20
W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

Embed Size (px)

Citation preview

Page 1: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

1

Principles of Measurement

Page 2: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

Basic Counting System

Detector

Pulse Height Analysis/Digitization

unipolar

bipolar

0

Amplifier/Shaper: differentiates (1x or 2x)

Final amplitude 2-10V

Binary data to computer

PreAmp

Amp

ShaperRadiationSource

Page 3: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

3

Slow

Fast

Produce logical signal

Fast-Slow Signal Processing

CFTD

PreAmp

Amp

Gate Generator

Data Acquisition System

Energy

Gate

0

0t

t

CFTD Output

CFTD Internal

t

CFTD Input

Principle of a Constant-Fraction Timing Discriminator:

t independent of E

here f = 0.5

Source

Produce analog signal Binary

data to computer

Page 4: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

4

Trace Element Analysis: X-Ray Fluorescence

Irradiate sample, measure characteristic fluorescence

CFTD

PreAmp

Amp

Gate Generator

Data Acquisition System

Energy

Gate

Slow

Fast

Binary data to

computer

Ring-Source/Apertur

e

Sample

Si detecto

r

Water sample from treatment plantSource: 25 mCi 55Fe (2.60 a) Mn-X rays Ka 5.898 keV, Kb 6.490 keV

Off-line n activation analysis: irradiate with 252Cf neutrons, measure g-rays

CHANNEL NUMBER Lab. Invest. Nucl. Sci,The Nucleus/Tennelec, 1988

Page 5: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

5

Coincidences: Absolute Emission Rate (Activity)

N1

N2

N12

1 1 2 2

12 1 2 12 12

1 2 1 2

12 12

/

N A P N A P individual rates

P P P N A P coincidence rate

N N A P A PA singles coinc

N A P

Activity A [disintegrations/time], radiation types i =1,2 detection probabilities Pi =ei

DWi

No angular correlations between rad’s 1,2.

CFTDGate Generator

Pre Amp

Pre Amp

CFTDGate Generator

Coin

cid

en ce

Counter

Coinc.

Counter 1

Counter 2

1

2

Activity A

Page 6: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

6

Time Measurement

CFTDGate Generator

PreAmp

Amp Energy 1

Time

PreAmp

CFTDGate Generator

Amp

Time to Amplitude Converter

Energy 2

Start

Stop

Data Acquisition System

prompt coincident events

t

cou

nt

s

time spectrum

Delay var.

delayed eventscalibrate time axis with

variable known delays (cables)

Page 7: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

7

Pulse Shape Analysis

TimeDAQ

Different signal decay times for 2 radiation types are translated into different amplitudes

Slow Amp

Energy

DAQ

NeutronsGammas

CFTD

Fast Amp

DDAmp

Time-to-AmplitudeConverter

Zer-CrossDisc.

IntegrAmp Delay

Td

StartStop

Page 8: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

8

2-Dimensional Measurement

coincident signals

CFTDGate Generator

PreAmp

Amp Energy 1

Gate

PreAmp

CFTDGate Generator

Amp

Gate Generator

Energy 2

Coin

cid

en

ce

Data Acquisition System

Page 9: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

9

Example

159

1037660

33

0

241Am

237Np

5.378 MeV

5.433 M

eV

5.47

6 M

eV

5.50

3 M

eV

5.54

6 M

eV

380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550

30

40

50

60

70

80

90

100

110

120

a Energy (keV) - 5 MeV

g E

nerg

y

(keV

)

a-Decay of 241Am, subsequent g emission from daughter

Find coincidences

(Ea, Eg)

9 g-rays, 5 a

Page 10: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

1

0

Example

159

1037660

33

0

241Am

237Np

5.378 MeV

5.433 M

eV

5.47

6 M

eV

5.50

3 M

eV

5.54

6 M

eV

380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550

30

40

50

60

70

80

90

100

110

120

a Energy (keV) - 5 MeV

g E

nerg

y

(keV

)

Page 11: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

1

1

Example

159

1037660

33

0

241Am

237Np

5.378 MeV

5.433 M

eV

5.47

6 M

eV

5.50

3 M

eV

5.54

6 M

eV

380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550

30

40

50

60

70

80

90

100

110

120

a Energy (keV) - 5 MeV

g E

nerg

y

(keV

)

Page 12: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

1

2

Example

159

1037660

33

0

241Am

237Np

5.378 MeV

5.433 M

eV

5.47

6 M

eV

5.50

3 M

eV

5.54

6 M

eV

380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550

30

40

50

60

70

80

90

100

110

120

a Energy (keV) - 5 MeV

g E

nerg

y

(keV

)

Page 13: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

1

3

Example

159

1037660

33

0

241Am

237Np

5.378 MeV

5.433 M

eV

5.47

6 M

eV

5.50

3 M

eV

5.54

6 M

eV

380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550

30

40

50

60

70

80

90

100

110

120

a Energy (keV) - 5 MeV

g E

nerg

y

(keV

)

Page 14: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

1

4

Example

159

1037660

33

0

241Am

237Np

5.378 MeV

5.433 M

eV

5.47

6 M

eV

5.50

3 M

eV

5.54

6 M

eV

380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550

30

40

50

60

70

80

90

100

110

120

a Energy (keV) - 5 MeV

g E

nerg

y

(keV

)

No -a g coincidences !

Page 15: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

1

5

Example

159

1037660

33

0

241Am

237Np

5.378 MeV

5.433 M

eV

5.47

6 M

eV

5.50

3 M

eV

5.54

6 M

eV

380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550

30

40

50

60

70

80

90

100

110

120

a Energy (keV) - 5 MeV

g E

nerg

y

(keV

)

Page 16: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

1

6 The End

Page 17: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

Basic Counting Statistics

W. Udo Schroeder
Page 18: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

Uncertainty and Statistics

Nucleus is a quantal system described by a wave function y(x,…;t)

(x,…;t) are the degrees of freedom of the system and time.

Probability density (e.g., for x, integrate over others)

2

2

212

21

( , )| , |

( , )( , ) | , | 1

1 2, | | ( )2

( , )| | 1

t t

dP x tx t

dxNormalization

dP x tP x t dx dx x t

dx

Transition between states M E

dP x tx e e state disappears

dx

1

2

Probability rate l for disappearance (decay of 1) can vary over many orders of magnitude no certainty

Page 19: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

1

9

Experimental Mean and Variance

1

2 2

1

2 2

1

1( )

1( )

1

1( )

( 1)

N

i truei

N

ii

N

n ii

Average samplecount n

n n n unknownN

Variance of an individual count

n nN

Variance of the sample average

n nN N

n n-<n> (n-<n>)2

36076 129.6 16796.1635753 -193.4 37403.5635907 -39.4 1552.3636116 169.6 28764.1635884 -62.4 3893.7636136 189.6 35948.1635741 -205.4 42189.1635640 -306.4 93880.9636124 177.6 31541.7636087 140.6 19768.3635946 -1.5E-12 3463.76

<n> <n-<n>> n

What can be measured: ensemble (sampling) averages (expectation values) and uncertainties

236U (0.25mg) sample counted a particles emitted during N =

10 time intervals (@1 min). l=??

1: (35496 59)min

. : 59 /n

Result n

std deviation n N

Page 20: W. Udo Schröder, 2009 Principles Meas 1 Principles of Measurement

W. Udo Schröder, 2009

Pri

nci

ple

s M

eas

2

0

Moments of Transition Probabilities23

170

4 114 1

170

14 1

1/ 2

6.022 100.25 0.25 6.38 10

236

3.5946 10 min5.6362 10 min

6.38 10

( ) :

(5.6362 0.009) 10 min

" " (2.34 0.004)

n mg mgg

np

n

Probability for decay decay rate per nucleus

p

corresponds to halflife t

710 a

Small probability for process, but many trials (n0 = 6.38·1017)

n0·l < ∞

Statistical process follows a Poisson distribution: n=“random” Different statistical distributions: Binomial, Poisson, Gaussian