120
A MANNING AND MAINTENANCE EFFECTIVENESS MODEL APPLIED TO THE COMMUNICATION DIVISION OF A "KNOX" CLASS DESTROYER ESCORT. Clifford Stephen Perrin

A manning and maintenance effectiveness model applied to the ... · II. NATUREOFTHEPROBLEM 10 III. INVESTIGATIONOFDATA 14 A.TABLESOFSTATISTICSFROMDATA 18 IV. REPAIRMANTYPEMODEL 33

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

A MANNING AND MAINTENANCE EFFECTIVENESSMODEL APPLIED TO THE COMMUNICATIONDIVISION OF A "KNOX" CLASS DESTROYER

ESCORT.

Clifford Stephen Perrin

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS• A MANNING AND MAINTENANCE EFFECTIVENESSMODEL APPLIED TO THE COMMUNICATION DIVISION

OF A "KNOX" CLASS DESTROYER ESCORT

by

Clifford Stephen Perrin

September 1975

Thesis Advisor: Donald P. Gaver

Approved for public release; distribution unlimited.

I 9

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Rnf.r.d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtltl*)

A MANNING AND MAINTENANCE EFFECTIVENESSMODE! APPLIED TO THE COMMUNICATIONDIVISION OF A "KNOX" CLASS DESTROYER

5. TYPE OF REPORT ft PERIOD COVERED

Master's ThesisSeptember 1975

• . PERFORMING ORG. REPORT NUMBER

§ AUTHORfa; • CONTRACT OR GRANT NUMBERS.)

Clifford Stephen Perrin

*. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate SchoolMonterey, California 93940

10. PROGRAM ELEMENT. PROJECT, TASKAREA 4 WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate SchoolMonterey, California 93940

12. REPORT OATE

September 197513. NUMBER OF PAGES

5714. MONITORING AGENCY NAME & ADDRESSf// dlllarant from Controlling Olllca)

Naval Postgraduate SchoolMonterey, California 93940

IS. SECURITY CLASS, (ol thla report.)

Unclassified

15«. DECLASSIFI CATION/ DOWN GRADINGSCHEDULE

16. DISTRIBUTION ST AT EMEN T (ol thi • Rtport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol tha abatract antarad In Block 20, II dlllarant from Raport)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Contlnua on rararaa alda II nacaaaary and tdantlty by block numbar)

Reliability, Readiness, Maintenance, Balance Equations

20. ABSTRACT (Contlnua on ravaraa alda II nacaaaary and Idantlty by block numbar)

The studyship manningand repair ardata analytictenance and MData Collectirates, repair

objective was to investigate the problems ofeffectiveness, specifically in the maintenanceeas, using various probabilistic modeling andal techniques of operations research. Main-aterial Management data from the Maintenanceon System were used for estimating failurerates and maintenance deferral rates for each

DD t*j

(Page 1)

F

aT71 1473 EDITION OF 1 NOV 65 IS OBSOLETES/N 0102-014- 660 1 |

SECURITY CLASSIFICATION OF THIS PAGE (Wnan Data Kntarad)

ffliCUWlTV CLASSIFICATION OF THIS P»GEf<*>.n n-lm Enfr~J

type of equipment. These rates were then used as inputsto the mathematical models. The models could then predictsystem availability which depends on manning level andthe rate of repairs deferred for various reasons.

DD Form 1473. 1 Jan 73

.

S/N 0102-014-6601 SECURITY CLASSIFICATION OF THIS P»OEfW««n D«f« Em;»d)

A Manning and Maintenance Effectiveness ModelApplied to

the Communication Divisionof a

"KNOX" Class Destroyer Escort

*y

Clifford Stephen PerrinLieutenant, United St'ates Navy

B.A., Baldwin Wallace College, 1966

Submitted in partial fulfillment of therequirements for the degree of

MASTER OP SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOLSeptember 1975

ABSTRACT

The study objective was to investigate the problems

of ship manning effectiveness, specifically in the main-

tenance and repair areas, using various probabilistic

modeling and data analytical techniques of operations

research. Maintenance and Material Management data from

the Maintenance Data Collection System were used for

estimating failure rates, repair rates and maintenance

deferral rates for each type of equipment. These rates

were then used as inputs to the mathematical models.

The models could then predict system availability which

depends on manning level and the rate of repairs deferred

for various reasons.

TABLE OF CONTENTS

I. INTRODUCTION 8

II. NATURE OF THE PROBLEM 10

III. INVESTIGATION OF DATA 14

A. TABLES OF STATISTICS FROM DATA 18

IV. REPAIRMAN TYPE MODEL 33

A. INPUT ASSUMPTIONS 35

B. SYSTEM STATES 36

1. Finite Capacity Assumption 36

2. Labeling of States 36

C. BALANCE EQUATIONS 38

D. SOLUTION TECHNIQUE 39

V. RESULTS 41

A. SPECIFIC RESULTS 42

1. Optimistic 42

2. Pessimistic 42

3. More Realistic 42

B. RESULTS OF VARYING NORMAL REPAIR TIMES . . .43

1. Graph of System Unavailability VersusAverage MTTR and Manning Level 44

VI. CONCLUSION 46

APPENDIX A List of Acronyms, Abbreviations andEquipments 47

COMPUTER PROGRAM 48

LIST OF REFERENCES 56

INITIAL DISTRIBUTION LIST 57

5

LIST OP TABLES

I. MTTR BY RATING GROUPS OF THOSE EQUIPMENTS REPAIREDIN LESS THAN OR EQUAL TO ONE DAY DURING NORMALREPAIR (IN MAN-HOURS)

II. MTTR BY RATING GROUPS OP THOSE EQUIPMENTS REPAIREDIN TWO TO FOUR DAYS DURING NORMAL REPAIR (INMAN-HOURS)

III. MTTR BY RATING GROUPS OF THOSE EQUIPMENTS REPAIREDIN FIVE OR MORE DAYS DURING NORMAL REPAIR (INMAN-HOURS

)

IV. MTTR BY RATING GROUPS OF THOSE EQUIPMENTS PLACEDIN DEFERRAL REPAIR (IN MAN-HOURS)

V. MTBF OF THOSE EQUIPMENTS FAILING IN LESS THAN365 DAYS FROM THE TIME OF LAST REPAIR BY THERATING GROUP OF THE REPAIRMAN WHO MAINTAINEDTHE EQUIPMENT IMMEDIATELY PRIOR TO FAILURE (INDAYS)

VI. MTBF OF THOSE EQUIPMENTS EITHER FAILING OR EXPE-RIENCING REDUCED CAPABILITY IN LESS THAN 365DAYS FROM THE TIME OF LAST REPAIR BY THE RATINGGROUP OF THE REPAIRMAN WHO MAINTAINED THE EQUIP-MENT IMMEDIATELY PRIOR TO FAILURE OR REDUCEDCAPABILITY (IN DAYS)

VII. AGGREGATE MTBF, MTTR, AND PROBABILITY OF ENTERINGNORMAL REPAIR (MTBF AND MTTR ARE IN DAYS)

LIST OF FIGURES

1. Minimum Path Representation of System Availability

2. Graph of System Unavailability Versus Average MTTRand Manning Level

I. INTRODUCTION

This project was defined and was under the direction

of Professor Donald P. Gaver, Department of Operations

Research and Administrative Sciences, of the Naval Post-

graduate School, in cooperation with Dr. S. Sorensen of

the Naval Personnel Research and Development Center, and

was sponsored by NPRDC. The study objective was to inves-

tigate the problems of ship manning effectiveness, specif-

ically in the maintenance and repair areas, using various

probabilistic modeling and data analytical techniques of

operations research.

The author undertook a pilot study: to investigate

the availability of key equipment in the Communcations

Division of the Operations Department on a "KNOX" Class

Destroyer Escort Ship.

Maintenance and Material Management data from the

Maintenance Data Collection System (3-M/MDCS) were used

for estimating failure rates, repair rates, and mainte-

nance deferral rates. These rates were then used as inputs

to the mathematical models from which equipment availability

could be predicted, as the latter depends upon maintenance

personnel available. Primary emphasis was placed on the

analysis of the available relevant data, which could be

easily manipulated to yield meaningful parameters as input

into the model.

8

The Communications Division is a large system, itself

consisting of many complex sub-systems which fail and need

to be repaired. The entire ship, likewise, may be consid-

ered to consist of several systems, each contributing to

the readiness and availability of the ship for combat;

that is, the ability of the ship to maintain some Readiness

Condition for an extended period of time.

Simplifying assumptions are made in order to reduce

the size and complexity of the system: only those sub-

systems judgementally deemed critical to maintaining

mission capabilities necessary for combat are explicitly

considered as failure-prone and in need of maintenance.

A single carrier Task Group was selected to be the operating

environment, and no other communication responsibilities

are assumed to be placed upon the ship. One hundred

percent availability of the associated equipment periph-

erals was assumed; that is, microphones, patch cords,

antennae and various other items, having spares readily

available and low failure rates.

II. NATURE OF THE PROBLEM

A ship at sea must "be a self-maintaining entity in

order to successfully perform an assigned mission. The

proper manning levels could have a significant impact on

whether or not a ship successfully completes the assigned

mission. This impact could vary with (a) equipment repair

times, the latter "being related to the experience, ratings,

and numbers of men aboard, (b) equipment failure rates,

these depending on personnel skill and training, assuming

that personnel with the proper Naval Enlisted Classifica-

tion to do the work were on board. Equipment availability

also (c) depends upon spares availability. Lack thereof

influences the rate of deferrals.

Representing one component of mission success, equipment

availability in the Communications Division and its effect

on mission success was considered, using the criteria

of the above paragraph. Manning levels and lists of

equipments were then identified, by arbitrarily selecting

a "KNOX" Class Destroyer Escort as a base case.

The USS DOWNES, DE 1070, was used as a prototypic sit-

uation from which to gather equipment loadings and author-

ized personnel manning levels. An Item Designation Report,

Ref. 1., Ship Equipment Configuration Accounting System

(SECAS) Report Number 502.1, was used to determine the

10

quantity and location of the equipments of interest.

Manning levels for the areas of interest were determined

by reviewing the appropriate BUREAU OP NAVAL PERSONNEL

REPORT 1080-14. These equipment and personnel loading

factors were used to provide a basis from which to initiate

the model. Changes in equipment and personnel can be

made in the model, so that (a) sensitivity studies may be

made, and (b) the model may be applied to quite different

shipboard environments.

The capabilities that were considered to be necessary

for combat, and the critical sub-systems for each specific

capability are identified by equipment name and Equipment

Identification Code. These acronyms and names are defined

in Appendix A. The Networks were as follows:

(1) Network Number 1, simplified to an uncovered UHP

transceiver the AN/SRC-20 (EIC - QD3S).

(2) Network Number 2, simplified to consist of an uncovered

UHF transceiver the AN/SRC-20 (EIC - QL3R).

(3) Network Number 3, simplified to consist of a UHF

transceiver the AN/URC-9 (EIC - QD48).

(4) Network Number 4, simplified to be a UHP transceiver

the AN/URC-9 (EIC - QD48).

(5) Network Number 5, simplified to be the (KY-8) and

an UHF transceiver the AN/SRC-20 (EIC - QD3R).

(6) Network Number 6, simplified to be a KV/-7 (EIC -

QP10) and a HP transmitter the AN/URT-23 (EIC - QE1N).

11

The teletypewriter and the HF receiver were not considered

critical because spare systems exist to take the load.

(7) Network Number 7, simplified to an UHF transceiver

the AN/ SRC-21 (EIC - QD3S), KW-7 (EIC - QP10).

(8) Network Number 8, simplified to the KG-14 (EIC -

QPOQ) and KW-37 (EIC - QF18) and a VLF/MF receiver the

AN/WRR-3B (EIC - QBU).

The above capabilities and equipments were selected

for attention as a result of consultations with Naval

Officers who had spent at least one tour on a "KNOX"

Class Destroyer Escort Ship. These simplified specifi-

cations were considered general in nature and related to

the Command and Control mission of this class of ships.

The following block diagram illustrates a minimum path

representation of those equipments that must operate in

order for the system to function. The equipments compris-

ing each block are listed below. Where more than one

equipment is listed below a block, the equipments were

considered interchangeable. Specifically in the first

block, 6 of 7 means that at least 6 pieces of the 7 avail-

able equipments must function for the block to function,

and the block must be operating in order to have the system

operate. The failure of two pieces of equipment in block

one would thus cause the system to fail by this definition,

where in fact only one of the sub-systems has failed.

12

System failure by this definition is the loss of at least

one sub-system.

Figure 1

Minimum Path Representation of System Availability

6

of7

1of2

2

of4

1of2

1of2

3of4

1

of2

QD3R QF1K QF10 QE1N QF18 QFOQ QB1JQD3SQD48

13

III. INVESTIGATION OF DATA

An investigation of the data supplied by Fleet Mater-

ial Support Office was undertaken to determine whether

meaningful repair rates and failure rates could be extracted

for each type of equipment in the model. The data that

were used in this analysis were from the complete 3-M/MDCS

file from 1970 to July 1975, covering all ships reporting

to the 3-M system, on the listed equipments. It became

immediately apparent that the time in man-hours to repair

any failed equipment was easily extracted from the data

source. This was done for all the equipment. On the

other hand, meaningful data on times between failures,

leading to estimates of equipment failure rates were not

as readily accessible; this difficulty will be addressed

subsequently.

One of the initial objectives of this study was to

relate manning levels to maintenance effectiveness, and

thus to the reliability and availability of the equipment.

The data concerning times to repair were further analyzed

to extract the mean time to repair (MTTR) for each critical

rating associated with the Communications Division; i.e.,

ETC, ET1, ETN2, ETN3, ETSN, ETR2, ETR3, RMC, RM1, RM2,

RM3, RMSN. These twelve ratings which reflect the skill

levels and pay grade of the repairmen were then merged

14

into eight rating groups for this analysis. The title

given each group reflects the majority of the repair actions

undertaken by members of that group. The titles and members

are as follows: ET1 - ETC, ET1ETN2 - ETN2ETN3 - ETN3, ETSNETR2 - ETR2ETR3 - ETR3RM1 - RMC, RM1RM2 - RM2RM3 - RM3, RMSN.

Individualized MTTR parameters v/ere computed over all

maintenance actions in terms of man-hours expended during

the repair action for organizational level repair actions.

Then data sorts of successively greater refinement were

made in order to produce more specific information. For

example, MTTR was computed for maintenance actions completed

within one day of detection of failure, between two and

four days, and for greater than five days after failure.

This study was directed toward the on-board mainte-

nance actions that led to a completion of repair. For

this reason, the author chose to utilize only the MDCS

data cards MCE (Maintenance Closing Event) and CSMA

(Completed Shipboard Maintenance Action). The CSMA

record form is filled out by the organization actually

performing the repair. It is used for organizational

level or what is referred to as "normal repair" in this

thesis; whereas the MCE is referred to as "deferral repairs".

In each case the information recorded by the repairing

15

activity is entered in a very detailed format so as to

facilitate data collection and extraction. A complete

analysis of the available deferral data was not pursued.

Neither were the Shipboard Alteration Actions, since they

were not a direct result of an equipment failure, although

they do contribute to workload.

Estimated failure rates, as presented in the RMA

Design Data Bank report, Ref. 2., vary a great deal, depend-

ing on the data used for estimation: from equipment specif-

ication requirements, results of predictions, test results,

to measurements during fleet use of the equipments.

One of the reasons for the variations is that actual oper-

ating time of the equipments in fleet use is rarely known

and thus real-time data can not be accumulated except

under test situations.

For use in a model we have analyzed the previously

described data set (MDCS) in order to obtain meaningful

times between failure on the equipments of interest.

A brief description of some of the complexities involved

in this simplified system might aid the reader in under-

standing the problems involved in computing failure rates

of equipments from fleet (3-M/MDCS) data. Tv/o of the

eleven equipments modeled were without a spare, three were

substitutable for each other and the remaining equipments

had at least one spare available.

16

All data were first sorted by EIC and then by UIC.

Times between failure were computed using several differ-

ent methods in the process of investigating the data.

The author first computed the time between successive

failures of like equipment aboard the same ship. This

v/as done by chronologically ordering the failure dates

on each ship for each equipment and then computing the

desired statistics. This process was done for both failure-

only items and for failures and reduced capability items.

The second method chosen was to investigate each specific

equipment as identified by serial number aboard each ship.

The data were sorted by EIC, which identifies the equip-

ment type, UIC, which identifies the ship or unit doing

the repair, serial number, and chronological ordering of

failure dates and were then used to compute the MTBF

for each equipment by taking the difference between the

I failure date and the (1-1) repair completion date

for each set of qualifying records.

The next fourteen pages consist of statistical summary

tables and explanation pages for each table indicating

what the author thought was important on each table.

The following definitions are used throughout the tables:

MTTR is the Mean Time To Repair as computed from thedata

MTBF is the Mean Time Between Failures as computedcomponent by component

S.D. is the Sample Standard DeviationM is the Sample Size

17

SS3

CJ-»*-.Mgt—

'

o

<«;owsooEh

h«=UPoc COW §<U oO o

§PC ME-« Eh

• CO OM CO MW r^W H M

-1 Eh« e 53<S PmEh QQ M

8 EhM S3<«!

P-. «P«

e MP

CO Q>Eh Pm

MPC_V

WWCOosCmOCO-

£ COeno p« co ^a gsa

Eh

3a a>Hm CmM« «a.

Eh CmEhe

O CO

H PEh Q« d

p.

mi

inn r-vO vO ITN

en ^t

vO en m•<(- rH O

• • IT".

CV -vt

\OHOsf m o• • en

en ~<f

O m encv m cr<• . cv

cv cv

O o o• • in

en ->j-

sfHir\c-- a^ cv

• •

en cv

cv en to

sJnJh

O C- ^OCS t> m

• • enen en o^

co o enenvo co

• • COcv cv

HHC^r cv -4• •

c=; •

Eh QEh .

2 CO

en en

t> O vOcv t> to

sfcv cv

o o inO o "

• •cv in

g-* o- or-i iH

-v* O vtj-^ ^rH

• • t>en -vj-

in H enen 0^

• •

en cv

H HstiCO O \C

• • Hen -j- r-i

rH CV vOvO CO CV

• • inen en -4

rH t> toH c- cv• • rH

CV CV rH

H O COvO CO m

• •

cv cv

Pi •

Eh QEh •

-JL CO

en

o o oen o- en

en ^t

t> to COCO C- t>

encv

t> 0- t-i• • CV

cv en

in co t>O O -41• • H

CV rH

o o toO en en• •

<fv£l

CO O COOian*

• • H

in rH CVOU O CV

• • <nen -v*

m\0 en

• •

cv cv

Cm •

&H QCH •

:£ CO

rH£hW

o O^ ccv cv cv

tPv CO

IAO (^Co en s

!>CV

-<f o^- c-CV i-l in• . cv

en in

Cocv

cv cv

vO en o-in O en• •

en m

O CV rHr-\ \Q t>

• • CV-4- en

r-l vD rHa> cv vo

en -<f

N Sr1* •

CV cvcv

cu -<rCO -sj

• •

cv en

2^ •

Eh QEh •

X. c/j

cvPhEhW

CO rH CV-vf CV Hen vf

vO --t CO

cv

rH encncv en o

• •

en ~<j-

• •

cv en

O H -stO vO CO• •

en -4-

CV rH t>ir\ 0^ ^C

• • cven en

vO o enm cv o• • O

cn -t

H in cC> J> O

CO CV vDO rH Hen cv

cd •

CO

enaIt*

w

->* O GNin CO P~in CO vC t> o^• • rH

00 vO rHvO t> rH

r-i CV

C CV in)

rH rH

t> invOCV O CV

rH CV

O in -<frH vC HCV ^*

N i^ s

O^ -«t m•

rH CV

OJ o^ cvcv o in• •

en o

& •

Eh Q§3 .Z s*2 CO

cv

en on cv-vfrH rH• •

CV -sf

en o en•vT O CV

• •

r-i CV

CtJ •

Eh QE=! * SX: oo

en

Cm

v£> OCOcvo-or-i CV

vO O inCV rH m-4-C-

rH -t enin rH -»4

• • -4rH en

in O s

• •

en in

vO r-i OvO vO CV

• •

CV rH

en cv ooo^o-c}-vO

en co en

• • r-ien in

O^ CO CO

• •

r-i iH

en o^ cvOO^H• •

nO or-i

Pi •

Eh Q^ •

S CO

e

18

The entries in Table I. are (a) the mean time to

repair each respective equipment by each listed repairman

rating along with (b) the sample standard deviation and

(c) the sample size. The data were sorted to reflect

those repairs taking place immediately by, first, only

looking at CSMA records and, second, using only those

records which indicated repair was completed in a time

less than or equal to one day.

ETN2 and ETN3 rating groups were involved in the major-

ity of all repair actions shown. The mean time to repair

within each similar set of ratings for each equipment

is essentially the same, when small sample sizes are dis-

regarded.

The MTTR from this table were used as input for the

optimistic normal repair rates in the model that is used

to predict system availability. The MTTR in hours indicated

in this table could reflect an immediate diagnosis of

the cause of failure, no delay in getting parts and a

successful installation.

19

H

PL,

•J

io

O

CO>H co<* t;o og oo sPr. oo Eh

• E-t -4M oM O Hi

3 ^ ftEh

CQ S 53S{ M WEh QQ M

1 EhM a<(U sa MCO cyEh w

Mt=>O"wwCOo8

oco

6o«ooREh

a-CO

>H gff) o«in1

O CO

l-H £>Eh O

00t> -st <H

81 cv inrH rH

b

%

en

9i

PQ3

O <n oin \0

• rHmto

CV IA t>pH OvO

• •

o c

a -<t c*>

• •

\D to

O 00 C^O vO C^• • rHo orH

C-\v£) CVCV CV v£>• • C">

CO CO

en l>tr\om

• • £>

t> O in0m\0• • r-i

Cn en

Eh •

^ co

cv

ocoin CV £>

U"\ CO

CV vO CO O m|• •

3-vtNsO

\U CV

-4 o cCV O -4

• rHI> oH

CO CV CVCV C- rH• •

O COrH

£> CO vO

en cv o>m o a-

vO C-

C0 CO inO CV rH• • CV

CV -<t

fc-H QrH •

S CO

Cn

O rH a•stvO -4i

• •

CO \D

• •

en r>

r- inen C»

m co

-4 cv co ensfCV co -4

• •

t> to

en en o>o c- cv• •

cv cv

\D C- O SO cn t>t> CA -«4 Q\ -<$ CV

cv enr-i rH

O -4 «nrH rH -vf

• •

cv m com in m• •

D- CO

O O C^

• •

en cv

Eh •

^ CO

a

CO cvcn o• •

en in

CO

in oco -sf

CO c*-

co m mC\C0 vC

• • r-i

in in

CV MD cv00 OW

• •

rH rH

lh aEh •

;s co

cvpej

EhW

CV vO vC0- Co t>

en >^

<N vf toO^OH• •

CV v£>

CV vO v£)

vO rH• •

rH CV

in cv inr-i Cf\r-i

• •

CO o

in co roco c cv

• •

in i—

i

H O -4

• •

co en

o cv cin vO c^

• •

cn \D toiaH sf

• • HvO sC

O rH -<tOMXit^i

• •

CV cv

Eh aS to

enPi

C r-i O-4 O rH

• •

in in

O Co cen C- rH

• •

« •

Eh Q^ CO

CV

s

CO cv oO rH rH« •

in in

Eh QEh •

% CO

en

3

CO -4 t>vD o^ <n

• •cv cv

O OvCrH CO -4• •

vD CO -4CO vO rH• •

cv en

r-i^D vOO O c^

• •

CO r-i

O cv inm en rH• •

r-i r-i

Eh •

"X CO

20

The entries in Table II. represent the mean time to

repair each respective equipment by each listed repairman

rating along with the sample standard deviation and sample

size. The data were sorted to reflect only those records

of equipments entering normal repair by only looking at

CSMA records and, second, using only those records which

indicated repair was completed in greater than or equal

to two days and less than or equal to four days from the

discovery of equipment failure. The longer time period

to complete repair of equipment in this case could be

thought of as being the result of a complicated failure

which could not be immediately diagnosed. This is some-

what supported by the fact that in almost every case in

Table II. the repair times are greater than in Table I.,

and in the majority of cases, greater by fifty percent

or more. If the two to four day delay were solely attrib-

utable to waiting for parts, then the man-hours expended

should have been more in line with Table I., since it took

significantly longer, one would tend to believe the

initial premise of a complicated failure followed by a

more involved repair action.

21

pq

M««:

a

oao

CO

<

s

o

pH

BM

CO

w

E-<

co

oo

E-i

3- CO

PQ O

Eh »

co

oo

orHEh

oHipH

MEh

M

O CO

M B«j: en« o

&

«

ir\ C- Oen c^

• •

in o

CV CO

• •

sJ-C-

co F-\D Is- f^

. . aCV -<J-

en CO CC-tf x* in

m O

H -t it*

en O^ -<t• • u^

cv en

\C CV vCC- vC O

• • C-

rH XXj• Cn CV

\C orH

o m ~4s£j cv en«' * c\0 O rH

CO vO CVC~-\C H

• • v£in O CV

O^ CV HvO cn tC'

• • inCV -4 H

\0 mmt> on cn

• •

mvO

Pi •

Eh QEh • Sa co

CV

3

envC CVco o en

• •

cv en

o o cMMCcv -^

vO

vDcv

en -4-

co in OO O u>• • cv

cv en

rH vO COco >n ir\

• • co

en c cvO vO er>

• •

in -vj"

O o inO o en• • cn

«<fvO

CO vO -S*

• • -<tin C-- en

in cv r>O CV £>• • rH

cv -4- cv

en i> -<tO -vT rH

sfC*-

Eh QEh •

7r, co

en

• rH

rjN en e<^

j> co cv• •

rH CV

O ^f CVO m en

• •

CV CO cvin o C

cv >n

C~- en <t>

cv o^ enen

vt £>

in inrH CO

vO en

O O vOco en

:Scv ir\

in O COev

<* t>

--*>4 cv

en co*

cv -t o-f

cv en

\D -St enjocoen\o

ON co m itnJ -+ co ccin CV vO rH COivD rH CC

- enCOCV en cn,rH CV

rH OO CO

vO crH

incv

CO CV rH• • CVm co

O en CO; co iH 0~

sf CO G^

~H- £*- UJC^ rH inl

• • -4

o o oin r- rH

CV ~<f

rH C- COo o -4

Eh •

^ CO

en c- en,• . cv

in c^

m rH C^-<t O -4

• • £>insO

o r- -^C^ O e^>

CV -4

CV vC CVco -<f en

• •

en ~4

cr: •

cH •

S CO

cr:

CV m

nwokHirc^ o cv r> o i-i• • in • • cv

-4-c> cv -s*

\0 to r-in s cv

cv

i> cv r>

CViH CV

lAHvCo?OstCCO

vOHCCvO O"^ Co

en cv vjcv o o

cv

m -4- cvcv en cv

en v*

O en rHCO rH CV

• •

O rH

mocvor^-coco -<t-vcO^ C--! o| O O C- rH vO -Ct

r-i rH-4 to

cv in oin o r-i• •

cv cv

CO -<? c~-sD O lf>

enco

rH CO CVto o m,

• •

O rH

eniH \c vo co coen -^ cc . en -<t in• • -<f • •

sO CO CM in

CO sr OsfOOcv e<^

co r- vO-vj" i> cv

• •

sj- vf

cr; .

eh aEH •

S CO

enPi

W

CO rH CV-4- O e^

rH en

O C- C-in C r-i

CV

Sh qrU CO

CV CO r-iO O sj• •

o o

rH O OO rH O• •

rH en

en cv \c

cv

cr:

Eh

S to

n

en

cno -v*

r- rH <<r

rH in inC- vO s}-• •

en u-\

o cv oc^- cv en

rH -<t

O O CVcn\c onvC

o a- om en f>• • rH

rH -4

v£> c*^ >ncv m <;• • rH

envo

in in -v±

IACS>cv \o

CO CO oen o c>

• • cven c^-

envo -<t

C- rH• •

rH -4CV

t> O CC^t o^ en

rH rH

cr: •

Eh QEh •

S CO

22

The entries in Table III. represent the mean time

to repair each respective equipment by each listed repair-

man rating along with the sample standard deviation and

sample size. The data were sorted to reflect only those

records of equipments entering normal repair by only

looking at CSMA records and, second, using only those

records which indicated repair was completed in greater

than or equal to five days from discovery of equipment

failure

.

The repair times shown in this table are significantly

greater in almost every case than those in Table I., as

might be expected.

What is more suprising is that the repair times in

Table III. are generally less than those in Table II.

This could reflect a delay of some sort on less complex

jobs than those in Table II., either for parts or for

outside assistance, and most likely does since all repair

actions take five or more days even though the average

number of hours to repair the equipment was less than

in Table II. Another point of interest is that a higher

percentage of repairmen of the RM and ETR groups worked

on the equipment under Table III. conditions than in

Table I. or Table II. This could be the result of a less

complex repair action delayed for parts.

23

The main item of importance to notice here is that,

even though the time to complete the repair action was

greater than or equal to five days the LITTR in man-hours

expended is still only from one to seven hours, which

helps support the tenet that a lot of time is spent waiting

for parts or waiting for other specific conditions in

order to get started with the job at hand.

24

co

o

23

e CO

w QQ oOH oQ l-H

W Eh• o <$

FH a OMPu> few MH co Eh

CQ £-1 S< 53 WE-t 1

PhM

M Eht=> 3

1w MCO fc>o O"X wEh

PnOCOPu,

!=>OPSooBE-i

ss

CQ

(4

Eh

O CO

K O

COrH

oi

00 cvcn r-• •

~4 O^

?3

rH cn s

O CO ON

-4 e'-

en o C-C-- co cv• • vO

CV -4rH

-4" cn «nO ^ w• • CO

»n co

CV 00 vO-4- to £>

• • COcv cn

CO H vOvO CV cn

• • -4in co i

iavO vnrH CO in• o

\0 co

cow nsO rH O^y

• • COm r> cv

£> -4 O• • O

sfvO m|

CV CV O\o CO o

• • mcv cn cv

-<f -4Co

lAvO

Eh QX CO

cv

P

vO u~\ CVSf iTiH

• •

CV >4

o-tist IT\

• •C^ -<f

cv cc oJ> rH St• • rH

cv -4- i-i

HOtO

rH -4sCo r- CV• •

rH CV

CO cn CJN

00 vO nO• •

C^vvO

CV -4" C~4sL. CV

• • rHCV sfH

m O C*- C- !> CO• • «4 • • UN

O-\s0 OAsO

O ON Onun C- f>

• • 0~NCV cn,

into iri

rH O v£>

• • inCV OA

~4 rH co -4 in ,

nj-K OmH^• • C" • • -4vtvCH\CO

i

in in Oo cv co

On rH CVn0 On CO

• • cn

On c- oIAOO• • o

~4sO in

ON ON CV-* C- rH• • in

CV Cn CO

CV CO COrH CV OstvO

Pi •

Eh OcH •

S co

m

-4- so -4*vO O On

• • m^fsO

On rH Om C- -4*• • CO

-4 in

c$

CV -4

-4" -4 On0- in in

enso

Pi •

Eh QE-i •

3 CO

rHEHW

On rH COO 00 in• •

C- rH

-4- C- cn-4 en r>• • -4

CV -4 rH

C- sfft,rH O 00• • in

-4 £>

en en rHco en cv

• • inrH CV

-4/ en cocv to cc

• • enin F-

rH CO OO rH sO• • UN

insO

en rH osC sO 00

• • to~4 in rH

en c- o-4 m O• • c-

cv en

CV sC s£J> rH -4

en -4

Pi •

Eh QEh •

S CO

O^ Qn CCc— c— ~<*i

-4 0>

in CO00 0^ CV

• • CNrH CV rH

rH vO OOn rH en

. . cvenvo

O H rHQNNi CO

• • CVcv in

CO 00 I>cn in o^

• •

-4 £>

en o oO £> CV• •

en ^f-

-4 O CVo o o>

• • -4msC

rH rH Cnco en cv

• • -4-4nO rH

cltO inen c

• • incv en

rH CO 00cniH -4

-4- -4

Pi •

Eh QEh •

, : co

enPi

W

en~4r>On o c• • C-

en c--

en cv cnin C^ -4

cv

sO 00 vO

• • crH en

r- vc cc'en o mi• •

entu

co co mvO on o

• •

H rH

SJ-vO OCV 00 On•

cn o

t> -4O in

O rH

O nO O4t»^• • CV

CV -4-

rH O -4N n; O

enso Onin On rH

rH rH

Pi •

Eh •

S co

cv

co co coin vi. cn• • er ^

cv en

cv o-cv o^

rH rH

in c^

cn-4

c> c-On O• •

O rH

a

On o^ orH in inJ

Cn00 onCO f> -4

r> On cvr> rH on• • c

cv m rH

cv o o0* in O

• • rHensO

en co enC-- c~ en

• • rHrH ^4- rH

C~- en c>en e^> cv• • cv

envo

O o -4-

On -4 O• • cv

rH -4-

en I> oso -4--4-

• • cvensO

en cv o£> o in

co en r>

oo -4 co en cv ino cv to t- cv f>• • -4

en en tN-

CV r> rHin o cv

• • rHrH CV

o o cvin -4 rH

o o

Eh QEh • ^C

C^ On CCvj? -4 cv

• • cnrH en

co en oin co in

cv m

a; •

Eh QEh • ]£,

;£ co

25

The entries in Table IV. represent the mean time to

repair each respective equipment "by each listed repair-

man along with the sample standard deviation and sample

size. The data were sorted to reflect those repairs listed

as deferrals resulting from operational priority, lack

of material, or the necessity of obtaining outside assis-

tance. This sort was accomplished by looking at MCE

records and all repair times.

ETN2 and ETN3 rating groups v/ere again involved in

the majority of all repair actions; however, the ET1,

ETR2 and ETR3 rating groups number of repair actions in-

creased considerably over those listed in Table I. Again,

within broad rating groups the MTTR were essentially the

same. The MTTR entries only reflect the man-hours required

to fix the equipment and thus does not reflect the average

time to complete repair of 64 days for all deferral actions

taken as a class. This large difference in time required

to complete a repair action is thought to consist mostly

of waiting time for parts or outside assistance.

26

CJ

aE-<

3Ec'co&-< >H<

*M Qm« SM^<Pn welCO <Jj

<U PhI-H- oPh EhO

Pi CO

R 04

Ph

OEh Ph OW JH S3E ^ OEh p Ht

Eh Eh<»H ~1 <$

• OH O> «o Mhg Ph

9 cog MEh

PQ >H R »-aj <*, gb-» a £-* «

*->'i M

IfN HEh

en PU 3MS3 t=>< OP PhX fcrj MEH !3W 3*

CO X WCO i-t

W»-J Q

Ph

gg<3

O Eh

RR.-» <«;H £<pH Oco 5Eh

K S

o co

R&Eh O

f^

in v£> m £>- ~<f inOn J> CV

• •

o- oCV on

H r>vG £>

l> rH C*>

en rH -4

on G^O^ CO

• rH

vQ rH in-vfvG O• • rH

rH vOO OrH

onvO 0<^

• . rv>

O O ip,

IPv O CV

OCG

v£) rH CurH on £>• • COHstH

00 CO

ncvx• • rH

in l>-

O O

rH CO mvO O rH'

• •

O- rHCV rHrH rH

Ph •

Eh •

:•: co

CV

EhPh

CO vG rH

£3

CV O in|

C- inCO o

C vO CCCV o- o

• •

IX CO

a- o -4cv o cv• •

a- cvcv cv

m £> cC- en o-

in too o

o r> oCV CO rH

• •

CO oO rH

CV r-\ vO

O rH

o o oco o i>

• • ;>

CO CO

in en incv cv vC• • cv

CV OrH rH

fe *CO OEh •

;^ co

en

in C vO en r> inCV «<*• in, rH rH C-

on oin in

O enoNco

cv cv »> cv co inen vo cvjou o in

vo a-£> co

CO £> CVin vQ in

• •

O vOCC CO

en cv co• •

\C cvco o

to en mcnvD in

• •

G^ G^CO J>

!> rHCV vO en• •

G^ Oco co

rH -4" en\G os ev

• •

in -4-

0^ 0^

Ph •

S qEH •

rC CO

irwOin r>

H cv ocv cv en

en en

en cv o>rH rH J>

• •

co inCO G^

C°i0^sfO in en

• •

<j G-CO CO

OHO|C rH H• • vO

r> co

r> G-vDco en -si

• •O ONcv orH

pa qEh .

S to

cv

HP4

i> en rHcv en hen envO CO

O CV vDen rH m|

• «

en o\G co

sfC>HrH vD CV

• •

r> cv

o r- oen o vo

• •

-<fC0rH O

in O inC- O -<?

• •

o o

en cv ^tr> £> o^

. . ^^f eno co

o ennvG CO m

• •

rH vOO rH

CO rH vOm -<t rH

rH rHt» O

vO £> inin in xt

• •

c^ enCO o

Ph •

pq Qir\ •

a co

enOhEhPh

Ph •

; : 03

cv

rH G^ COr> o cv

• •

vO inin co

Ph •

Eh .

en

r> cv »n^ c\ ^*• • rH

Cv. Ch-4; i>

vO CO rH• •

inv-O

o en coCV \D >*

CV \G-4-vO

co r> vOCO in rH

cloo

en o enin O rH• •

CV cvrH rH

;> o CrH in en

• •

c<-n ~4-

O rHrH rH

o in Ot> sG rH

• •

CV en

r^rHrH

Ph •

S CO

B

27

The data used to derive Table V. were sorted in such

a manner that only those failures occurring within 365

days of the previous repair action were utilized. This

method tends to give a conservative estimate of the MTEF.

Each equipment type was looked at component by component

so as to get the most information about failure time

from the data; i.e., list all the maintenance actions on

one piece of equipment in chronological order and record

the time between completion of last repair and the next

failure, when the process is out of data on that particular

piece of equipment, start again with the next one.

The data used to derive Table VI. were sorted by

components that either failed or were listed in a reduced

capability status during a 365 day time span from the

completion of the last repair of each component. This

method in general yielded shorter MTBP than those looking

at failures alone, such as on Table V. It should be noted

that the sample for each catagory in this table includes

the complete sample used in Table V.

28

co>H«C B-iQ 53

UA 3vD P-,

C*M-:=>

25 Of< Cm33Eh sCO EhCOw PQl-Q K

fiEh

££M *S

rfPQ O CO<c 55 wP-. 5 Q<* Oo S O

£33oo M M

t=> < ^

H• PQ P-. CO <d

P ££ <3on

PQ Ph

PQ Hpq t-H

X *p* EHEh M J2j< O v-^ w

Eh S Ph .=)

W o M rHM EH« Ph M Ehw P3 f-1 *—

4

Pm o Mfe3X Pm CQ ew o <C

Ph Mcc: o < P3o R Oo Eh PQs *~-*^ WH « oq P3>n & R<* K p-i

p4 Eh ffi

ff! >H OSW PQ oPCEhM Ph"M afc s4 po

ffi 1-1

co s

Ph

o

pacoa

NCMr O rH vDto c-- to cv rH CV rHrH . • • •

PhG-4rH r> co,

pa ua f-\ -sf

uavO in in -<fv£j C^ in £>C 0s\Q vO tO ^C< rH in CrH • • CV • » CV • . CV

£ into CA rH o-\ CV£> to O C vo r>

rH

PA CV \D c^ cv to in in toW CV PA £> l^Oin CUCsfrH • • rH • » iH • • rHPhc-

PA O n£) O -4" t>O to tu to J> to

vO o c 0^ 0^ C<^ O (T\ J>o -4-00 co cn^iJ (^ ir\ rH vDo • • rH . . . .

fe o o?££

CV c-o oH rH rH

O rH to in £> rH in\D vD

incv ^--<t vO in c- rH m en• • ir> • • rH

w t> O CV CO, QN9 to 0^

£> £> CV

to O

00 CV vO

to to

to H O rH £> to m-4 • . . .

a o -4- cn cvo in in D~ O

vD -^ O\D CV 0-

vO O H vD rH ^qto CVco O to c^,

m . . co . . vC • • rHQ sflAH cn. Co, rH £> rHO' co to co to r> t>

pa cv to C^ r> 00 rH v£> OCm" to H m CV CO CV sfvOC^o • • r> . . vC . . CVO o t>- co -si-cn. -4 -<fcv t> t> O to C^ 00

O vO iH 0°, -<J-vD vo to r-

c*O in to CV Co, C ^(" 00 vO• • -vt • « to . .

pq r^rH OJ CO, co, cva

rlrH<H O cvrH rH rH rH

OlAO" O rH int-3 r> OJ rH vOHHrH • • • •

03 V\ CV vO vOo 30 cv

rH rH

Ph • Ph • Cn •

PQ Q PQ cq « Qh . s; Eh . -^C Eh • SS CO X^ C/J 3 COO COU5 PhrH P3 CV en rHEh Op3 o

Ehw

O rH Oin O« •

CV cvto o

C O CV rH vOtr\ C~ <V vO to in

-<rcv0 CO

-4- rH voin o C>

• •

nD v£)

in D-

(TWOrH O

• .

rH to

0^ in CV£> rH c*>

• • iHin co,

£> to

co, u-\ CVo cf^ ~<f-

» • cv0^ in£> 00

^tCVvO tO

cv to co,

CV CV \D. .

co, o^

in OJ qn-d-to cv

. .

CO, U"Nto to

O -4" Co,

OA 0> tO. .

CV sO

OJ ^-t ^c^- o3 -4

• « CVCV \DOC0

-4 £> O to H C-m -4- CV o co,

cv cv£> to

o

h r> coOj vO cv

• • rHnx> r>co, orH rH

m QEh .

>: co

cv

EHw

00 toNO £>

• £>

nOnOs(. .

[> o^o

Ph •

Eh •

3 CO

PA

EhW

0>HvD in C

• • rHPA oaO rHrH t-i

rH rH. .

to inOn rH

On 00 co,

nX3 0^• •

r- rHvO o^

IAnOm• .

0^ PA<H r-\

J> to CVO O CV• •

in co,

pa orH

U-, *

PQ PQEh • S;c co

cv

tocv

iHtu

OA C^--< in.

inO

C^nOnOin Psi to• . CV

rH C-4-0

c-O- tO «H

. .

CO rHm to

-4 in -tfc- cv u-n.

• • 0100-400

rH -4-CVOn PA CV• •

PAPA CrH rH

Eh .s, CO

PA

a

OOn(VO rH -4

3OCVrH

CV CV Oin to O. • rHH rHO OrH rH

Oto 3 rH

IP*• •

CV toCV] OH

Ph •

CQ PQEH • 2Ul CO

29

r-i

>

intMO^ M^H sftfNC st r> on £> cv m sfC O ins^; r> cv rH m CM CV XX O VfOO O- C^ CM xO CM rH CM

s ^ o^ • • CM • • sf • • CM . .cm » . xO • • CC •

CO on O rH in rH CM CV in in -st O rH Ona xC O xO Os rH xC O CV P- £>

R inOtO sfvCCCV O O'

0^ CM CM xO cm CV •st r> CO OJ CV 00cc CO CV vO O^nO O^ O inxO H O CV xO C C st

fg*i H • • • • • • 1—

t

• • • • 0. • • r-i •

H P^ xO CO CO rH CV CM m cm CM CM CM O

pi

o O in st O rH xC 00 rH C- CO

E cm O cm r> cv co cm cm O -st CV 00 O on On CV O CMo sfrxO TX in m c On C C xO O O CM CV CV CO m C inn rH • • ^ • • C • • CV . . 0- • . o> • • xt. •

ss P- sfOH 1> -st CV cm m c> t> r> -st xO CM in cv 1—

1

<5i cy xO CO xO CO rH m xC: rH xO C--

CQ

g 00 O O^ in rH -s? O CM C O in C- O in st On in rH^ rH CO CV O CV -st xO in rH in rH «4 in 00 xC cv sj inrH • • x0 • • £> • • CM • • in • • -sti • • sO .

« pt, O t> C- CO \D 1AH £> CV O O H c- cr-H O" O CO t> CO CV in O CV xO CO rl-4 •HCm CO U crj

s B crj <u

o in C O J> r-i O £> CV CM 00 !>- xO in cv on in act;f-3 o C_T st xO xC cv en t> On C?- CM CV -<? xO c c CO CV ON CM 0)

1O . . CV • .on • • r^ • .CM • • O^ . • in • Pi rH

535 Phj CM in vD xO st in 00 -st in C C- H crj

o 9 O O ON O H xO O- CV C~- 00 rH >HO M S ^s Eh

o O Vs M m 00 xO sj- CV x£ -SfNO CO

NlANt-vtxO CV •st O^ -st xO in r-i CM s

H. fc 3 WO»st £> vO CM CM O rH 0^ OJ CC st xO in xOerf M • • rH . . r> . . CC . . !> . . cv • bo toW E-i w st C- rH £> rH rH On £> CV CM «<t cv CM st rH

•H »HEh *—

i

,

j O O 00 O CV xO xO CV f> £>£5 P4 > >W •H i-i

fin O O UO Em xO CO xO 00 O xO st O O ~<t in 00 O 0^ O in >n O 00 O O -HS5 oc in vO rH C N 00 in cv in CV st 00 CV CO xO st xO a erf cd

r^ I -4 • • • • • • • • • • rH • • • rH P,E-t o cmco xO O CV rH -st CM c r- 0^ w iH iii ra 0)M K o3 t> vO rH CM in in rH cv st St <D U crj <D <X> erf

*-3 M H H CX »H «HM £3 -P crj (D +J -p rHm o> >H P,Crf -H -H drH 0> rH H £•H Crf rH -H -H U

-^ Wcg CO CV in O a CO- CO J> c^ t> r> in cm CV CM CO stQ CO £> rH CV rn sf <> t> H -st O XO XC! CV O O co in J> ,Q 0)^1,0 OCrf on • • rH • • CO • • CO . . i> • • c • .ON • crj rH f-i 03 d SP-, Q CM rH CV m -St CO xO rH CM m cv xO m St CO rH PU rj U {X aO O OJ 00 CV inxO CV xL> xO crj c (D d cd toQ u «n aK a; .h<c 'CS « Q T3 TJ f-i

<D O <V <D»v he M -P

cr; erf CV xO O cv in O O CM CM CV st in CM ON, ON in 3 C C P P CEh CO 00 cm nO vO O stno xO ~<f O^ CO CM C CA st C O Tj -H -H rrj ^ [£j

Em a • • O • • • • • . 0^ • • c . »C0 • a) > > cB cr

2 Cf 00 m in £> O m xO On in -Sf 0^ rH in l> in cv st cm Crf ^H -H Crf Crf «ht> CO xO CO rH xO xO rH c- r> <1> Q O

**-C) O OTJTJ

Ph a <u c c >>CQ co Crf Crf crj cd -PEm cv st xC O sf CV xU C~- -<t CO CV st O m rH CM rH C>J •H& 33 O ir\ cv On CV CV •co H -4 OJ C^ sf Cjs CV G" xo c n in

• • cirs CO 10 to 10 co a r-i

en • .xC • • OC • • CM . . o~ « rH (j <D cd a; «h

B m •st CM NO CV rH CV -sf 01 a^ori cv in st CO st cm f_ ^ J-. ^ fH ^ rOO1 rH O rH O rH CM xQ O rH CM c- C^ jj p 2 3 p -j d< rH H rH rH rH r-i rH rH rH rH &

fA T-i *ri *ri 'rt *H Oog aj crj crj crj cj cc! (-1

CO in rH in vC in -<t cv £— CV CM On vO in CM CV CM CM fjH Ji. Ci, Cx, tc-i ^-i P->o »"5 -M-xO ON O O m in xo xO O C<\ rH s CO cv CO xO rH sto 1-1 • • • • • 'r-i • • rH • . CV • • CV •

< PQ O rH ON xO CM CV CV CO xC O On 003' CV

rH rHrH O-rH

rH CM On CO rH st On 00 r-i CV CM st in xO O

O co

S£ Pm Ph Pi PJ as PiH O m • en • Eh • Eh • Eh • Eh • •

crf o EH rH Eh CV Eh CM Eh -st 6h in Eh xO OVrH

*U S 23 ^~t

30

Table VII. is the most general table of all, and could

quite possibly contain the most enlightening information

also. Rows one and two are straightforward MTBF in days.

Row three entries are the mean time to complete a repair

of a failure for all actions listed as organizational

level and ready for immediate repair. A range of three

to thirteen days makes it rather hard to believe the

often quoted MTTR in terms of hours as indicated in

Tables I - IV. It should also be pointed out that over

75^ of the observations were actually less than each of

the respective MTTR computed which is also indicated by

the large standard deviations compared to the location

of the mean.

If times to repair were exponentially distributed,

one would expect 1 - e-U/MTTR) (MTTR) = Q>63 Qr ^

of the observations to be less than the MTTR, this along

with the larger standard deviations lend support to

saying that repair times tend to be "hyper exponential",

having very long tailed distributions.

Similar reasoning may be applied to row five, which

contains both failures and reduced cabability records.

Rows four and six depict deferral type maintenance infor-

mation on the MTTR for each respective equipment. One

could infer that these long MTTR in days were the result

of waiting for parts or outside assistance.

31

The probability of entering normal repair as listed

in row seven was computed by summing over all maintenance

actions of each equipment type (different EIC), the total

number of MCE (deferral repair actions) and the total

number.-of CSMA (normal repair actions). The entry in

row seven was then computed to be CSO./ (CSMA + MCE).

32

IV. REPAIRMAN TYPE MODEL

Individual pieces of equipment can fail and either

enter normal repair or enter deferral repair with some

specified probability for each type of equipment. Equip-

ment failures are repaired on a First-Come - First-Served

basis. If a failure occurs and is not repaired, the system

is subject to failure. When enough failures occur so

as to saturate the available number of repairmen, a repair

queue begins to build up of those equipments waiting to

be repaired. Equipments which can not be repaired due to

lack of material (parts) or lack of technical expertise

are placed in a deferral repair status and generally

experience an extremely long delay before the situation

can be remedied.

The deferral repair time distributions from Table

VII. could be used as parameters not really dependent

on the number of repairmen available and thus can be con-

sidered in service concurrently with the normal repair

actions. Thus a generalized view of this model is that

when equipment fails it is either repaired quickly or is

delayed for some reason. The probability of being in

any particular situation is an output of the model developed

here.

33

This model is based upon a simplification of the main-

tenance process and is designed to utilize the results of

the data investigation of Chapter III, or any other varia-

tion a user might desire. One, two or three repairmen

may be specified to work on any number of equipments.

The model is more realistic than other repairman type

models in that it allows for individualized failure rates

and repair rates for each type of equipment. Different

deferral probabilities for each equipment are also allowed,

These additional features of the model, while increasing

the realism of the problem, also increase the complexity

of the solution as indicated by G-aver in Ref. 3.

Incorporating manpower data and equipment reliability

data into a model was predicated on considerations in

three major areas:

(1.) availability of sufficient and meaningful data,

(2.) ability to vary factors of interest to Navyplanners,

(3.) measures of system performance.

Availability of data has been previously discussed

in Chapter III. Factors of interest to the Navy planners

were manning levels, manning effectiveness and equipment

reliability and availability. The effect of changed

overall manning levels on mission success can be studied

by using differing numbers of repairmen in the model.

34

The primary measure of system performance was taken to

be the probability of mission success, or one minus the

probability of mission failure.

A. INPUT ASSUMPTIONS

The individual times between failures, times to

complete repairs, and times to complete deferred repairs

are assumed to be independently and exponentially distrib-

uted. This assumption seems credible as indicated in

Chapter III, where the number of observations examined

was greater than three to four hundred. Basic parameters

appearing in the models are the MTBP for equipments as

well as MTTR (normal, and deferred).

Each equipment fails at a different but constant rate

F. (i=l,2, . . . ,N) , and can be repaired at the normal

(immediate) repair rate R. (i=l,2, . . . ,N) or at the deferral

repair rate RD. (i=l,2, . . . ,N) . Each equipment is assumed

to go into immediate repair with probability p. or deferral

repair with probability q.=l-p. (i=l,2, . . . ,N) . These

rates and probabilities were determined from the data of

Chapter III.

Deferral repair action MTTR over all equipment types

ranged from 54 to 92 days to repair a failure. This

long time was thought to be a result of waiting for parts

or outside assistance. The MTTR computed here was so

35

much greater than the MTTR for normal repairs (10 to 60

times longer) that the author decided to use the MTTR

for deferrals as a repair time not influenced by actual

repairman time. In other words, deferral repairs could

be going on simultaneously with normal repairs even though

all the repairmen were busy. This is due to the long wait-

ing time involved in a deferral action relative to the

actual time required to fix a piece of equipment.

B. SYSTEM STATES

Normally, order of failure is important in determining

when an equipment begins to get repaired. This has not

changed in this model, the first item to fail and enter

into the immediate repair queue is serviced first. In

practice a priority scheme might be followed.

1. Finite Capacity Assumption

Three failures of any type are all that are allowed.

This restriction can be changed by incorporating additional

echlons of state spaces into the model. Allowing only

three simultaneous failures was considered adequate,

since only eleven or twelve pieces of equipment were modeled

as a sub-system.

2. Labeling of States

The order in which failures occur define the

label of each possible state for the system to be in.

36

The states of this model may be identified according to

the following format:

N is the number of different equipments labeled from1 to N.

i/jA (i,j,k=l,2,...,N)

(o) no equipment failures

(i) equipment number i has failed and is innormal repair

(iD) equipment number i has failed and is indeferral repair

(i,j) equipment number i has failed first and isin normal repair, equipment number j hasfailed second and is in normal repair

(i,jD) same as (i,j) with j in deferral repair

(iD,j) same as (i,j) with i in deferral repair

(iD,jD) same as (iD,j) with 3 in deferral repair

(i,j,k) same as (i,j) with equipment number k hasfailed third and is in the normal repairqueue

(i,j,kD) same as (i,j,k) v/ith k in the deferralrepair queue

(iD,jD,k) same as (i,j,k) v/ith i and 3 in the deferralrepair queue

(iD,jD,kD) same as (i,j,k) with i, 3, and k all inthe deferral repair queue

State (3,4U, 7) would mean that equipment number 3

had failed first and is in the normal repair queue, equip-

ment number 4 had failed second and is in the deferral

repair queue, and equipment number 7 had failed third

and is in the normal repair queue.

37

Each piece of equipment to "be modeled is assigned a

unique equipment number and thus if there are several

pieces of the same equipment, each has a unique number

even though the failure and repair rates are identical

for each equipment.

C. BALANCE EQUATIONS

The balance equations equate the rate at which the

system enters a certain state to the rate at which the

system leaves that state. Now using the previously defined

states and parameters, the following balance equations

for two repairmen are written as a selection from the

entire system. Where, as an example, P!T1

. means the

probability of being in state (j'D,i). The total number

of states is equal to 1+2(N)+4(N) (N-1)+8(N) (N-l) (N-2)

for this model.

N N N

<iti *±> Po

=i?l R

iPi

+ifl ra

iPi

N N N(R. + S. F.) P. = P p.P. + %j. R.P. . + .§. RD.P.^ .

This is to say that the only way to get into state

(i) is to be in state (o) and have equipment i fail and

go into normal repair or to be in state (j,i) or (JD,i)

and have equipment j repaired. The only way to leave state

(i) is to either have equipment i fixed or to have a failure

of another equipment.

38

N

< Ri +HJ+ 0) Pi(jfk

-PlfjVk

Only allowing three failure yields the above equation,

since there are only two repairmen.

(RD1

+ RDd

+ RDk ) piD);jD(kI)

= PiD(jI)1k

Pk

Here it is noted that three deferrals are being ser-

viced even though there are only two repairmen. This is

due to the assumption about deferral repair actions.

D. SOLUTION TECHNIQUE

The Gauss-Seidel iterative approach to the steady

state solution of a system of balance equations was used.

Briefly, this approach is as follows:

39

1. Initiate Starting State Probabilities

, The most convenient assignment method is to use

an equally likely distribution and assign each the value

1.0/(total number of states).

2. Turn the Crank

Using the present values for each state, solve

for P and use the new value for P when solving anyo o

additional equations containing P . This same method is

then used for P-, and all of the other possible states.

Continue until a new probability has been computed for

each state.

3. Normalization

Take the sum of all of the new probabilities just

computed and divide it into each of the new probabilities,

thus 'ensuring that all probabilities add to unity, as

they must.

4. Check for Stopping Criteria Satisfaction; Re-iteration

The author chose to use a relative ratio method

to test for a minimal change in probabilities, since many

of the probabilities would be extremely small and would

thus always pass a simple differencing technique. The

method was to take the absolute value of the difference

between the old probability and the newly computed proba-

bility and divide by the new probability. (I OLD-NEW|/NEW)

This was done for each state and checked to see if the

40

result was greater than 0.0001. If so, for at least

one state, the iterative process must continue until

all states pass the stopping criteria; i.e., GO TO 2

and start again.

V. RESULTS

The model was programmed in Fortran G and was executed

to generate the results listed here. The computer listing

follows Appendix A. The output of this model comes in

the form of long run probabilities of being in any partic-

ular state. Selected sorting and summing procedures

are then used to produce the probability that any set

of equipments are down, and thus it is possible to calculate

the probability that the system is down. This was done

for each of the sets of equipment described in Figure

2 and then the joint probability was computed and used

in the results. As an example of the size of the sorting

and summing task: using N=12 equipment yields 11,113

different possible states which are then easily sorted

and summed on a computer by user supplied logic statements

specific to the information desired.

The author chose to present two of the multitude of

possible outcomes in the Results section.

41

A. SPECIFIC RESULTS

1. Optimistic

Using the normal repair times (Table I.), proba-

bilities of entering normal repair (Table VII.), and the

deferral repair times for failures (Table VII.) resulted

in the following:

Probability that all equipment are up = 0.4220

Probability of system unavailability = 0.1185

Where system down means that at least one sub-

system or mission capability can no longer function due

to equipment failure. It should be pointed out that the

other seven sub-systems could quite possibly be available.

2. Pessimistic

Using the normal repair times for failures (Table

VII. row 3), and keeping all other parameters the same

as the optimistic case.

Probability that all equipment are up = 0.0988

Probability of system unavailability = 0.3086

3. More Realistic

A weighted average of times to repair each equip-

ment was used to compute the MTTR used as input for this

calculation. The method of weighting was as follows:

(1) sort the data to reflect only normal repair records;

(2) extract a frequency distribution of the number of

days to repair a failed equipment;

42

(3) use this distribution to compute the weightings

for each of the equipments. The time-to-repair factor

for the one-day-or-less category was the time in hours

from Table I. times the percent of normal repair actions

occurring in one day or less. The time to repair factor

for the two-to-four day category was 48 hours times the

percent of normal repair actions in that category. The

time to repair factor used for the five-or-more days

category v/as the MTTR for failure-only undergoing normal

repair from Table VII. Since the MTTR was listed in

days, it was converted to hours and multiplied by the

percent of normal repairs occurring in five or more days.

Generally the percentages for each category were about

65/£ in one or less days; 10fo in two to four days; and

25f° in five or more days. The results of using this

input was as one would expect, in-between the optimistic

and pessimistic cases.

Probability that all equipment are up = .3025

Probability of system unavailability = .1543

B. RESULTS OF VARYING NORMAL REPAIR TIMES

The following graphs were made to show the complete

range of good to bad repair times and their effect on

mission failure.

43

Figure 2.

Graph of System Unavailability Versus Average MTTR andManning level

P

12 3 4 5 6 7

AVERAGE NORMAL MTTR IN DAYS

The numerals nearest the lines indicatethe number of repairmen used.

44

Figure 2. presents both equipment sets using 1,2

and 3 repairmen, over the full range of optimistic to

pessimistic values for the normal MTTR. There appears

to he very little difference in results between using

two or three repairmen on Equipment Set 1 and thus two

repairmen would be preferred. There v/as essentially no

difference in results between the differing number of

repairmen on Equipment Set 2 and thus one repairman would

be preferred. The realistic estimates for these sets

of equipment varied from; a IJTTR of 2.75 days and a system

down probability of 0.08 for 1 repairman to 0.07 for 2

or 3 repairmen on Equipment Set 1, to a MTTR of 0.88

days and a probability of the system being down of 0.09

for 1,2 or 3 repairmen. It v/as noted that 1 repairman

on Set 2 produced very slightly better results than two

or three repairmen; this v/as considered to be a result

of computer roundoff error since there was essentially

no difference between them.

45

VI. CONCLUSIONS

Useful failure rate and repair time parameters can

be extracted from 3-M data. Simplified systems of critical

equipments and the associated repairmen can be modeled

to estimate a specified mission probability of sucess.

The long time to complete deferral repairs are basic-

ally the limiting factors in computing mission success

or failure; i.e., the probability that the system is

down reaches a limiting value does not decrease no matter

how fast an item can be fixed in normal repair. This

would seem to imply that in order to get more equipment

repaired faster, the deferral repair times need to be

reduced.

This model can be expanded to look at cases allowing

more than three failure quite easily, the only note of

caution is that as additional failures are included the

number of possible states increases too, which may at

some point become too unweidly to handle.

It is the author's recommendation that further investi-

gation into simplification modeling of systems be looked

at in other areas in an effort to reduce modeling costs

without sacrificing the desired goals of the Navy planners.

46

APPENDIX A.

List of Acronyms, Abbreviations and Equipments

CSMA

EICHFMCE

MDCSMPRCVRUHFUICVLPXCVRXMTR

Completed Shipboard Maintenence Action(Normal Repair Form)Equipment Identification CodeHigh FrequencyMaintenance Closing Event (DeferralRepair Form)Maintenance Data Collection SystemMedium FrequencyreceiverUltra High FrequencyUnit Identification CodeVery Low Frequencytransceivertransmitter

EIC

QB1JQB3AQD3RQD3SQD48QE1NQFOQQF1KQF10QF1BQ33K

Equipment Name

AN/WRR-3BR-1051AN/SRC-20AN/SRC-21AN/URC-9AN/URT-23KG-14KY-8KV/-7KW-37AN/UGC-20

Function

VLP/MP RCVRMF/HF RCVRUHF XCVRUHF XCVRUHF XCVRHF XMTRSECURITYSECURITYSECURITYSECURITYTeletypewriter

47

<\J

oom cccc luo

LUX ce

IH <l-Xi _J a:< M

«* 111 <OLU -J Ql

LUX Q LUoc^ Z CC>—i <002: X _lLUt-« <£

Q O 2!Q h- a;

LLLUmZ Q£ zt-4 LU

•u. 'Jh-iU Qi h-z>o < z

_J —

4

00 LULU< Q O h-h- LU 2 <"-•Ul 2T >—ILUQC

CCI- O OH;£< —

»

0<oC»- 00 c£~«

QoO Z u_ <2T LU Oct: Ql

<> 2! •—1 LULUZ 1—

1

XcCI-LU< a l-O- <K -4 LU —J CC

z>z: LU _jcc<<x»- oOCO *-. cC<u2: co_jcCcc00 V-i-CKKt'JJZ)uz <iu-orzu-~j

•—I <s:cc_jccuj«<_ltu »-«cCOO<l-/CO aCooooa.2: ll1—

1

>LU LU2LL CC<OuJUJX JJO a: XXH-X

2: <cclli-j— 1—<>- <*^ -0

CCf- oOuO»-iooo-< H-l— *.t-M —< M-4

O-J 1300 >a:-* 3q.s:>->oa. co 10 2!<<<:cC<<M a. •-•0:0; a: cC cCoOcO^O O CC DC< J£mQUJ z:luc3<K <iq:i iu:-a.f- -•i— a. act ecu.

~+ Hoxw(\J »-<\J(NJ(M~^ CM—-I—4—

4

*» *—< *.«*»-

<NJ -*C\jr\J<\j»-• O—«—« •—

«

•w ?* — » »>

-+Z -^rgrvjcvi

OQ Q.i-V'—1>—

<

oa —.——

^ » -QQQ«--» rJOZI>_-nJ ^-4C\J<M»f-i *>QLa.o>

.-» *• r\j •• •• •OM —i—.—.^

—O »-!»•••»

-^ •• z •» •» •

•'NJ M2ZQ-»—«—»r^z:oofM-«.\l O.O.Q.HQwN •• •• •»

•~*z. t»»—I * '» ^-^^C\JQ-<M »-r\J"\l;\J

Q. •.,-4<\J,»-l-*.-4]

-* iMO "*>« CnJ f\l <\I

c\J .—4 <XJZ ~i —1 —l~l »-0»2I •»•>•«

a.—M •»^-^— ^»

-«.—t m\jozOSNOnf\j a. r\j _i —4 %i i-\joo «o

—•—»•— f\l •- •• »-Or\l-Jt-—

«

—«(\jO—t-.-^— ^ «• CM-St

cx»-4Zi ••r\jr\jr\J;'\jc\j--i(M

rg—t—• >— rg aj cnj -» -• r\j -*—t~*c^Zl'-<—4 —« t\l c\J -h t\l

—• 2 ""^2 •• • •-'—4--H-M* -H

ZZ •»2;tNJfN|(NJ^.^-.0^'

j _j— _i z: 2: 2: -1 -1 -j -J<<IZ<OZQ^«<LUUJfNJ'-U^Qd-ULULLILUa: cc cl.x a. a. o. ce. a: ct: at

a- * # *

ooa: 001-4 LU

000 u. t—t

Z)-" H- 1— rri

OLL 2TLU •—

1

1—1*-

1

LUX _J CDaO 5H- < NH I—<LU Q- m-< CD>Q- '—''Z cn < Q —4

1— OO Z5^ LU CO LU2:lu a H- cC 51iuxx UJO 1—

1

CC »—

4

OSHO LU CC a. 00 0£a. < IL.CZ O LU LL•-4J—UJ OO LU O23 X> 1— CD 1- ^3Qa: LU^O Z < LU LUlu a a. >-H H- cC jr

J-U. >iu a 00 < CC

U.QC \-al CL •—

4

OOQ <. LU 00 <^OUJ h- 1— -J LU a

00 LOQ UO CD -H LUojoz c£Z »—

(

H- ocUh-< —<«5 LU to •-<

LU X LL X 00 -J LL•-hQO •• h- 1—4 OCL.UJ LU </)<•> a. GO

uOLU Xlu> a: < CC

-JZDcQ ko<t _i CO UJ< OJCC LL -J CO

Z5oOO f——itX. < cC 5:Quj>— <a.< 2: a. z>—*_l X LL 2:>CQO hJK 1—

1

O -j>-t<UJ <z> 00 < LL*

Q—fLU LOOQ. •—

«

>- 2: XZo:z Z'-'s: Z5 <~H 1——

<

<h-'~» LU O LL>> luz: c£ V- 00

LL LU 2! LULU Q. 2! >- LU

O'UX • QX •—

t

-J Oafl— oor\j>-«t~ Q QC 2! z

aC< I— 11 LU a. O <UJ Z-lOU. a: Xii tuj^3:0 —

«

LL LL2 »wO;?: t- LO >—

«

*—

t

OolxjO- oo UJ Q.2: 1——• —< LU LL h- Q OUJI-0_)a2! OQ--< O

LU •.—«:-/ a. lu LU LU _JXi-o—ilu^ooz; X t-«^« II cc 11

h— »—<>—« <>— LU 1— II l-H O*CE)Ll_XuO ~J OLU LUOOLU O

oO'-\J<tOaj'-«LU (^ i\J ot- H-LUH-H"<CQ 00 •-< fNJCNJOCU'-^ ••—

1

1—(Q>-

1

wO*oi-5:za r-< 11 11 11 m ooa: cC cC »-4

-I^LUJOi II ^<^lrO>r II II ^C ^l/)3: X2T>-«CLoOU_OH- < 2mm»>4>h2<>-i "-IMI-4 l—

i-><->i->Kj<~>y-><^iULj<J)KjL> U<->iJ^^<*Ji-ii->Ui~)i-> UW-><^><~><<J

48

Ill

ccz>-J•—4

<UL

O QQC uj

u. a:LU

z oLU QCs: oCC UL

o ou.

COLU LUZ> H-

-J << h-> CO

<t u.o

OZ 3fc— II

> oLL —t-H ~->

O <MLU LO I

o. luco 2:</) H-CU *-

<H- -K-

Q »-< ~»Z cOI— -H< CO I

LU _l Zaz o -jw —00 000 m <_j «•

QQ *h fM ro ' ~« CO Z-J Q£»-« tt

LU o O O O OcO CX)

OcQ h- H- H- h- U.CO +O O —

O O O 3 D LOO. ~lluco ro O O O O ill t OOOX—

l

•» DU. Z « 0.0.0.H-< .-1 -* —

»

-*. -» —« _JQ — 2 ^-iZ Z II II II

II m f\j —

«

o •"< < * » — OOOOOQOO *"~.—»«h-> 5: • • • cao * >=& z ~« 0.^0.0.0.0.0.0.0.0.-1^^^:3< j lij uj lu c^o 1— * 11 1 1111 11 11 11 n 11 ti 11 it •••••qz :*£ zooozooozooo -oujo uj _j >r o «-tooooa-5 —.~»—»-.-^.i<: ->->-}

* • • • 4- • «n$- • • •vj-O—O • I— < + ~vO O.O.OO. • ~)-m-5TT> •• •» •>

OcO 0~12'-*-« ZhO ZOO w ZS <l— Z-iOaO II II II II -tO »•.•.•.•.•. o»-"-«'-»Z -<i^iiJ H II OcU 11 11 ZjUJ 11 11 Oluo—._j ^O *+ • II .M-—.-»-» 11 -*>——tH'-iHK..—i_o~«~->-—<q co 11 szzi-szzi-rzzi-Hi-t-^ h-i— n'j^(x»(wh"<-.-,h-—^w^—^tzz3i£l— Z^-<LU — <L'J — <ILU *-* Z^- nh

II *-t II S >-«^w^—1 ZZQQZZQQ ^.'Z.'Z.< OLuij_5;5;ox>Z2:au.Z5:OQt:ocju. z 11 u 11 oujozQ-tM^ozHZHOMaMaZ'-tzH"-^ Qs:•-'cxa:0'--•Q;cco>--«Q:QC03:fJJo ,--• h-,o —«oa.i— 00.0,0.0. -»oa,o.o.o. 3-0.0.0.00.0.0.

o o 00-h CM ro 4-

OOO OOOO

49

00zo^-

< toa: uj

h- <-i »-

uj ZQ -» 2mo •-« OUJCL — Q00 ~»QI c£ — a. uj©oooooooooooo ooo *->;- u, z

0.0.0-0.0.0.0.0.0.0.0.0.0. oou_ z--^ oo oit n ii ii ii ii ii ii ii ii it ii n ^ z a—i ^ -z«^-,«-»«-,^«,^^„« ^mj ,h •» «••*» —• a: ••

bi;^:^^^:^^^:^^^^^ o> + rH~»-»Q qo o -<«•»•.«•.»•.•.••.•...•. oooo _j cc ii mho: qco. ll ii

»»»»»>• » OD33 OOOO Ooo OZ O a.a.'00 + "SI O^h-.hm^-.m^-.—i~. 1-,hh-1^2Zzo ii ii ii ii oooo «^oo «o+ + u:za:D z ooo—^ww«xww>*s*s»w.wm-i--<>-i i| zsioa. • • • • >-i— o ll • «OOXa;i/)M!/)oi -• o • •

QZZOCZZOQZZQQhhhhiiQQaOOOOO c£oO || oSOO ll rvJoOOO II H-~ II > ."OOOZQQQCZZZZQQQQZZZZI-ujiiJlUiij II II ll II <.cc 2^11 II Q II II OZ II Z -J II II

mzhzhqojq(mq(\ju(mq'juuzzzzzz5:u". i— •— DZnia:Qu.'ic:D03 a ozaiao.Q.au.aiiaa.cLa.uoou^OQauQQQQ oou. oo^oo/>ooooo oooo00.00 00 00000

oooo o oo ~«<mm mo

OOOO u<^>^>

50

LUo2 U.»- to

4 -»o -»—.*^LL,z -5U.U.COH '^'-»-^»-^ — cO^/)4-J ""5->T"» QC+ 4-^—1—1 *-*.*.*. «• ~»—»->->< >—«<—!»—)>—

Z-5">-—a.

^>- ww<w^ c£ct + +Qz ZQZQ 4 4-.—Q _i

—»'-• LU ZZQQ •^^m-hhQ. <*—!•—< S OQQQ Wwsrv, + z>- * -«. Q. a.'A.a.a ^-wQO— or

-5-3 ^»u_ -» * # * # aLaloe ^.~i LU*m»-m0- ULCO 3ZQ C04 a :*£*:*:*: ^^v^vV.—

H-

OQ 4-» LU Ocia *m*y—t QQaa ZQZ3Z COZ#* t—f-^ LU a: a: a: a: ZZQQQ LU-m, -m> ^Q COS co-y)couoQ- H-Z->~3 ctaa lu«3: + + + + + + 4 4 4 <<—>~^ «»»• f-cO KOQQ "N.^ < -«.—».^,—

»

-j ->->-> -J cOa: or:

zo COZ llll-U-u.*--X

inf 4- CO^O

4 + ZZS.SO

oin

mmHt-lMH R- -ii- tt -JJ- ^-

ox03:

Oin-*«« ^*: :*::*: ")nmz

r\l _~M MMM a_j •o roro >J-» •. W%»«» Q_J ZOZO aOQ.'3 4- LU-5

o -5 -J LLU-Q <x o oo ZZOQ H- -H- * ^ — LUK- -—-x. * -M-Q. Oco y- Kl~ zzzz —»—»-^--»"^ QfT-J H-

ZQ —'»-"» 4 ^—

a. a. a. a. MI-4H-«»-^ •• X<O zz •—«>-4-^ h-Q o OO K- * tt tt > ^ l..l» 1^1 K-O Ozo Q.CL —»-»»>—

4

zz ZOO .-»..»..-» —« ZZ3C1- O zzo•» #» a.3~» a: -5 • •» t X1X1X.-XL a.o.a.a.z .JiLU •• ••

#-«.-%—» -».•«..-» #-«-z o r-

1

H-i O ^^-M—

»

II -5~5-5->-) ooa LLI— II II -J II ^^^a^aca: 11 11 11 11 a. LLK II II->

-> «s-w^-^aj'jju.a. + lu Z 1—

<

-> • * • ..— 4 4 + 4 LU-"•*-»-»-< 4 OJLU O .—1-} •

o'J-u. ocor. o3—— ^: z> COLU c? oooo G»Ou.ZOZQD~'TT3i'OD oz 3OOUJ + 4 4 4 Z 2 II II OZ zr ooluo • • • • 'JMJJUJ + ZZOQZ •» •» •• OZZ z OOlU•in •u.u.zO'-* »-«-».-^V)'—

<

—ILL! o u> • ^oooo CM »lj_ LOV) CO oO •—IHhMv-t C<0»—•*—

—2 om •

OC\l>—icOcOcOoOV— *——<•—i l| H- >C£ <r rr>»-«Q i| II n i| t^>-(-5o0|l II M II H-*-w>-"»* II »— H- X in^»-«II — II II II II Z2—-2C2: _IO >— II ZOZQ MW II ^QZQZZQZQ£ZZ -JO —

»

iLOLuu-iLz^uozaJo JZ oau.u.zzQoou.a.u.^zjoijzzQa3aa 001</>Q «-ll/) </> 00 COOOX CL 1/1 l/)>-« QQm CO CO CO COCOO •-<«-< COCO V) cocooa. Q.Q- a. -ouu t/)~

<

OQ-«mo o m oor\jin o r\l mo(\IC\J m rf> r0>3"

uouo UUU^J

51

__: -»— i«_

(X—.—. —- ••

#—.— — -j2^v ^ >

o£c_"-tt~-^-—»_£0— -^--i.-*—

i

+ +Zii^y^-0^ II II II II^<^<j^Q2 -. OOiOO->-^5:o:_:oa_a;o.-} <<t<<—— a_a_n;c_ -* + + •» - —•_! —I—

J

CCCC+ + ++—.<*«*M LLLLLLLL,

fr #*—-»-»—OT^«- MHMM

0:0:0:0- + + + +«a II II • • • •

+ + + +—.-_ — + OO l-l-l-h-._,.«._.-,____-. 2-, << OOOO•-..-.__— ,_*».— Qi_- _j_j • « • •

«-*——.^-.QQOOZ - U.U. _-.,-*-*.

Q_0C'a£OCG_C_:af Q_Q--> LU <-••-' -»T"»-_^^^o^^^-wn^'^ + •» nc —• «••»•.«»

-.——.—.-—._•— X O << _.^.--—:__*:__;___._<_:*::-£ -z < • • zq2q^^.»-.^.^^.w—->Q oo -J K-H- ZZOQu_u_luu.u_ll a u- -a i—

.

u_ oo ao-Q-o. s:•«• # # -* -K- * •* # —>a. -_: —i • >.>-.vs >v __>

—»—.--. --.--> —.^—,—.+ < ._,--. _.-,.--.-. ^_<_:_- *i__5_:i_t:_l*:0— i— <-» ~«*-« -..—--..-. >.«-.W^_.~-.^~rw— 2i<_ CO < — O-JT-J —

.

a.o'o.oa.c?a.'32_ •» • zQ •.•.» __

K- •* # tt * -5!- -* # 3- ~5 <S) I— O.O. SSSSmmmh •.

rO<N)->-->->-}-^->-?-J—.<-< LU • -»-». OCOoo^OCO.ZOZO COOO »•

^>t •..•.•.«.•,•. -.^— o o -"•»-- inssNSZZOG ifttiv-i

OO-w -^*_>-»_--.— ->

2

o_ v. ,_.«—

0"->~5—>~3 lilt ^T) CO"Zi-hzzqozzoo -o a. — sj:zQ h- - «• •»—— •.•.•»•. 1-1-2:

zzzzaaQGna o __>:_>o.o. MMWM-m-j-i^^w ^O OCX. 0.0.0,0.0.0.0.-*+ z: Q- oo^o I l o——--— •> -.——•-.—. aoi

ZOOll II H II II II II II Z-» O I Z^^-*— ZOZOZQ>-<m*-<mZZ2QZOO II

. -.-»—.—.—.--.^—.^^ -« Q. -k^.h-4-H . *. ZZQOv—-Z3ZO * —~«-»-«.__,

_c':s_:--__i_:i_:i_:2: •- 1— s: —(^-(-.^-^-h^—i-> 0.0. 0.0.202:00.0.0.0.-^——.^II _£:*. •.•»•»«-•»<_•« ».Q.-3 < S:uJ II ^.w~«ro—w 11 -j 11 11 it II *-i—<<\J<\j 11 li 11 11 11 __^ •__; • •-»-j-o ->~> ->->"> + *ujiijiu ^ oi- MZQaazoi •-_»—.—»--. 0.0.0. o» —»—.—.--. j_ • -}03 •..*.•.•.».». •-^—OZ5^> "-1 Ooo^_0 O.O.—wO-q. 3f-J-5->-)w^_.^^. -5-5—>-> (_?c? •«

ir>LUUJi—(i—!•—it—(>—•>-<'-mDw rt2 ;; _j n Si/ia.0 II \\ tAisi 11 11 0'.u •«•«•• »oOt/)i>ooo -••.•• ••oujuj--"<M • •«-»>_.— >-'-*-_.--•--< cO 2*-»—"—• <I OOCQ l| O —• ^« CD JO •--—-C1 •>-<'--)•—1^-4 UiO _QrQ •-*-<'-• hh CO • •—

*

^«^ZQZOZOZQ II Zh-l-h 2C <__<o.nO»-h>-<<K''-<»-<-^ >-<--—.—»—•<< < <.•———.m -.-> 2:--ZZQ0ZZ30ZQZZZ 'X- -J II —li: —ww—-ww >-ZQZQ—«ZZOQ —2:OiUlZZ^ZOOQQDaaOO O U.OLLUJi3z:oU_LL-'-^fNJC., lL__2:OOU.U,LL,U.'-<rvJ'-<ovlOU.LL2o»—1

•--• a. 0.0.0.0. 0.Q. 0.^0 + 000 5_ ~<iMHQCLii |-»>-<a.ic_Maa.Q-a'-<i-tM>HiQ.a'iao>-<Ha

inoo<Mir\o

000

52

II II II II II II II II

oooooooo-J -J -J -J -J -I -J -1U>U_U_U.LLU_U.U-

<< <i< <r <r< <r

I— I— I— }—

I-- t— I— »— ' 1-41—1

•••••••• QQ

MwMMM«M« zzw^ w^~. Q.Q-ZQZQZOZO i/> + +ZZQ3ZZ3a UU~. ^.SO-»ZZZZQOOQ H-^ mQQhaaaaaaao. <3: -^ujuj—'n.n^v.v.'n.^^v. h-o ozza-».—,-»~~»~.-»— ooq aOOa——.-*—»———— + it it +

Z>Z30=)3Z)0 •.«••.•.•.•.• _j^: zzzz -»ooy)</>c/)iyv./i(./

,

>'-t-*>--<»-'i-H —«•-<>--« 1-41x1 o% q.QOq.O>< -h>v^W.^^v^^.^.^.w^w^^- O CQh- O 4. +^Q i-i^ .--.-ZOZOZQZQ'*^-^" IT\ <</) -O Z->"Q.iia- ^0i^^i^^^^^^^om^sQQ^^^^:^:^^:^ —• co>- o<\iroQ•. •.«..... « ^zzzznaaa »•.•.»•.•.•.•. oi/> 00 n»i-*t-4UJO»-< oi-)T,n-)-)iQ.aa.am"5"3TT)"5-n O a£-» *— cl z: • «zi- •> I— tA•

1 1 1 1 11 11 »•.••.•.•.»•. v- a. t> * oujujo -» —

ZQOZ2rc)0"5-3~)~>"5~5-5"^32:oo^2:oQ o -*^c uj • «iu—^ -» h-ZZZQ3QQ .»•.•.•.•.«. •.ZZ.ZZQG3Q —. ~<LI_ —1 •» ZQQZ-i 1* —

Q. a. a, a. i a. a. —•-« -•-1 >-•*-. .-.—< a. o_a.a 0.0.0. a. —• q;q •< 02::ZC3 •-« • 3

11 11 11 11 n 11 11 v.-v.v.„^s^ H n 11 .( 11 .( ,1 11 • <t o—» :z <<r 3— o«~ zzo— -»-».— —.--«.—>ZQZQZQZO-> -»-»_,-».-.~.-.. tjr >^ ujo •—• • •— IJJ--I UJ<\| •« *

•. •.«..*•. « *._j^i^w-H(\i(\jr\|c\j •••»».•»•.•.•.•. • |— —1 LUO\ II m«mh1^7> UJO> II II""»

-}-J-^"^->->-5-X1.a.a.(.1.CLa.Q.-J->->->->-5-*)-5lUUJl-UO ZDI— H- •»LU»-H • • • •- ••UJI-- •.LU-*-} •

•••.•«•. ~^.^.—^,ww—.^. •.«.•.»•.•.•» z>3ZJ-l 0< >-"s03 LU_(-t-^OD-v03 OMmwmw^m«71W7)i17)cO(/')7)i-4«mi-«mh-.wh<z!ZZ:J —i Qj—ZOjOOOOl^Z^ -ZCD-TIUwwww^.^w ;o -q acQ cqcQ'X) 03v^«<rfM w^»____« ll LLO 3:lIJ>-».-« t • • • 22Ld>—I T£ 'il •—.—•—| •

OZQZCZO«<r<<«<ZQZQZ-ZC3hl-l-« h-O H|_(_vOHMwi-(i-ui-M|-h^>OMZOOZZQQ'—'-———'-ZZQQZZQQZZZx

»

—'-J —^Z — ^^^.^^^.^,2: —ZZZQQQUu.u.u.u.u.iu.u.-i-i-(^iM(M(M(MLjQija. cc<l u.auoiLiiu.u.u.xo'J.a.UOau.aau.aa.aa«>-t«MMMMwQ.aa.aQ.a.Q.aooOM 3:0 «20Qhhhhh2uh20QQ«

000 a* o -*coa>o o -• "H

0000

53

-i rMfM<Mr\icMCMw >Os0v0-0-0>O <» -» -— —

»

O * X *. *.Q aooooo »•»••••»Z »— H-l-H-l-l— T -5 -5 ~5a. •»«•»••• OOOOQO >-* »-• •-• -!— OOOOOO —

' — •«— "-•

2£ z z z z-* -* ~* •• ^.-,—,«—.^ Q Q Q O— —. -i ~i ^-»,-»_.^.«^<m Q Q Q OM (« •» (\i(NJ(\)<rirr)fO>0 0.0.0.(1t—I »—« f-4 I—< *—1>~* >—«•—« I—«>—

<

+ 4- 4» +«! • • --^ w—» • •»•«• Q .-» ~« ^-» —»-» LU LU Q Z*i LUUJUJUJUJUJI— *: l£ ^ :*£

•» _J _J Q Q •< JJJJJJ •.»>•»*.»-i • • Q. Z~> • • • • • »Q ~5 ~5 -J ~5•w —) -5 «* O. •• "^^^"Ji^i^O •»•.». _«*

O • • "* •*< •••••• 4. >—t + "—I 4-*^ 4» <"M

O O—Q—- ~> -"»— DQOOQQ-. -»— '-*— —*- ——Q. Z~5Z-5 •• VTQ ZZZZZZ-* :*£0 ^Q -^O iJO4- <t »•< » •"-• »-Q <<<<<I<i-0 ~z »-z «-z *z~> •—• • •-• -— -JQ • • • • • »»-4 ")Q ">O ~7JO -JO—> ^H--«rsj>-» z «*o. i>i <"^r\irvjoj • «~:x »x ••Q. »0.•. t—^Z 1—<0 O •—1 • >'<» «>-H »—<>—< I t| *-H + —4 + —* + —4 +

»~< «Q »0 O. ««**^ • • • • • »0 **«* >»•-• ——» w -^

^* H-O-l— 3. - Q^ |_H-|_>-H-t- • O*: 3^ Q^i QrsfZ + 'J> + — Z •• '-•-'HO'JOOOO^ Z •> Z •> Z •• Z ••

2: • -* • ~» -5 Z~5 (\|r\ic\i * — Z~5 Z~5 Z~5 Z~10. -5T51 •* O. + -O-OvO-)^^"^^^ • 0. •> Q-»- O. *. Q...4- w •-•_» «. .—. •—< .^# .-»-»».—.wwO -4. <-< + --1 4- »—i + •—

<

z •-' -»»-• — —— ooo »Z > "»-• -*— -»—Q O'-'O--' Q ^Z l~h-h-OQOOOO< ^Z ^2 ^Z ^ZII Z^JZZ z «o zzzzzz • -z »<z *-z -zZ <Z<0 Q- 0""5Q OOC«4<<K^ ~>Q ~>(T ™9Q -JOq »o. iq.it\ •. on c\j »-a. ooo » • • • • 9 >f\ "a. «-a. »-a. a.—. (M^rO—»0"^ vO *-"•» —•«—— -"JfMfNjrom^ • —>—» — -• —•— *- -•~4 k-l-J—.-) ^ OZV ^.^l.-l^.^^-l^.K-.^-if- Q^ O^ Q^ Qs^—. • t> • •.Q>-H Q >_^ •. W1-1M( • • • • • «(J) O*- — * O* O**• UJ»-hUJ'-hH-—. V- O OO Z~"> • • «'JJUJLU!XI;iJIJJ • 0"~5 OT) q~> o->

uj _j^-_j—• z >* rarooa. • uj lu lu _j _i -j -J _j _) -> a.»- Q. * a.^ cl»_J— «0 «OQZ O >0 «OOCi) •-i _i_J_J •— 4"-« +-< 4.1-4 4->-inHQH^oa o ^f— • • •—<—<->-<—i-s . -^^- —^- -.>* ——

.

-> •» »cl .q. » O OO- »0 ~5i«i^ O i^O ^Q ^O i^O•HQ + Q + -.n -» j— t^i n2 • • 'QQQO^DZ t»Q *Ji »0 *QO-—Z-*Z——< •* t-t t t-O QQOZZZZZZ< ")Z "52 ->Z "*ZZZ<-5<-5 ••-• • O 003 >-<(X ZZZ<t<<<<r< • Ki. «-a. "O. »>0-

<Q • •» • ••G? j-> Or—• ZZOZOOUJ'* » <x<.<t • • • • • •— h+ h+ m+ >—• +• Cl -J"^(Nl»"<i-U<*0 UJ >^" •» » •> • 'o"\-^ • • •r-4~*w-4C\t(\ir\i-f\ •** >** —»»» •»f. — »».^^4>mmmx »q »o ^-M-u-f^^uoy: ^^^itoiMMMiHi-iwi zy z^i z'ui z^•-<•-» »Z •ZLUO> U-lCT^ II II -^11 •^^>— ij> * i-m-oi-i •••«•• «OZ »OZ 02 «»oz •*

• -5>— Zh-Z»— ~'.'JUJ»— -m<——i «^ * •_( *.-5IU • • i(-.|-|-^ l-l-t-rnZ")fOZT^Z"5nZ"i:iiUjLiJlu oo.;o.r-flooH.3D or 33^-0 otjljjiuuj jj5o j5'^>oo'0q. »vO* »-oo. »»j}a od")jw +• •». ar— zzci—-::ooaic'iJiu"5-Mz ~) j~i ••••»>•• +t-i 4->-< +>-< +«zzz•>*hJ:h 321'm-<2 1JU«—«in-f •"O • •~»lu~-'--i • • •JM -)i-iiH-Nf-iOZ^,QS'>'00"02. N»M -,h-

'-'0»-'Q--*'0 ,~«l- l-KwHI--0O>-iv0w-)-i-Zi- h-"-|")>—v»«^---^OZHQZf~-'iZI~OZI~hh**z^* 11 «- 11 *wzz«mz — w^ -<2:zw^,^.w^-».— ^,^.w ji o no 11 a u qzzzu.au.su.ou.ixaj'j.fiGQOu.O'j.a.u.Q;QQLm.u.u.u.a.u.iLu.u.ozzaiZajzoazoaa

LT>05 C7» O -4 CM CO >f OOOr-^^-4 ^4 cm cm <M fM r\i covfrv>OsO ^ ^0 »0 -O <0 «0 nQ^O^O

54

oLU—

»

->»

».<t •••«. •

CO •»LU II«* ~~i X Ct

Q. «•»-•«• ^ -*» Q«- ^-—

»

I—

4

• V, ••

a. Zho — v. (MQ '-'-J z •— x. •» ••

•• h Q ^ •>

O QCQ U. •» >0O LU< -J •

•. XcO —

'

X •» •"-» O «••-« 2Ts: OQ O I

s- mX\ —» N\S>0U. LUQ <toi 0- » *>»">» U- •»•» •-_• * 3£«. LUq. » o •« •» >

2! o£ *-•» ""* 2!"" » »Q fJSQ. - -5 ZT—»-» OOOll II QC•• -J2!- •» «• Qti^^: If ~«~«—t •» O—« tU>-t • X hh • •» ». LLU.LL- Z U_

2; >3X O -~» »T-> 2 •< »• ~ ?C

S LUOm .-» a x •> «* 3 • * ll'Q lUo -J i—

^

•* z <f--"-« onn^nn a z>

o _j •• -o a. •»— -» o #,». || ti ii _j. ON • - • ZO nD-O 0vO-O Zo-> <I

Q- ••lln o «* -»zo Q » • • • • "•*>- >q .o - —

«

x ^ats ii:oooooZ2zaLU »LU» LU I

s- t»CLO- UjHHHHH7?;3'ij: >Uz OX'-U - ->« - iMixu.u.u.u.oa'D at 1O LL*— C£ » " •.».•" •>!>•>« »3QQ^|i. («».

•• «~%»Z) —» .-«XXLi.»-»«»- LO

O - "-J 11 "3 —«4->t O «-tc\ir<MiJ> 'XI

Q X 1-* » 2T •» • II II II II II Quoo QLU UIO< -» —I Z- • > LUUJLU> >-h

a. z x-*u. • — z-«-^ h- a,aa_»-Lu >a o ^- * z g-^^: hzzzzz>» x qLU •• "S.J— ;f> 2: —«- •» •> J33 233t-HHLU!-"a:2: z o>^z •-» <i. —« .-t'-i-^^oooqq lu ^oclO O h- »'-U » •». .OX «~ «-.a3QQQQQOOOQCh- •j. lu • 2: • . «nJ-»-ii-( o< r^7t3:x<tOh-O 2: LU'/OCt X O •»'—«-» •Or^r\jrO«j-JJl— h-l—S-X-><0O O UZ>- *- --<- QZOO Z f-LLZlu •» zorD •- LL^rcja—»qCujluujluo»— i—>-i— ••

2: z: oim3 - •» zou.aa.aa.1 ^oiooio>xaO Q Of— LU -5 X DtO, •>« »>>lL^<«hOH+ <1.1U Qi< .n->« m X •"!— f— I— )— QiULUUJ:U»-^r-HOsoz ujcia. •— -^^- ^:ax iJ_i_j_»-J ••

D+O >ajC 2! •~»Nk -4" XXvO lulu lulu> h-< oDLUO •- 2:^ a. » N ••-+ ?<fro—t2:Z.^Zt~h-h- f— h— OQ «ozoo o^a: - t^ro- 'OQ^O«l<t<«0>Q * Ci. O LU X* -*»••» ^\ —I CQ~*+ 5:-> - _JQ - CM—»NX-"— •-Ox. lULL LW-LL^LUO. '-L'X-O 'J-

-

ZQ>0 ««Lua: - -<-> fl^^'-o "OOOacOOQOOii: - -q + o xoQ x >s» »x\ •. t- t»x < axxaiz«> a*"> o-» Mox~3-)XOcQcocQcDLOtDa:.ocQ 00za •'lu—t^u> ~wj-—»—< ^HoaaaQoao.ouiHHOn J3^*.^n — « Q——.-«»-«•*— cTaia^^Ji jf^^^X—^«

II 2^-Zf- I H>Oi-3l-l-"---l-l~<XQ.Q.(Xa.Q.Q.O-aKI-t-hO!iih<loQ <^-ia.<<fzo-i;<- ••»••••»• <<Zi/)h-!— s:<.o:u rxs* iSczss «.».*».i... t»».«. 5:^:0.3><-izrxZ5t— a: cc -cx^rjcL^xxxxxxxxxxxiaQotoa:Qo<^-a« oxoQa.a.coooooooooooao»-2:QCi.3JLJLL,'-J5>-«OU. LU^-LUX* • U»LL<-<»"*»*"''»""*'H «<-^'-<'^'-^LL.LL c/> l-U

^ * «• « » * * •«•-»••«•« i<- a- ^ -* * -a-00 -^ t\| rr\ <t mvO r^-oo•-•O O O OO OO OlT\0COO O 0> CT>0> CT»CT> O^O^O

55

LIST OF REFERENCES

1. Ship Equipment Configuration Accounting System ReportNo. 502.1, Item Designation Report on DE-1070p. 1-150, 6 June 1974.

2. Naval Ship Engineering Center, Reliability/T.-aintain-ability/Availability Design Data Bank Report,p. B-l - B-33, March 1974.

3. Naval Postgraduate School Report NPS55GV73021A,Analytical Eodels for Supplementing Ship ManningSimulations, by Donald P. Gaver, p. 9-13, February1973.

56

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2

Cameron StationAlexandria, Virginia 22314

2. Library, Code 0212 2

Naval Postgraduate SchoolMonterey, California 93940

3. Department Chairman, Code 55 2

Department of Operations Researchand Administrative SciencesNaval Postgraduate SchoolMonterey, California 93940

4. Professor D. P. Gaver, Code 55 Gv 9

Department of Operations Researchand Administrative SciencesNaval Postgraduate SchoolMonterey, California 93940

5. Mr. E. Ramras jj.

Dr. R. Sorenson ±

Dr. J. Silverman 1

Lcdr. C. Helsper 1

Dr. S. Sorenson 1

Dr. R. Holzbach 1

Library 2

Naval Personnel Research and Development Center

San Diego, California 92152

6. Professors P.R. Milch 1

K.T. Marshall 1

P.A.W. Lewis 1

J.D. Esary 1

Naval Postgraduate SchoolMonterey, California 93940

7. Dr. J. P. Lehoczky 1

Statistics DepartmentCarnegie-Mellon UniversityPittsburg, Pennsylvania 15213

8. LT Clifford Stephen Perrin, USN 2

1236 Spruance RoadMonterey, California 93940

57

c.r H&

Perr'm anCj main-

tenance eTT ^mode '

-fat on dW»»« on

5i^oX" class

destroyerescort. ^ u

27MA? 7 * 33 308 KB ST

DUDLEY KNOX LIBRARYNAVAL POSTGRADUATI SCHOOLMONTEREY. CALIFORNIA I

I

i /8

PerrinA manning and main-

tenance effectiveness

model applied to the

communication division

of a "KNOX" class

destroyer escort.

thesP3396

A manning and maintenance effectiveness

3 2768 001 00229 8DUDLEY KNOX LIBRARY