25
Connections between water and energy: Clouds, water vapour, radiation and precipitation Graeme Stephens JPL Center for Climate Sciences

Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

Embed Size (px)

Citation preview

Page 1: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

Connections between water and energy: Clouds, water vapour,

radiation and precipitation

Graeme Stephens JPL Center for Climate Sciences

Page 2: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

Outline: • Global -Energetic controls on precipitation • Regional - wet wetter/dry drier • Storm-scale –superadiabatic • Cloud radiation/convection/precipitation

feedbacks • Upper tropospheric moistening and the

SuperGreenhouse Effect

Page 3: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

1) Energy controls on global precipitation

Stephens&L’Ecuyer, 2015

On way to view the energy balance is in terms of energy lost from the atmosphere Rnet,atm ~-106,108 balanced by energy transferred from the surface by turbulent fluxes.

Page 4: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

SW

LW

Net

Energy Flux Sensitivities CMIP5 1% expts

Under climate change the atmospheric heating changes are shaped by water vapor changes. The change in net LW at the surface is an important component of the balance that sets precipitation changes

Stephens & Hu, 2010

Cloud effects

Energy balance under climate change

Page 5: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

IPCC FAR

~1-3%/K

~7%/K

The global-average accumulation

E.g. Allen and Ingram, 2002

Cloud-radiation processes are one major source for model spread in hydrological sensitivity

Page 6: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

Cloud influences on atmospheric radiative heating

A-Train observations

The radiative effects of high clouds dominate the heating at low latitudes, and low clouds largely determine the cooling at high latitudes

Page 7: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

High cloud modulation of precipitation

Stephens & Ellis, 2008

CMIP3 Heating changes that result from changes to high clouds modulates the precipitation response

clear

Page 8: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

Wentz et al., 2007

Yu & Weller, 2007

Observed/inferred pecipitation trends

~13%/K

Gu et al. (2007) - GPCP

Also Durack et al., 2012 8±5% K-1

for 1950–2000.

Page 9: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

• Global precipitation change is set by the change in total water vapor (W) and its effect on the energy balance. Projected changes are a direct a consequence of the water vapor feedback.

• The pace of precipitation increase cannot keep pace with the pace of vapor increase (~2%/K versus 7%/K)

• The implication is the water re-cycle (Δtimescale ~ΔW/ΔP) slows. One way this slowing can occur is though reduced frequency of storms.

• Observations of trends are mixed in their support of predicted hydrological sensitivity. There is some suggestion that hydrological sensitivity may be larger but these findings remain questionable

What we can say about the predictability of Global means

Page 10: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

IPCC AR5,Ch 7

q·Ñv q·Ñv

1

q

Dq

Dt~ 7% / K

2) Regional changes: The wet wetter and dry drier

(WWDD) paradigm

Fundamental question; are regional changes in precipitation fundamentally determined by a combination of C-C and circulation shifts and are the latter predictable?

Page 11: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

Evaporation –minus precipitation

Changes to the saltiness of the oceans supports the notion that wet areas get wetter and the dry areas drier. Is this wetting merely following water vapor changes within main convergence zones?

Salinity Change in Salinity over 50 years

These look a like

First global map of salinity from Aquarius, Launched in 2011

Durack et al. 2011

Oceans

Page 12: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

Wet wetter/dry drier is far too simplistic a description of

water change

Assessment of changes in drought over land (comparison

of 1948-1968 and 1985-2005 periods, annual changes)

4 P datasets, 11 Ep datasets, 7 E datasets

Few regions with robust changes

No clear support for “dry gets drier, wet gets wetter”

paradigm

Ocean trends apparently do not apply on land

(Greve et al. 2014, Nature Geoscience)

Page 13: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

Super C-C

OGorman, 2012

Tropical precipitation changes due to climate variability is a surrogate for precip changes under climate change. Precipitation extremes are super CC, also Kendon et al., 2014

Super CC

Page 14: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

The hemispheric balance/imbalance and the main tropical rainbelts

Observed hemispheric, annual mean radiation balance

The radiation (im)balance of hemispheres fundamentally sets the cross equatorial transport of heat (and moisture) that influence the tropical rain belts

Model expts with HadGEM, Haywood et al., 2015

Page 15: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

A grand challenge: CONVECTION The WCRP clouds/climate GC questions Q1: How will storm tracks change in the future? Q2: What controls the position and strength of tropical convergence zones? Q3: Is convective aggregation important for climate? Q4: How does convection contribute to cloud feedbacks?

Kang et al., 2009

Page 16: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

Two concepts Clouds -radiation convection feedbacks

Differential heating/cooling: I horizintal (i) Disturbed undisturbed radiative heating;

Gray and Jacobsen, 1977; Raymond, 2000; Mapes, 2002

Gray 1973

- + Think of this as a self-sustaining of the convectively disturbed regions and reinforcing of the clear sky – a positive feedback (+)

Differential heating/cooling: II vertical (i) Destabilization by strong cloud top radiative

cooling – Webster and Stephens, 1980; Tao 1996; Xu and Randall, 1995 (positive feedback)

(ii) Stabilization by upper tropospheric heating of cirrus anvils – Fu et al., 1995; Stephens et al., 2003; Slingo and Slingo, 1988;Lebsock et al., 2010 (negative feedback)

Page 17: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

Present Future

Moisture Supply 7%/K Precipitation super CC; >7%/K?

Reduced high cloud???- (IRIS), less IR heating, strengthened convection and precipitation

Page 18: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

Mauritsen and Stevens, 2015

Climate sensitivity and the IRIS effect

Clearly the convectively produced high clouds can effect both the climate and hydrological sensitivities – increasing strength of the IRIS effect lowers the ECS but enhances the hydrological sensivitiy

Page 19: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

19

GEWEX PROES UTCC (Stubenrauch (LMD and Stephens)

2) Goal: To understand the relation between convection, UTC and the radiative

heating , & provide observational based metrics of this relationship as a way of

evaluating detrainment processes in models

1) Scientific Motivation: How does convection affect UTC ? And

how does UTC affect convection?

relate convective strength to properties of high clouds

Test hypothesis that majority of UT heating is from thinner clouds

Tools & steps:

• Develop/study proxies of convective strength from the A-Train (e.g. colocate CloudSat

(Takahashi & Luo 2012, 2014), AIRS)

• determine horizontal extent & cloud types (convect core, CiAnvil, thin Ci) from AIRS, IASI

& study multi-layering from CALIPSO-CloudSat per cloud type

study life cycle of convective systems (MeghaTropiques, geostationary, AIRS-IASI)

GEWEX UTCC PROES (Process Evaluation Study) -> 1. meeting 16 Nov 2015, Paris (coord. Stubenrauch & Stephens)

Page 20: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

Convection and the moistening of the upper troposphere

G=s (SST)4 -OLR

dSGE

dSST> 4sSST3

dOLR

dSST< 0

(e..g. Valero et al., 1997)

Differences, year [<136-140> - <0-4>]

CMIP5 1%

Page 21: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

0 1 2 3 4 5

Temperature Change (K)

0.0

0.2

0.4

0.6

Sg Area (Pm2)

b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)

0 1 2 3 4 5

Temperature Change (K)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Heat Change (PW)

a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)

-2.0

-1.0

0.0

1.0

2.0

3.0

Heat (PW)

c) 20N/S Clear sky OLR Difference

-6

-4

-2

0

2

4

6

8

10

12

Amplification Factor

d) Cloud Amplification

- OLRend -OLRbegin < 0éë ùû -OLRall ,end -OLRall ,begin

OLRclr ,end -OLRclr ,begin

é

ëêê

ù

ûúú

Increase of heat trapped

Increase of heat emitted

Page 22: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

• Super greenhouse effect (SGE) is a term used here to refer to those regions of the planet that trap increasingly more heat than can be radiated to space as warming occurs.

• This places an onus on horizontal transport to move heat away from these regions in order to maintain a stable climate.

• The clear-sky SGE is a dominate source of heat build up in tropical latitudes in climate change experiments and is dominated by processes that moisten the low latitude upper troposphere associated with deep convection.

• the radiant energy exchange that defines it is strongly associated with emission in the far IR.

Page 23: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

Summary

• Global -Energetic controls on precipitation & role of cloud radiative processes

• Regional - wet wetter/dry drier paradigm

• Storm-scale –superadiabatic

• Cloud radiation/convection/precipitation feedbacks involving high clouds (e.g. IRIS and other concepts) & the focus of the GEWEX PROES UTCC

• Upper tropospheric moistening by deep convection and enhanced heat trapping via the Super Greenhouse Effect

Page 24: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

-12

-10

-8-6

-4-2

02

46

810

12

Flux

Diffe

renc

e (W

/m2)

-12

-10

-8-6

-4-2

02

46

810

12

Flux

Diffe

renc

e (W

/m2)

-12

-10

-8-6

-4-2

02

46

810

12

Flux

Diffe

renc

e (W

/m2)

-12

-10

-8-6

-4-2

02

46

810

12

Flux

Diffe

renc

e (W

/m2)

bcc

cnrncm5

mpi

gfdl

-12

-10

-8-6

-4-2

02

46

810

12

Flux

Diffe

renc

e (W

/m2)

HadGEM

Here we consider the regions of SGE as where OLR decreases in a warming world. These regions aren’t simply defined by a fixed SST threshold

The SGE in CMIP5 1%/yr experiments Clear-sky OLR differences [<136-140> - <0-4>]

CMIP5 1%/yr experiments

Page 25: Stubenrauch c 20150707_1700_upmc_jussieu_-_room_107

~2%/K

~7%/K