633HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3.2.5. Modify a Stand Alone Controller package

    IntroductionIt is possible to create and distribute new configurations based on different kinematic models.However, the install files for the configuration and RobotStudio have to be changed.

    Modify a Stand Alone package

    Suppose you have built a robot and used the kinematic model XYZCZ from the folderGantryArea (normally located at C:\Program Files\ABB IndustrialIT\RoboticsIT\Mediapool\SAC_5.XX.XXXX\GantryArea\ ). The robot is calledMYGANTRY. It should be possible to run several robots in a MultiMove installation. Thefollowing procedure shows how to distribute the file package for easy installation and startupat a customer.

    Action

    1. Go to folder Mediapool\SAC_5.XX.XXXX\Syskey and open the file relkey.opt :

    en0600002797

    2. Add the robot name to a suitable group, in this case "Select Gantry Area Kinematic" andadd a new .dat file name:

    en0600002798

    Find the next configuration for robot 2 and add the robot. Add a new dat -file name, inthis case mygantry2.dat . Repeat for all four robots.

    Continues on next page

  • 8/17/2019 Additional Axes and Stand Alone Controller

    66/208

    3 Installation

    3.2.5. Modify a Stand Alone Controller package

    3HAC021395-001 Revision: L64

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    3. Create your defined dat -file in the same folder by copying the file for your originalkinematic model, xyzcz11.dat and rename it to mygantry11.dat . Open the file and

    change the name in the line: -id SAC11Select -key

    en0600002799

    Repeat for all robots. Note thatSAC21

    corresponds tomygantry21.dat

    (drive module2 and robot 1) and so on.

    4. Move to the folder where you want to place your configuration files, in this caseGantryArea . You have to add your new robot to the installation filesinstareaX1.cmd . Open the first file, copy one of the instances and change name andpath. The name must be the same as declared in the .dat -file. Note that you have tochange the path twice:

    en0600002800

    Repeat this procedure in all instareaXX.cmd files.

    Action

    Continued

    Continues on next page

  • 8/17/2019 Additional Axes and Stand Alone Controller

    67/208

    3 Installation

    3.2.5. Modify a Stand Alone Controller package

    653HAC021395-001 Revision: L

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    5. Continue by copying all four kinematic folders with the contents we chose for your robot.In this case XYZCZ_robX1 . Rename the folders:

    en0600002801

    6. Change the desired data for the robot in the INT and EXT files. Repeat on all robots.

    7. Change the boot path and installing text in all four install.cmd files:

    en0600002802

    It is possible to change the names of the cfg-files but remember to change name bothin folder irbcfg and install.cmd .If we want to protect the new mechanical data we can add -internal to the INT-file ininstall.cmd . The data is then visible in RobotStudio but unchangeable until the -internal-flag is removed.Repeat for all four robots.

    8. Now the setup is ready.Compress the folder with all contents and send it to the customer.

    Action

    Continued

    Continues on next page

  • 8/17/2019 Additional Axes and Stand Alone Controller

    68/208

    3 Installation

    3.2.5. Modify a Stand Alone Controller package

    3HAC021395-001 Revision: L66

    © C

    o p y r i g

    h t 2 0 0 4 - 2

    0 1 0 A B B

    . A l l r i g

    h t s r e s e r v e d .

    Create a system with the new robot

    The folder that you have created and distributed should be unpacked under the folderMediapool . It is then possible to select the new robot during the setup of the new system.

    Action

    1. Create a new system in System