01fundamentals of Frac

Embed Size (px)

Citation preview

  • 8/19/2019 01fundamentals of Frac

    1/15

    1 Material Balance

    Fundamentalsof Fracturing Engineering

    Material Balance

  • 8/19/2019 01fundamentals of Frac

    2/15

    2 Material Balance

    Data Collection

    Uncontrollable parameters1. K, h & ΦΦΦΦ

    2. σand their orientation

    3. Formation temperature4. Reservoir pressure

    5. Type of Reservoir fluid

    6. Rock Properties

    Controllable parameters1. Casing, Tubing, & Completion

    configuration

    2. Downhole equipment

    3. Perforation ID and Length & SPF &Phasing

    4. Fracture treatment (Rate, PropConcentration, Fluid, Proppant, etc…)

  • 8/19/2019 01fundamentals of Frac

    3/15

    3 Material Balance

    Controlling Parameters: Stresses

    Tectonic

    StrainElastic

    Modulus

    Tectonic stresscomponent

    Lithostatic stress model

    Poison’s

    ratio

    Pore Pressure

    Over 

    hydrostatic

    Virgin

    Slight

    depletion

    Shale static

    Depleted

    Stress Contrast forFrac Model

    Closure Pressure

    calibration through:

    Microfrac, DataFRAC

    + =

    Lithology

    gas

    Overburden

    σLit = ( ν /1- ν)*(σΟΒ - αpr) + α pr

    oil

  • 8/19/2019 01fundamentals of Frac

    4/15

    4 Material Balance

    Rock Mechanic

    PropertiesReservoir

    Properties

    Properties Affecting Frac Geometry

    Hydraulic geometry (Dynamic)

    h

    Lw max 

    Propped geometry

     x f w f 

    h o 

    C L

    C L

    ∆σ ∆σ ∆σ ∆σ 

    〈w〉

    pc

    σ σσ σ min

    c f 

    Fracture Properties

    kh/µpr 

    ΦctcR

    σ σσ σ OB

  • 8/19/2019 01fundamentals of Frac

    5/15

    5 Material Balance

    Fracture Engineering fundamentals

    Basis for frac modeling and analysis

    • Volume balance : V in = V frac + V loss• Elasticity : width -vs- pressure ( E)

    • Elasticity : containment –vs- height growth

    • Frictional fluid flow : frac fluid pressure drop inside the fractureAnd a few more: proppant transport …..

    Analysis and evaluation :

    based on pressure response after a constant rate injection

  • 8/19/2019 01fundamentals of Frac

    6/15

    6 Material Balance

    Volume balance

    based on volumes: Vin= Vfrac+ Vlost

    Vfrac = Af  (area) * wh (width)

    Vlost from G function go ,leakoff CL , Spurt Sp

    Know hf  then how do we get L? ….

    Qi ti = Af  ( wh + 2 vL )

    Af = Qi ti / ( wh+ 2 vL )

    L = Af / 2 hf 

    vL~ go CL √ti + Sp , go ~1.5

    2 L

    Af = (2 L) hf hf

  • 8/19/2019 01fundamentals of Frac

    7/15

    7 Material Balance

    Elasticity 1: width ~ Pnet

    Relation between Pressure and width

    • need modulus E And height hf 

    • need βL the ratio of average width over the frac length to wmax at the well:

    • Introduce definition of compliance cf  =π βL hf / 2E

    Provides the average frac width wh for given Pnet…

    pf 

    wh

    pc

    cf ~ hf / E

    pnet = pf - pc = (E / 2 hf ) wmax (PKN)or  wmax = (2 hf / E) pnet (wellbore)

    wh is A= (π/4)h βL wmax ~ 0.55 wmax

    wh=(π βL hf /2E) pnet=(cf ) pnet

  • 8/19/2019 01fundamentals of Frac

    8/15

    8 Material Balance

    The β ratio = average / wellbore values

    There is a gradient of pressure along the fracture, therefore need ratio for 

    calculating “length-averaged” values in terms of p at the wellbore

    β =pnet

    pnet,w

    =pf - pcpw - pc

  • 8/19/2019 01fundamentals of Frac

    9/15

    9 Material Balance

    Material Balance: governs “placement” and cost

    How much fluid to get L ?

    Af 

    = Qi

    ti

    / (wh

    + 3 CL

    √ ti

    ), L= Af 

    / 2 hf 

    → fluid cost

    pnet = pf - pc = E wmax / 2 hf Psp*Q → HHP

    How much prop can we put ? prop width/ hydraulic with

    wp = Vp / Ap = Vp / (2 Lp hp ); wp / < wh> = cf / (1-φ) → Prop cost

    wp / wh ~ 1/6 (3 ppa) and 1/2 (10 ppa)

    How many pump we need ?

  • 8/19/2019 01fundamentals of Frac

    10/15

    10 Material Balance

    Elasticity 2: height growth,∆σ∆σ∆σ∆σ and ∆∆∆∆h/ho

    Relation between initial height ho and hf  total frac heightInsight from ideal equal barrier 

    Barrier depends on : (1)∆σ∆σ∆σ∆σ (2) thickness /initial height ∆∆∆∆h/ho

    1.0

    2.0

    3.0

    4.0

    5.0

    0.3 0.4 0.5 0.6 0.7 0.8 0.9

    pnet / ∆∆∆∆σσσσ

        h 

       /   h  o  :   i   d  e  a   l   3

      -   l  a  y  e  r

    0.0

    0.5

    1.0

    1.5

    2.0

          ∆      ∆∆      ∆   h 

       /   h  o  :  ~ 

      g  e  n  e  r  a   l   3  -   l  a  y  e  r

     ∆∆∆∆ h ~

    ho/10

    2x

    hf  ~ ho . f ( pnet / ∆σ)

    ∆σ∆h

    hf ho

    pnet

  • 8/19/2019 01fundamentals of Frac

    11/15

    11 Material Balance

    Coupling elasticity – fluid frictional dropPnet at the wellbore = Frac fluid frictional flow ( pressure drop in the frac )

    pnet(elasticity) = ∆∆∆∆p(frictional drop)

    Frictional flow from 1D (linear ) Darcy with x-section area =height .width , hf wh

    equate

    solve for average width wh

    Rate or viscosity double (µµµµa Qi ): effect on wh & pnet? (21/4 = 1.2)

    Qi = k (hf wh )/ µa ∆p/L ; with k ~ w 2

    rearrange

    ∆p/L = µa [Qi /(hf wh )] / wh2

    wh ~ (µa Qi L / E )1/4, pnet = (E / 2 hf ) wh

    pnet / L ~ E wh / hf L = ∆p/L = µa [ Qi / (hf wh )] / wh2

  • 8/19/2019 01fundamentals of Frac

    12/15

    12 Material Balance

    Width equation for Power law

    Use more complex but actual power law frac fluid

    µµµµa,PL =τ ττ τ //// γ γγ γ = K/ γ γγ γ 1- n; γ γγ γ ~ Q/hw2

    Even less dependent on rate

    ( )

    2,9.0,2

    8.0,2

    ;)(

    5.0~;3~223

    1

    ,2

    →→→

    →→

    ≈=   +=

      

      

     p net

     net

     max

     max max net

     t pQ

    Q

     p

    Q Lw

     n n

     /  n

     hQ

     E h L K ww p   e

    e

     h E

     µ  µ 

     µ 

     µ 

    0.170.33

  • 8/19/2019 01fundamentals of Frac

    13/15

    13 Material Balance

    Frac design for L quadratic equation of √ti

    Summary• Mass balance : Vin= Vfrac+ Vlost Af = Qi ti / ( wh+ 2 vL), L= Af / 2 hf • Elasticity (width) : pnet = pf - pc = E wmax / 2 hf = (1/cf ) wh

    • Elasticity (Height) : hf  ~ ho . f ( pnet / ∆∆∆∆σσσσ)• Frictional drop : wh ~ ( µµµµa Qi L / E )1/4

    All information to solve

    The design solution : quadratic equation of √ti for any given L !

    Get ti

    , wh ,

    Vfrac

    , efficiency η ηη η  and pnet

    = (1/cf 

    ) wh

    = (2E /hf 

    ππππ ββββL

    ) wh

    Note : to get L for a given ti an iterative convergence is required

    Af = (2 hf L) = Qi ti

     / [ wh+ 2 (1.5 CL √ti + Sp ) ]

    Basic input: Qi , L, CL , Sp, µa , E , ho , ∆σ

    Qi ti - (2 hf L) [ wh+ 2 (1.5 CL √ti + Sp ) ] = 0

  • 8/19/2019 01fundamentals of Frac

    14/15

    14 Material Balance

    Key Role of Efficiency: proppant scheduling no TSO

    fluid efficiency: ηηηη = Vfrac / Vin < 1; cin = ηηηη cfrac

    Vici

    VL

    Vfcf

    frac

    ∞∞∞∞→→→→ Lu

    x / L

    V / VEOJ

    1

    pad

    x / L

    segment or total

    cD

    pad

    f p ≅1+ η

    1- η

    V / VEOJ

    η

    segment or total

    u L leakoff velocity ft/min goes to infinity at tip

    ττττ

    SPE 13278 Determination of Proppant and Fluid Schedules From Fracturing-Pressure Decline (Nolte 1986)

    cD =cin/cf,EOJ

    0 1

  • 8/19/2019 01fundamentals of Frac

    15/15

    15 Material Balance

    proppant scheduling with TSO

    Base on relation for no TSObut noting

    • Vin → Vin,so

    • ηηηη → ηηηηso

    after TSO no loss at tip

    ηηηηEOJ >>>> ηηηηsoand

    cin/cf,EOJ

    pad

    f p ≅1+ η

    1- η

    V / VEOJ

    η

    cin/cf,EOJ

    pad

    f p,so ≅≅≅≅1+ ηηηηso

    1- ηηηηso

    V in,so/ VEOJ

    ηsof p,EOJ = f p,tsoVin,t

    soVin,EOJ

    ηEOJ