137
Thomas W. Yee * Figures from “Vector Generalized Linear and Additive Models: With an Implementation in RFebruary 29, 2016 Springer * c T. W. Yee 2015

Vector Generalized Linear and Additive Models: With an

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Vector Generalized Linear and Additive Models: With an

Thomas W. Yee

∗Figures from “VectorGeneralized Linear andAdditive Models: With anImplementation in R”

February 29, 2016

Springer

∗ c© T. W. Yee 2015

Page 2: Vector Generalized Linear and Additive Models: With an
Page 3: Vector Generalized Linear and Additive Models: With an

Preface

This document gives the figures from Yee (2015), along with their captions. Thereare slight differences between these figures and in the book, due to edits bySpringer. I retain the copyright for all these figures. They can be used for pri-vate study and teaching, but cannot be used in publications without my writtenconsent.

Thomas YeeAuckland, New Zealand

November 2015

Some, imagining they can best commend themselves to the Eternal by meansof statues, are eagerly desirous of them, as if they were certain to obtain morereward from brazen figures unendowed with sense, than from the conscious-ness of duties honourably and uprightly performed.—Ammianus Marcellinus

v

Page 4: Vector Generalized Linear and Additive Models: With an
Page 5: Vector Generalized Linear and Additive Models: With an

Contents

1 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii

Page 6: Vector Generalized Linear and Additive Models: With an

Contents c© T. W. Yee 2015

10 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

11 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

12 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

13 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

14 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

15 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

16 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

17 Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A Figures from Vector Generalized Linear and Additive Models:With an Implementation in Rc© T. W. Yee, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

viii

Page 7: Vector Generalized Linear and Additive Models: With an

Chapter 1

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

1

Page 8: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 01

ν

µ

A B

(a)

ν

µ

A B

(b)

Fig. 1.1 Rank-1 constrained quadratic ordination (CQO). (a) The mean abundance is µs(ν) =E(Ys|ν) for s = 1, . . . , S species, and ν = cTx2 is a latent variable. (b) Zooming in on the

subinterval [A,B] in (a). This is approximately linearly on the η scale, meaning a RR-VGLM

would be suitable.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 9: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 01

LM

RR−VGLM

RR−VLM

VLM

VGLM VGAM

VAM

Generalized

Normal errors

Linear Smooth

RCIMQRR−VGLM (CQO) / UQO

RR−VGAM (CAO)

Fig. 1.2 Flowchart for different classes of models. Legend: LM = linear model, V = vector,G = generalized, A = additive, O = ordination, Q = quadratic, U = unconstrained, RCIM =

row–column interaction model. See also Table 1.1. Apart from the LM, the models of the bottom

half are more to be viewed as computational building blocks.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 10: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 01

−6 −5 −4 −3 −2 −1

0.0

0.2

0.4

0.6

0.8

1.0

Log Lambda

Coe

ffici

ents

4 4 4 4 2 1

1

2

3

4

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

L1 Norm

Coe

ffici

ents

0 1 2 4

Fig. 1.3 Paths of the estimated LASSO coefficients in a LM fit. The response log(los) is

regressed against the variables admit (black), age75 (red), procedure (green) and sex (blue)

and intercept, in the data frame azpro from COUNT. The first plot has log λ as its x-axis,whereas second plot has the quantity

∑pk=2 |βk| in (1.43). The upper numbers are the number

of variables in the model. Package glmnet is used here.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 11: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 01

0.0 0.2 0.4 0.6 0.8 1.0

I(x − x0 < 0)

Step function

(a)

2 parameters

0.0 0.2 0.4 0.6 0.8 1.0

I((x − x0) * (x − x0 > 0))

Horizontal on LHS

(b)

2 parameters

0.0 0.2 0.4 0.6 0.8 1.0

I((x − x0) * (x − x0 <= 0))

Horizontal on RHS

(c)

2 parameters

0.0 0.2 0.4 0.6 0.8 1.0

I((x − x0)^2 * (x − x0 > 0))

Horizontal on LHS

(d)

2 parameters

0.0 0.2 0.4 0.6 0.8 1.0

I((x − x0)^2 * (x − x0 < 0))

Horizontal on RHS

(e)

2 parameters

0.0 0.2 0.4 0.6 0.8 1.0

I((x − x0) * sign(x − x0))

Slopes have opposite signs

(f)

2 parameters

0.0 0.2 0.4 0.6 0.8 1.0

Continuous & piecewise−linear

(g)

3 parameters

I((x−x0) * (x > x0)) + I((x−x0) * (x <= x0))

0.0 0.2 0.4 0.6 0.8 1.0

bs(x, knot = x0, degree = 1)

Same fitted values as (g)

(h)

3 parameters

0.0 0.2 0.4 0.6 0.8 1.0

I(x − x0) * I(x − x0 > 0)

Two separate lines

(i)

4 parameters

0.0 0.2 0.4 0.6 0.8 1.0

I((x − x0)^2 * sign(x − x0))

cf. (f)

(j)

2 parameters

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0I((x2 − x0 > 0) * (x3 − x0 > 0))

x2

x 3

(k)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0I(x2 − x0 > 0) * I(x3 − x0 > 0)

x2

x 3

(l)

Fig. 1.4 Some functional forms derived from the S formula language based on elementaryfunctions and operators. The formula heads each plot, followed by footnotes. The number of

parameters in the regression is given. An intercept term is assumed in all—and the blue •point indicates its value at the location x = x0. Plots (k)–(l) are contour images with variouscolours denoting different fitted values (blue for the intercept). The value x0 = x0 = 0.4 here,

and variables x, x2 and x3 are defined on the unit interval. Function bs() resides in the splinespackage.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 12: Vector Generalized Linear and Additive Models: With an
Page 13: Vector Generalized Linear and Additive Models: With an

Chapter 2

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

7

Page 14: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

0.0 0.2 0.4 0.6 0.8 1.0

−4

−2

0

2

4(a)

p

g j(p

)

logitprobitcloglogcauchit

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

7(b)

p

g j′(p

)

0.0 0.2 0.4 0.6 0.8 1.0

−15

−10

−5

0

5

10

15(c)

p

g j″(

p)

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0(d)

gj(p)

p

Fig. 2.1 Properties of some common link functions gj suitable for a probability. (a) gj(p);

(b) g′j(p); (c) g′′j (p); (d) g−1j (p). The legend in (a) is common for all plots. The calls to (a)–(c)

are of the form link.function(p, deriv = d) for d = 0, 1 and 2 (Table 1.2).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 15: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

p2

Test

sta

tistic

s

(a)

p10.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120

140

p2

(b)

p1

Fig. 2.2 Wald (orange) and likelihood ratio test (blue) statistics plotted against p2, for:

(a) p1 = 0.5, (b) p1 = 0.25 (vertical dashed lines). Actually, the Wald statistic here is the

square of the usual Wald statistic, and p2 = 0.01(0.01)0.99 is discrete. The data follows Hauckand Donner (1977).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 16: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

Fig. 2.3 Completely separable data (bluecircles). Adding the two orange hollow points

results in quasi-completely separable data.

The logistic regression estimate of the slopewill tend to infinity in both cases.

● ● ● ● ●

● ● ● ● ●

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

x2

y

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 17: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

●●●●● ●●●●●●●●●●●●● ●●●

●●●●●

●●

●●

●●

●●●

●●●

●●

●●●

●●

●●

●●●

●●

●●●

●●

● ●

●●

10 20 30 40 50

−100

−50

0

50

Times

Acc

eler

atio

n

(a)

Degree 1Degree 2Degree 3Degree 4

●●●

●●

●●●

●●

●●

0 5 10 15 20 25

0

20

40

60

80

100

120

Speed (mph)

Sto

ppin

g di

stan

ce (

ft)

(b)Degree 1Degree 2Degree 3Degree 4

Fig. 2.4 Polynomials of degree 1–4 fitted to two data sets. (a) mcycles from MASS. (b) cars

from datasets.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 18: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

●●

74 76 78 80 82 84 86 88

0.6

0.7

0.8

0.9

1.0(a)

rain

bow

/tota

l.fis

h

Year

●●

74 76 78 80 82 84 86 88

0.6

0.7

0.8

0.9

1.0(b)

rain

bow

/tota

l.fis

h

Year

Fig. 2.5 (a) Proportion of fish caught that are rainbow trout from Lake Otamangakau (lakeO)

caught by an angler who frequented the spot. The variable Year is year-1900. (b) Smoothing

the same data with a cubic regression spline (truncated power basis) with one knot located atthe year 1980. A boundary effect on the RHS is evident.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 19: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

Fig. 2.6 Smoothing somedata with a regression spline

(B-spline). Each segment

of the spline is coloureddifferently. The term is effec-

tively bs(x, knots = c(1,

3.08, 6.03)). The truefunction is the sine function

(dashed) and n = 50.

0 1 2 3 4 5 6

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x

y

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 20: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

Fig. 2.7 Truncated power series

basis for cubic splines (2.39) Theblack dashed lines are 1, x, x2, x3.

The coloured solid lines are (x −ξk)3+ for knots ξ1 = 1, ξ2 = 2, ξ3 =

3, ξ4 = 4 and ξ5 = 5.

0 1 2 3 4 5 6

0

5

10

15

20

25

30

x

(x−

ξ k) +3

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 21: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0 (a)

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0 (b)

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0 (c)

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0 (d)

Fig. 2.8 B-splines of order 1–4 ((a)–(d)), where the interior knots are denoted by vertical lines.

The boundary knots are at 0 and 11. The basis functions have been plotted from left to right.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 22: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

0 1 2 3 4 5 6

−2.0−1.5−1.0−0.5

0.00.51.01.5

Multiplicity 1

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

0 1 2 3 4 5 6

−2.0−1.5−1.0−0.5

0.00.51.01.5

Multiplicity 2

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

0 1 2 3 4 5 6

−2.0−1.5−1.0−0.5

0.00.51.01.5

Multiplicity 3

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

0 1 2 3 4 5 6

−2.0−1.5−1.0−0.5

0.00.51.01.5

Multiplicity 4

Fig. 2.9 Smoothing some data with cubic regression splines with knots of varying multiplicities.

The knots are at x = 2 and 4.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 23: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

x

y

(a)

●●●

●●

●●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

x

y

(b)

●●●

●●

●●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

x

y

(c)

●●●

●●

●●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

x

y

(d)

●●●

●●

●●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

Fig. 2.10 (a)–(d) Linear combinations of B-splines of degrees 0–3 fitted to some scatter plotdata; the formula is similar to (2.55) The knots are equally-spaced on the unit interval.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 24: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

●●

● ●

1974 1978 1982 1986

0.6

0.7

0.8

0.9

1.0

(a); Derivative = 0

rain

bow

/tota

l.fis

h

1974 1978 1982 1986

−0.020

−0.015

−0.010

(b); Derivative = 1

1974 1978 1982 1986

−0.002−0.001

0.0000.0010.0020.0030.004

(c); Derivative = 2

1974 1978 1982 1986

−0.002

−0.001

0.000

0.001

0.002

0.003(d); Derivative = 3

Fig. 2.11 (a) Cubic smoothing spline fitted to the proportion of fish caught that are rainbow

trout from lakeO. The x-axis is year. The smoother has 1 nonlinear degrees of freedom. (b)–

(d) Derivatives of the smooth of orders 1–3. In contrast, Fig. 2.15 fits a local linear regression tothese data.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 25: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

Fig. 2.12 O-splines:number of knots K se-

lected from n unique xi,

for smooth.spline() isthe top function. The

lower function is (2.56)

for vsmooth.spline().Both axes are on a

logarithmic scale. The

top function intersectswith the dashed lines

at (50, 50), (200, 100),

(800, 140) and (3200, 200);logarithmic interpolation

is used for other n values.

5 10 50 500 5000

5

10

20

50

100

200

n

Effe

ctiv

e n

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 26: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

0.0 0.2 0.4 0.6 0.8 1.0

1.5

2.0

2.5

3.0

x

y

●●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

● ●

● ●

x0

Local WLS lineTrue function, fKernel function, KEstimated local regression

Raw yi

Weighted yi

Fig. 2.13 Local linear regression with n = 40 points. The kernel weights have been divided by 10

for scaling purposes. The vertical line is at the target point x0 = 0.7 so that three curves/lines

intersect at (x0, f(x0)). The shaded region is effectively the window for computing f(x0).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 27: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

−1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

u

(a) CosinusEpanechnikovGaussianQuartic

−1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

u

(b) TriangleTricubeTriweightUniform

Fig. 2.14 Kernel functions from Table 2.2. All but one has compact support.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 28: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

●●

● ●

1974 1978 1982 1986

0.6

0.7

0.8

0.9

1.0

(a); Derivative = 0

year

rain

bow

/tota

l.fis

h

1974 1978 1982 1986

−0.025−0.020−0.015−0.010−0.005

0.0000.005

(b); Derivative = 1

Fig. 2.15 (a) Local linear regression fitted to the proportion of fish caught that are rainbow

trout from lakeO. The smoother has a bandwidth of h = 2.5 and uses the Gaussian kernel

function. (b) f ′(x). In contrast, Fig. 2.11 fits a cubic smoothing spline to these data.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 29: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

0.0 0.2 0.4 0.6 0.8 1.0

−0.

003

−0.

001

0.00

10.

003

x

EK

0.0 0.2 0.4 0.6 0.8 1.0

−0.

003

−0.

001

0.00

10.

003

x

0.0 0.2 0.4 0.6 0.8 1.0

−0.

003

−0.

001

0.00

10.

003

x

Fig. 2.16 Asymptotic equivalent kernel for f ′(x) from (2.82) The 101 xi are equally-spaced

on [0, 1] (as shown by the rugplot). The x0 values are 0.05, 0.25, 0.5 (vertical dashed lines), andthe bandwidth is 0.2. The kernel function K = φ(·).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 30: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0(a)

● ●

●●

●●

●●

●● ● ●

5 10 15 20

1e−05

1e−03

1e−01(b)

Fig. 2.17 (a) Eigenvalues of the smoother matrix of a cubic smoothing spline. Here, n =

20 and the xi are equidistant on [0, 1]. (b) The same on a logarithmic scale. The two uniteigenvalues correspond to constant and linear functions. The corresponding eigenvectors are

plotted in Fig. 2.18.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 31: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

Eig

enve

ctor

−0.4

−0.2

0.0

0.2

0.4Eigenvector 1

5 10 15 20

Eigenvector 2 Eigenvector 3

5 10 15 20

Eigenvector 4 Eigenvector 5

Eigenvector 6 Eigenvector 7 Eigenvector 8 Eigenvector 9

−0.4

−0.2

0.0

0.2

0.4Eigenvector 10

−0.4

−0.2

0.0

0.2

0.4Eigenvector 11Eigenvector 12Eigenvector 13Eigenvector 14Eigenvector 15

5 10 15 20

Eigenvector 16Eigenvector 17

5 10 15 20

Eigenvector 18Eigenvector 19

5 10 15 20

−0.4

−0.2

0.0

0.2

0.4Eigenvector 20

Fig. 2.18 Successive eigenvectors corresponding to the eigenvalues of Fig. 2.17.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 32: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

Fig. 2.19 Equivalent kernel of acubic spline, κ(u) (Eq. (2.92)) −5 0 5

0.0

0.1

0.2

0.3

κ(u

)

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 33: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

● ● ● ● ● ● ●● ● ●

●●

● ● ●● ●●●

1880 1900 1920 1940 1960 1980 2000

0.0

0.1

0.2

0.3

0.4

0.5

year

Pro

port

ion

fem

ale

linearquadraticB−spline

Fig. 2.20 Fitted values from some logistic regression models applied to chinese.nz. The re-sponse is the proportion of New Zealand Chinese who are female. The terms are year, poly(year,

2), bs(year, 4). Area sizes of the points are proportional to the number of people.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 34: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 02

●●

●●

●●

● ●

●●●

0.0 0.1 0.2 0.3 0.4 0.5

−6

−2

24

6

Deviance residuals●

●●●●

●●● ●

● ● ● ● ●●●●●●●●

0.0 0.1 0.2 0.3 0.4 0.5

−0.

50.

51.

52.

5

Working residuals

●●●●

●●

●●

● ●

●●●

0.0 0.1 0.2 0.3 0.4 0.5

−6

−2

24

68

Pearson residuals

●●●●●●●

●●

●●

●●

●●

●●●

0.0 0.1 0.2 0.3 0.4 0.5

−0.

05−

0.02

0.00

Response residuals

Fig. 2.21 Four residual types for the regression spline fit of Fig. 2.20. The fitted values are

plotted on the x-axis.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 35: Vector Generalized Linear and Additive Models: With an

Chapter 3

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

29

Page 36: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 03

Fig. 3.1 An extension of the

fitted model fit.travel fromSect. 14.2.1, where the cost vari-

able is smoothed with regression

splines. The variable gcost standsfor ‘generalized cost’.

−100 −50 0 50 100

−5

−4

−3

−2

−1

0

1

2

gcost

Fitt

ed s

moo

th

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 37: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 03

0.00 0.05 0.10 0.15 0.20 0.25 0.30

−240

−220

−200

−180

−160

µ

log−

likel

ihoo

d

(i)

−4 −3 −2 −1

−240

−220

−200

−180

−160

logit µ

log−

likel

ihoo

d

(ii)

Fig. 3.2 Log-likelihood ` as a function of (i) µ and (ii) η = logitµ, for the V1 data frame. The

model is a logistic regression with 3 or more hits defining ‘success’. The vertical dashed lines are

at the MLE µ. The dashed curves are the quadratic approximation to ` at µ.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 38: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 03

1 2 3 4 5 6 7 8

0.00.10.20.30.40.50.6

logit(P[Y>=2])

Observation

Hat

val

ues

●●

●● ●

1 2 3 4 5 6 7 8

0.00.10.20.30.40.50.6

logit(P[Y>=3])

Observation

Hat

val

ues

●● ●

● ●●

Fig. 3.3 Hat values from a proportional odds model fitted to the severity of pneumoconiosisdata set in coalminers, called pneumo.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 39: Vector Generalized Linear and Additive Models: With an

Chapter 4

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

33

Page 40: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 04

●●●

●●●

●●●●

●●

●●

●●●

●●

●●●●●●●

●●●

● ●●●

●●

●●●●

●●

●●●●

●●

●●

●●●●

●●

●●

●●●●●

●●

●●

30 40 50 60 70

60

80

100

120

140

160

Age

Blo

od p

ress

ure

(a)

●●●

●●●

●●●●

●●

●●

●●●

●●

●●●●●●●

●●●

● ●●●

●●

●●●●

●●

●●●●

●●

●●

●●●●

●●

●●

●●●●●

●●

●●

30 40 50 60 70

60

80

100

120

140

160 (b)

Fig. 4.1 (a) Scatter plot of diastolic (◦) and systolic (×) blood pressures (mm Hg) versus

age, for a random sample of 100 European-type females from xs.nz. (b) A vector smoothing

spline fit overlaid on the same. Each component function has 2 effective nonlinear degrees offreedom (ENDF).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 41: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 04

−3 −2 −1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

x

(a)

−3 −2 −1 0 1 2 3

−0.1

0.0

0.1

0.2

0.3

EK

(b) ρ = −0.9

−3 −2 −1 0 1 2 3

−0.1

0.0

0.1

0.2

0.3

EK

(c) ρ = −0.5

−3 −2 −1 0 1 2 3

−0.1

0.0

0.1

0.2

0.3 (d) ρ = 0

−3 −2 −1 0 1 2 3

−0.1

0.0

0.1

0.2

0.3

EK

x

(e) ρ = 0.5

−3 −2 −1 0 1 2 3

−0.1

0.0

0.1

0.2

0.3

x

(f) ρ = 0.9

Fig. 4.2 (a) Data used from (4.6). The black curves are the true functions; (b)–(f) Equivalent

kernels based on (4.6) for various values of ρ. The row of the influence matrix corresponds

to f1(x = 0), and is midway between the boundaries.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 42: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 04

Fig. 4.3 O-

smoothing spline

(blue curve) fittedto scatter plot

data •, which is

equal to a leastsquares fit (black

line) plus thesum of individual

B-spline basis func-

tions; cf. Fig. 2.8.It corresponds to

the decomposi-

tion (4.12). Therugplot denotes the

position of the xi.

0.0 0.2 0.4 0.6 0.8 1.0

1.5

2.0

2.5

3.0

x

y ●● ●

● ●

●●●

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 43: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 04

20 40 60 80

−2

−1

0

1

age

s(ag

e, d

f = c

(4, 4

, 2))

:1

20 40 60 80

−3

−2

−1

0

age

s(ag

e, d

f = c

(4, 4

, 2))

:2

20 40 60 80

−1

0

1

2

age

s(ag

e, d

f = c

(4, 4

, 2))

:3

Fig. 4.4 A bivariate odds ratio model fitted as a VGAM to a subset of female Europeans

from xs.nz, with household cat and dog ownership as the responses. The plots are the f(j)2(x2).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 44: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 04

20 30 40 50 60 70 80 90

0.0

0.2

0.4

0.6

0.8

Age

Fitt

ed jo

int p

roba

bilit

ies

No cat or dogDog onlyCat onlyCat and dog

Fig. 4.5 Joint probabilities from fit.cd1.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 45: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 04

20 40 60 80

−2.

5−

1.5

−0.

50.

5

age

s(ag

e, d

f = c

(4, 4

, 2))

:1

20 30 40 50 60 70 80 90

−3.

0−

2.0

−1.

00.

0

age

s(ag

e, d

f = c

(4, 4

, 2))

:2

20 30 40 50 60 70 80 90

−1.

00.

01.

02.

0

age

s(ag

e, d

f = c

(4, 4

, 2))

:3

20 30 40 50 60 70 80 90

0.0

0.5

1.0

1.5

age

Log

odds

rat

io

Fig. 4.6 The first three plots are the fitted component functions overlaid; the modelsare fit1.cd are fit3.cd. The fourth plot is the estimated log odds ratios of fit3.cd.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 46: Vector Generalized Linear and Additive Models: With an
Page 47: Vector Generalized Linear and Additive Models: With an

Chapter 5

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

41

Page 48: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 05

−0.2 0.0 0.2 0.4 0.6 0.8

0.00

0.05

0.10

0.15

(a)

Latent psychological variable

Pro

babi

lity

asthmacancerdiabetesheartattackstroke

−0.2 0.0 0.2 0.4 0.6 0.8

0.005

0.010

0.020

0.050

0.100

0.200(b)

Latent psychological variable

Pro

babi

lity

Fig. 5.1 (a) RR-VGLM-binomial model applied to several disease responses. The x-axis is ν, a

linear combination of 11 binary psychological variables. The y-axis is disease prevalence. (b) Thesame on a log scale.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 49: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 05

************************

******

*

*

**

*

*

*

*****

*

**********************

*

******

***

**********

*****************

***************

***************

*******

*

**

1962 1966 1970

5.5

6.5

7.5

8.5

wheat.flour

year

***

*

**

**

********

*******

*

*****

*

***

*

*

*********

*

*

*

********

**

*

*

*

**

*

***

***

*

*

**

**

***

*

***

*

*****

*

**

***

**

***

*

******

**

***

**

***

***

*

**

***

*

**

*

**

*********

*

*

1962 1966 1970

1.1

1.2

1.3

1.4

corn

year

***

*

**

*

*********

*************

*

**

*

***

**

*

*

*

***

**

******

***

***

*

***

***

*

***

*

*

**

*

**

*

*

*

****

******

**

**

*

**

*****

*****

*

******

***

**

*

*

**

****

*

**

*

*

**

*

*

**

*

*

*

*

*

1962 1966 1970

1.2

1.4

1.6

1.8

wheat

year

**

*

*

*

*

*

**

********

*

******

********

*

****

*

******

***

******

*

*

****

*

**

*

*

**

***

**

********

*

*********

*

*

*

***********

**

********

*

****

********

*

*

**

*

*

*****

*****

1962 1966 1970

0.9

1.1

1.3

rye

year

Fig. 5.2 Monthly average prices of Grain series, January 1961–October 1972, in dataframe grain.us.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 50: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 05

************************

******

*

*

**

*

*

*

*****

*

**********************

*

******

***

**********

*****************

***************

***************

*******

*

**

1962 1966 1970

−1.

5−

0.5

0.5

1.5

Z1

year

***

*

**

**

********

*******

*

*****

*

***

*

*

******

***

*

*

*

********

**

*

*

*

**

*

***

***

*

*

**

**

***

*

***

*

*****

*

**

***

**

***

*

******

**

***

**

***

***

*

**

***

*

**

*

**

*

********

*

*

1962 1966 1970−0.

2−

0.1

0.0

0.1

0.2

Z2

year

***

*

***

************

*****

*****

**

**

*

*

*

*

*

*

*

**

*

*********

*

*

*

***

*

***

******

*

**

**

*

**

**

*******

****

**

**

*

**

******

**

*********

***

***

*

******

*

***

*

****

**

*

****

1962 1966 1970

−0.

40.

00.

20.

4

Z3

year

**

*

***

*

**

*********

******

********

**

*

*

*

*****

***********

*

*

********

*

*

******

*********

***********

************

********

***

************

*

****

*

*******

*

**

1962 1966 1970

−0.

40.

00.

20.

4

Z4

year

Fig. 5.3 Canonical variables of the Grain Price series, January 1961–October 1972.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 51: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 05

Time

Day

0 1 2 3 4 5 6 7 8 9 1011121314151617 18 19 20 21 22 23MonTueWedThu

Fri

Sat

Sun

Fig. 5.4 Mosaic plot of alcoff; the area sizes are proportional to the counts.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 52: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 05

Row effects

Hour

Hou

rly e

ffect

s

19 22 1* 4* 7 9 12 15 18

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5Column effects

Effective day

Effe

ctiv

e da

ily e

ffect

s

Mon* Wed* Fri* Sat* Sun*

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Fig. 5.5 Hourly and effective daily effects of a rank-0 Goodman’s RC model fitted to alcoff.This is output from plot(grc0.alcoff).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 53: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 05

Row effects

Per

son

effe

cts

Richard Kim Rod Bert Lisa

−4

−2

0

2

4

Column effects

Item

effe

cts

q04 q07 q10 q13 q16

−4

−2

0

2

4

Fig. 5.6 Rasch fixed effects model to exam1, Eq. (5.29). Only a few people and items arelabelled.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 54: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 05

typeA typeC typeE

−1.

5−

0.5

0.0

0.5

1.0

Est

imat

e●

●●

(a)

A B C D E

−1.

5−

0.5

0.0

0.5

1.0

Est

imat

e

●●

(b)

A B C D E

−1.

5−

0.5

0.0

0.5

1.0

Est

imat

e

●●

(c)

Fig. 5.7 Quasi-variances computed for the ships data in MASS. The fitted model is a quasi-

Poisson-GLM fitted to the ship data (McCullagh & Nelder, 1989) with respect to ship types (A–E)on the damage rate on a log scale. (a) Confidence intervals for contrasts with type A ships based

on conventional standard errors; (b) Comparison intervals based on quasi-variances; (c) 5% LSD

intervals (arrows) based on quasi-variances overlaid on (b). For (a)–(c), the formulas are βi ±2 SE(βi), βi ± 2

√qi and βi ± z(0.025)

√qi/2, respectively.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 55: Vector Generalized Linear and Additive Models: With an

Chapter 6

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

49

Page 56: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 06

(a) CommunityE

(Y)

(b) Individualistic continuum

(c) Resource niche

E(Y

)

(d) Independent strata with resource niches

Fig. 6.1 Four hypothetical models for community ecology, along a gradient or latent variable.Plot (c) corresponds to a species packing model.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 57: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 06

−2 −1 0 1 2 3

0

20

40

60

80

100

120

140(a)

Latent Variable

Fitt

ed v

alue

s

●●●●●●●● ● ● ● ●● ● ●

●●●

●●

●●●

● ●

●●

● ●

●● ●●● ●●

AlopacceAlopcuneAlopfabrArctluteArctperiAuloalbiPardmontPardnigrPardpullTrocterrZoraspin

−2 −1 0 1 2 3

0

20

40

60

80

100

(b)

Latent Variable

Exp

ecte

d Va

lue

AlopacceAlopcuneAlopfabr

ArctluteArctperi

Auloalbi

Pardmont

Pardnigr

Pardpull

Trocterr

Zoraspin

Fig. 6.2 Ordination of 11 species from the hspider data frame; a Poisson model with unequaltolerances, called p1ut.hs.2. (a) lvplot() output. (b) persp() output, which is a perspectiveplot and a ‘continuous’ version of (a).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 58: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 06

−3 −2 −1 0 1 2 3 4

0

20

40

60

80

100

120

140(a)

Latent Variable

Fitt

ed v

alue

s

●●●●●●●● ●● ● ●● ● ●

●●●

●●

●●●●●●●●

●●

● ●

●●● ●● ●●● ●●●●●●●●●●

● ●

●●

●●

●●

●●●

●● ●●● ●●

AlopacceAlopcuneAlopfabrArctluteArctperiAuloalbiPardluguPardmontPardnigrPardpullTrocterrZoraspin

−3 −2 −1 0 1 2 3 4

0

20

40

60

80

100

120

(b)

Latent Variable

Exp

ecte

d Va

lue

AlopacceAlopcuneAlopfabr

ArctluteArctperi

AuloalbiPardlugu

PardmontPardnigr

Pardpull

Trocterr

Zoraspin

Fig. 6.3 Ordination of 12 species from the hspider data frame; a Poisson model with equaltolerances, called p1et.hs. (a) lvplot() output. (b) persp() output, which is a perspective plotand a ‘continuous’ version of (a).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 59: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 06

Late

nt V

aria

ble

1

−6−4

−2

0

2

4

Latent Variable 2

−6−4

−2

0

2

Expected value

0

50

100

Fig. 6.4 Perspective plot of a rank-2 CQO fitted to the hspider data frame, called p2et.hs.All 12 species are fitted, using an equal-tolerances Poisson model, but only the response surfaces

of the dominant species may be seen. See also Fig. 6.6 for an ordination diagram of the above.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 60: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 06

isd.latvar = 0.5

Latent variable

−0.5 0.0 0.5

isd.latvar = 1

Latent variable

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

isd.latvar = 2

Latent variable

−3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 3.5

isd.latvar = 5

Latent variable

−9.0 −6.5 −4.0 −1.5 1.0 3.0 5.0 7.0 9.0

Fig. 6.5 The effect of the argument isd.latvar on the site scores. All response curves haveunit tolerances (because Ts = IR ∀s), and the optimums are located the same relative distance

from each other. The site scores are uniformly distributed over the latent variable space, and have

been scaled to have a standard deviation isd.latvar. The tick marks are at the same values.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 61: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 06

−2 0 2 4 6

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(a)

Latent Variable 1

Late

nt V

aria

ble

2

+

++

+

++

+

+

+

++

+

Alopacce

AlopcuneAlopfabr

Arctlute

ArctperiAuloalbi

Pardlugu

Pardmont

Pardnigr

PardpullTrocterr

Zoraspin

1

2

34

5

6

7

8

9

10

1112

13

14

15

16

17

18

1920

21

22

23

24

2526

2728

−2 0 2 4 6

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(b)

Latent Variable 1

Late

nt V

aria

ble

2

+

++

+

++

+

+

+

++

+

Alopacce

AlopcuneAlopfabr

Arctlute

ArctperiAuloalbi

Pardlugu

Pardmont

Pardnigr

PardpullTrocterr

Zoraspin

WaterCon

BareSandFallTwig

CoveMoss

CoveHerb

ReflLux

1

2

34

5

6

7

8

9

10

1112

13

14

15

16

17

18

1920

21

22

23

24

2526

2728

Fig. 6.6 Ordination diagrams of 12 species from the hspider data frame; the Poisson

model p2et.hs with equal tolerances. A convex hull surrounds the site scores. In (a), the circles

indicate the abundance of each species at 95% of its maximum abundance. In (b), the arrowsdisplay the contribution of each environmental variable towards each of the ordination axes.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 62: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 06

1e−04 1e−02 1e+00

1e−

041e

−02

1e+

00

Fitted value for 'first' species

Fitt

ed v

alue

for

'sec

ond'

spe

cies

152118172016198

2 614 57 13 4

311291125

1027

242823

2226

15211817

2016198

26

14

57

13

4

3

11291125

10272428232226

152118172016198

26

14

57

13

4

3

11291125

10272428232226

Alopacce and AlopcuneAlopacce and AlopfabrAlopcune and Alopfabr

Fig. 6.7 Trajectory plot of three hunting spiders species. A rank-1 Poisson CQO is fitted to

these. Site numbers have been placed on each curve.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 63: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 06

−3 −2 −1 0 1 2 3 4

0

20

40

60

80

100

120

Latent Variable

Exp

ecte

d Va

lue

AlopacceAlopcuneAlopfabr

ArctluteArctperiAuloalbiPardlugu

PardmontPardnigr

Pardpull

Trocterr

Zoraspin

Fig. 6.8 Two calibrated sites from a rank-1 equal-tolerances Poisson QRR-VGLM fitted to the

hunting spiders data without those 2 sites. The thick vertical lines are the CQO sites scores νi,

and the thinner vertical lines are the calibrated sites scores νi. Each i has the same colour andline type.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 64: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 06

Fig. 6.9 Perspective

plot of an unequal-

tolerances PoissonCQO model fitted to

the trapO trout data.

Legend: “B” = browntrout, “R” = rainbow

trout, “F” = female,“M” = male. The trap

was located at the Te

Whaiau Trap, hencethe “TW”. The BFTW

response curve has unit

tolerance.

−4 −2 0 2 4

0

5

10

15

20

25

Latent Variable

Exp

ecte

d Va

lue

BFTW

BMTW

RFTW

RMTW

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 65: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 06

−0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0(a)

attr(pdata, "optimums")

Coe

f(uq

o.gr

c1)@

A

● ●

●●

●●

●●

●●

●●

●● ●

●●

●●

−1.5 −0.5 0.0 0.5 1.0 1.5 2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0(b)

attr(pdata, "latvar")

c(fil

l.val

, Coe

f(uq

o.gr

c1)@

C)

−1.5 −0.5 0.0 0.5 1.0 1.5 2.0

0

10

20

30

40

50

(c)

Latent Variable

Fitt

ed v

alue

s

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0

10

20

30

40

50

(d)

Latent Variable

Fitt

ed v

alue

s●

●●

●●

●●●●

●●

●●

●●

●● ●

●●●

●● ●

Fig. 6.10 (a)–(b) compares the UQO solution with the truth for a rank-1 Poisson simulateddata set. (a) Estimated optimums uj versus uj . (b) Estimated site scores νi versus νi. (c) CQO

fitted to the original data. (d) CQO fitted to the scaled UQO site scores. In (a)–(b) the dashedorange line is a simple linear regression through the points.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 66: Vector Generalized Linear and Additive Models: With an
Page 67: Vector Generalized Linear and Additive Models: With an

Chapter 7

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

61

Page 68: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 07

−1.0 0.0 0.5 1.0 1.5

−4

02

4

Alopacce

−1.0 0.0 0.5 1.0 1.5

−4

02

4

Alopcune

−1.0 0.0 0.5 1.0 1.5

−4

02

4

Alopfabr

−1.0 0.0 0.5 1.0 1.5

−4

02

4

Arctlute

−1.0 0.0 0.5 1.0 1.5

−4

02

4

Arctperi

−1.0 0.0 0.5 1.0 1.5

−4

02

4

Auloalbi

−1.0 0.0 0.5 1.0 1.5

−4

02

4

Pardlugu

−1.0 0.0 0.5 1.0 1.5

−4

02

4Pardmont

−1.0 0.0 0.5 1.0 1.5

−4

02

4

Pardnigr

−1.0 0.0 0.5 1.0 1.5

−4

02

4

Pardpull

−1.0 0.0 0.5 1.0 1.5

−4

02

4

Trocterr

−1.0 0.0 0.5 1.0 1.5

−4

02

4

Zoraspin

Fig. 7.1 Estimated (uncentred) component functions of p1cao.hs, a rank-1 Poisson RR-VGAM

fitted to the hspider data. The x-axis is ν.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 69: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 07

Fig. 7.2 Perspective

plot of a rank-1 Poisson

RR-VGAM fitted tothe trapO data. The

latent variable of this

CAO, which is pre-dominantly the day

of the year, has unitvariance. The responses

are combinations of

male and female rain-bow and brown trout,

all captured at the

Te Whaiau Trap of LakeOtamangakau. See also

Fig. 6.9.

−2 −1 0 1 2

0

5

10

15

20

Latent VariableE

xpec

ted

Valu

e

BFTW

BMTW

RFTW

RMTW

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 70: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 07

−2 −1 0 1 2 3

−10

−8

−6

−4

−2

0asthma

Latent Variable

Fitt

ed fu

nctio

n

−2 −1 0 1 2 3

−10

−8

−6

−4

−2

0cancer

Latent Variable

Fitt

ed fu

nctio

n

−2 −1 0 1 2 3

−10

−8

−6

−4

−2

0diabetes

Latent Variable

Fitt

ed fu

nctio

n

−2 −1 0 1 2 3

−10

−8

−6

−4

−2

0heartattack

Latent Variable

Fitt

ed fu

nctio

n

−2 −1 0 1 2 3

−10

−8

−6

−4

−2

0stroke

Latent Variable

Fitt

ed fu

nctio

n

Fig. 7.3 Component functions (uncentred) of a rank-1 binomial RR-VGAM fitted to a subset ofthe xs.nz data. The latent variable of this CAO is a linear combination of 11 binary psychological

variables.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 71: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 07

−2 0 2

−4

−2

0

2

4

latvar1

s(la

tvar

1, d

f = 1

.25)

:1

−2 0 2

−4

−2

0

2

4

latvar1

s(la

tvar

1, d

f = 1

.25)

:2

−2 0 2

−4

−2

0

2

4

latvar1

s(la

tvar

1, d

f = 1

.25)

:3

−2 0 2

−4

−2

0

2

4

latvar1

s(la

tvar

1, d

f = 1

.25)

:4

−2 0 2

−4

−2

0

2

4

latvar1

s(la

tvar

1, d

f = 1

.25)

:5

−2 0 2

−0.

8−

0.4

latvar1

s'(la

tvar

1, d

f = 1

.25)

:1

−2 0 2

0.15

0.25

0.35

latvar1

s'(la

tvar

1, d

f = 1

.25)

:2

−2 0 2

1.25

1.30

1.35

latvar1s'

(latv

ar1,

df =

1.2

5):3

−2 0 2

−1.

6−

1.4

−1.

2

latvar1

s'(la

tvar

1, d

f = 1

.25)

:4

−2 0 2

1.3

1.5

1.7

1.9

latvar1

s'(la

tvar

1, d

f = 1

.25)

:5

Fig. 7.4 Top row: component functions (centred) of a rank-1 binomial RR-VGAM fitted to a

subset of the xs.nz data, cf. Fig. 7.3. The latent variable of this CAO is a linear combination of 11binary psychological variables. Bottom row: first derivatives of the respective fitted functions.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 72: Vector Generalized Linear and Additive Models: With an
Page 73: Vector Generalized Linear and Additive Models: With an

Chapter 8

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

67

Page 74: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 08

Fig. 8.1 Response yi (×) in

a simple linear regression, withshrinkage initial values (•) based

on s = 12

in (8.5). The dashed hor-izontal line is at y, and s is argu-

ment ishrinkage. x2

y ●

●●

●●●

●●

● ●

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 75: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 08

−0.2 0.2 0.4 0.6 0.8 1.0 1.2

−0.

4−

0.2

0.0

0.2

(a)

sex01

part

ial f

or s

ex01

A

−0.2 0.2 0.4 0.6 0.8 1.0 1.2

−0.

4−

0.2

0.0

0.2

(b)

sex01

part

ial f

or s

ex01

Fig. 8.2 Fitted logistic regression VGAM (the response is nofriend) to European-type peoplein xs.nz with (a) noxmean = FALSE, (b) noxmean = TRUE. In (a), the point A, which has 0 as its

SE, has been explictly added to the plot, whereas it has been omitted in (b). The x-coordinate

of A is at the mean of the variable sex01. The y-coordinate is 0 because component functionsare centred.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 76: Vector Generalized Linear and Additive Models: With an
Page 77: Vector Generalized Linear and Additive Models: With an

Chapter 9

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

71

Page 78: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 09

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

−1.0 −0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x2

Naive logistic regressionBias−reduced logistic regressionBias−reduced probit regression

Fig. 9.1 Fitted curves for three binary regression models fitted to completely-separable data,with n = 20. A grey vertical line at x2 = 0 is plotted. If there were an additional two points

at (0, 0) and (0, 1) then the data would have quasi-complete separation.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 79: Vector Generalized Linear and Additive Models: With an

Chapter 10

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

73

Page 80: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 10

0.6 0.8 1.0 1.2

1

2

3

4

E

NO

x

LowerMiddleUpper

(a)

8 10 12 14 16 18

1

2

3

4

C

(b)

0.6 0.8 1.0 1.2

−2

−1

0

1

2

β1(E)

E

s(E

, df =

5.8

):1

●●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●●

●●

●●

(c)

0.6 0.8 1.0 1.2

−0.10

−0.05

0.00

0.05

0.10

0.15

β2(E)

E

s(E

, df =

5.8

):2

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

● (d)

Fig. 10.1 (a)–(b) Scatter plots of the ethanol data stratified by C and E respectively. In (a) C

has been split into low, medium and high subgroups. In (b) E has been split into three similar

subgroups—see Fig. 10.2 for an expansion. Plots (c)–(d) are the estimated (centred) component

functions of the VCM (10.5) where both the intercept and slope are a smoothing spline of the

variable E. The dashed lines are pointwise ±2 SEs about the βj(E). The points about the curves

are the working residuals.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 81: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 10

C

NO

x

1

2

3

4

8 10 12 14 16 18

low

8 10 12 14 16 18

medium

8 10 12 14 16 18

high

Fig. 10.2 Expansion of Fig. 10.1(b) with a least squares line added to each subset.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 82: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 10

● ●● ● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

Income

Spe

ndin

g

censoreduncensored

TruthEstimateNaive

(a)

● ●● ● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5 (b)"uncensored""censored""mean.obs"

Fig. 10.3 Tobit model fitted to some simulated data. This mimics the type of problem moti-

vating Tobin (1958), viz. spending is non-negative, and is linear beyond a certain income. Values

of zero are plotted with a different colour and symbol for clarity. (a) The purple dashed line isa naıve fit that treats all values as if they were ‘real’. The estimate and the truth are similar.

(b) The 3 types of fitted values currently distinguished by the argument type.fitted.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 83: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 10

200 600

−100

−50

0

50

capital.g

bs(c

apita

l.g)

1500 2500

−40−20

020406080

value.g

bs(v

alue

.g)

0 50 100 200

−40−30−20−10

010

capital.w

bs(c

apita

l.w)

200 600 1000

−200

204060

value.wbs

(val

ue.w

)

Fig. 10.4 Smooths of a SUR model applied to the gew data. The fitted model is called fit.rs.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 84: Vector Generalized Linear and Additive Models: With an
Page 85: Vector Generalized Linear and Additive Models: With an

Chapter 11

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

79

Page 86: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 11

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

y

Den

sity ●

●●

● ●

● ●

●●●

●●

●●

● ● ●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

● ●

●●

●●

●●

●●

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.00.51.01.52.02.53.0

y

Den

sity

●● ●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

(b)

Fig. 11.1 Acceptance-rejection method for generating random variates. The solid blue pointsare accepted; the hollow orange points are rejected. (a) The density g = dunif() is used to

generate Beta(2, 4) random variates. The vertical line at y = 0.25 denotes the position of the

mode, thus defining C = f(0.25). (b) A Kumaraswamy(3, 4) density (f ; blue) is overshadowedby a scaled Beta(3, 2) density (C · g(y); purple dashed); the scaling constant is C = 1.5.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 87: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 11

mu

size

5 10 20 50 100 200 500 1000

0.5

1.0

2.0

5.0

10.0

20.0

Fig. 11.2 Contour plot of qnbinom(0.995, size = size, mu = mu), where µ and k are ona log-scale. Regions of the (µ, k)-space with a value less than 1000, say, might have the EIM

computed by the exact method (11.5). Some of the contour levels appear jagged due to the

discrete nature of qnbinom().

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 88: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 11

0.0 0.2 0.4 0.6 0.8 1.0

−9975

−9970

−9965

−9960

−9955

−9950

a21

Log−

likel

ihoo

d

NB−2

NB−1

RR−NB●

Fig. 11.3 Profile log-likelihood `(a21) for rrnb.azpro; `(a21) is the highest point. The MLEand likelihood-ratio confidence limits are the orange horizontal lines. The Wald confidence limits

are the grey vertical lines. The point at a21 = 0 is ` for NB-2 (intercept-only for k). The point

at a21 = 1 is ` for NB-1.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 89: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 11

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

µ

Sta

ndar

d de

viat

ion

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

ρ

(b)

Fig. 11.4 Standard deviation, SD(Y ∗i ), in the beta-binomial distribution, from (11.13)

with Ni = 10. (a) As a function of µ, for ρ = 0.33 (blue), ρ = 0.67 (green) and ρ = 0 (or-

ange dashed). (b) As a function of ρ, where µi = 0.5.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 90: Vector Generalized Linear and Additive Models: With an
Page 91: Vector Generalized Linear and Additive Models: With an

Chapter 12

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

85

Page 92: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 12

−40 −30 −20 −10 0

−80

−70

−60

−50

−40

Log−

likel

ihoo

d

a

Fig. 12.1 Log-likelihood `(a) as a function of the location parameter, for a random sample of

size 10 from a standard Cauchy distribution. The dashed vertical line denotes a, and the purple ×denotes the data.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 93: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 12

●●

● ●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●● ●

●●

0.2 1.0 5.0 20.0

0.2

0.51.02.0

5.010.020.0

50.0(a); q−type function

sort(y1)

Est

imat

ed q

uant

iles

●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●

●●●●●●

●●●●●●●●

●●●●●●

●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●

●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0(b); p−type function

pvector

Est

imat

ed C

DF

from

the

mod

el

●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●● ● ● ●●●●

●●●●●

2 5 10 20

1

2

5

10

20(c); q−type function

sort(y2)

Est

imat

ed q

uant

iles

●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●

●●●●●●●●

●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0(d); p−type function

pvector

Est

imat

ed C

DF

from

the

mod

el

Fig. 12.2 QQ-plots of 2 simulated data sets. A Birnbaum-Saunders distribution is fitted to both.(a)–(b) Data from a Birnbaum-Saunders distribution; (c)–(d) data from a Frechet distribution.

Plots (a) and (c) are based on the q-type function, and both axes are on a log-scale. Plots (b)

and (d) use the p-type function. A x = y line appears in all plots.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 94: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 12

0 2 4 6 8 10

0

2

4

6

8

Shape parameter s

Sta

ndar

d er

rors

(a)

0.2 0.5 1.0 2.0 5.0 10.0

0.1

0.2

0.5

1.0

2.0

5.0

10.0(b)

b = e−1

b = e0

b = e1

b = e−1

b = e0

b = e1

b = e−1

b = e0

b = e1

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y

Den

sity

(c)

0.1 0.2 0.5 1.0 2.0 5.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y (log−scale)

(d)

Fig. 12.3 The 2-parameter gamma distribution (12.10). (a) SE(b) are the solid curves, forvarious values of the scale parameter b given in the legend of (b). The purple dashed line is SE(s).

(b) The same with both axes on a log-scale. (c) The densities with shape parameters s = e0 (solid

lines) and e1 (dashed). (d) The same as (c) with one axis on a log-scale.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 95: Vector Generalized Linear and Additive Models: With an

Chapter 13

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

89

Page 96: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 13

● ●●

●●●

●●

●●

●●

● ● ●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●●

●●

●●

●●

●●

● ●

●●●

●●

●●●

●●

● ●●

●●

●●●

●● ●

●●

●●

● ●

●●●

●●

● ●●

● ●●

● ●

● ●

●●●

●●●

● ●●

●●●

●●

● ●

●●

●●

●●

●●

−3 −1 1 3

−3−2−1

0123

ρ = −0.5

y1

y 2

●●

● ●

●●

●●

●●

●● ●

●●

●● ●●

●●

●●

● ●●

●● ●

●●

●●

●●

●●●

● ●

●●

●●

● ●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

−3 −1 1 3

−3−2−1

0123

ρ = 0

●●

●●

●●

●●●

●●

●●

●●

●●

● ●

●●

●●●●●

●●

● ●

● ●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

● ●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

−3 −1 1 3

−3−2−1

0123

ρ = 0.9

Fig. 13.1 250 random vectors generated from a standard bivariate normal distribution, withvarious values of ρ.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 97: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 13

20 40 60

−10

−5

0

5

10

15

20

age

s(ag

e, d

f = c

(4, 4

, 3, 3

, 3))

20 40 60

−0.2

0.0

0.2

0.4

age

s(ag

e, d

f = c

(4, 4

, 3, 3

, 3))

20 40 60

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

age

s(ag

e, d

f = c

(4, 4

, 3, 3

, 3))

:5

Fig. 13.2 Fitted (centred) component functions of a VGAM N2 fitted to diastolic and systolic

blood pressures data, versus age. The data set are 5649 male Europeans from xs.nz. From left

to right, those for µ1 and µ2, those for log σ1 and log σ2, those for log((1 + ρ)/(1− ρ)).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 98: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 13

● ●

● ●

● ●

●●

●●

●●

● ●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●●

●●

● ●●

●●

●●

●●

●●

●●

●● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

y1

y 2

(a) ●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

● ●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

● ●

●●

●●

●●

●●

●●●

●●

●●

● ●

●●

●●

● ●

●●

●●

●●

● ●

● ●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

y1

(b)

Fig. 13.3 500 random vectors generated from two copulas. (a) Bivariate Gaussian copulawith α = ρ = 0.8. (b) Bivariate Frank copula with α = 50.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 99: Vector Generalized Linear and Additive Models: With an

Chapter 14

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

93

Page 100: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 14

0.0 0.5 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Latent Variable 1

Late

nt V

aria

ble

2

log(mu[,1]/mu[,2])

log(mu[,3]/mu[,2])

log(mu[,4]/mu[,2])

depressed

embarrassed

fedup

hurtmiserable

nofriend

moody

nervous

tense

worry

worrier

Fig. 14.1 Biplot of a RR-MLM fitted to marital status in xs.nz, with the latent variables

being linear combinations of 11 binary psychological variables. The x- and y-axes are ν1 and ν2,respectively. The groups are: 1 single, 2 married/partnered (baseline), 3 divorced/separated,

4 widowed.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 101: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 14

Fig. 14.2 Latent vari-

able Y ′ interpretation

for the cumulative logitmodel. Here, β(j)1 are

thresholds or cutoffpoints so that Pr(Y ≤j|x) = Pr(Y ′ ≤ β(j)1).

Then pj = Pr(Y = j|x).The distribution is a

logistic (see (14.18)).Y'β(1)1 β(2)1 β(3)1 β(4)1

p1 p2 p3 p4 p5

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 102: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 14

2.0 2.5 3.0 3.5 4.0

−8

−6

−4

−2

0

2

(a)

let

s(le

t, df

= 3

)

2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

1.0(b)

Log exposure time

Fitt

ed v

alue

●● ●

●●

●●

22

2

2

2

2

22

2.0 2.5 3.0 3.5 4.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6(c)

Log exposure time

Pr(

Y>

=j),

j =

2, 3

3 33

33

3

3

3

1

1

1

11 1 1 1

2.0 2.5 3.0 3.5 4.0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

(d)

Log exposure time

Mar

gina

l effe

cts

22

2 2 22

223

33

33

33 3

Fig. 14.3 Nonparametric nonparallel cumulative logit model fitted to the pneumo data: (a) the

two centred functions are overlaid on to one plot; (b) the fitted values as a function of let

with sample proportions plotted proportional to their counts; (c) reversed cumulative probabili-

ties P (Y ≥ j) for j = 2, 3. (d) Proportional odds model: the marginal effects for variable let for

each of the 3 levels.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 103: Vector Generalized Linear and Additive Models: With an

Chapter 15

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

97

Page 104: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 15

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

y

Box

−C

ox tr

ansf

orm

atio

n of

y

(a)−5−30135

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

y

Yeo

−Jo

hnso

n tr

ansf

orm

atio

n of

y (b)−5−30135

Fig. 15.1 (a) The Box-Cox transformation (yλ − 1)/λ for various values of λ. (b) The Yeo-

Johnson transformation ψ(λ, y).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 105: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 15

20 30 40 50 60 70 80

15

20

25

30

35

40

45

ageB

MI

12345678910

Counts

Fig. 15.2 Hexagonal binning plot of BMI versus age for European-type women in xs.nz.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 106: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 15

20 30 40 50 60 70 80 90

−1

01

2

age

s(ag

e, d

f = c

(2, 4

, 2))

:1

20 30 40 50 60 70 80 90

−2

−1

01

2

age

s(ag

e, d

f = c

(2, 4

, 2))

:2

20 30 40 50 60 70 80 90

−0.

3−

0.1

0.0

0.1

0.2

age

s(ag

e, d

f = c

(2, 4

, 2))

:3

Fig. 15.3 Plot of the VGAM component functions of w0.LMS0, a lms.bcn() fit of BMI versus age

for European-type women in the xs.nz data frame. These are (centred) λ(x), µ(x), log σ(x).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 107: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 15

20 40 60 80 100

1520

2530

3540

45

age

BM

I

● ●●●

●●● ●●

●●

●●

● ●

●● ●

●●

●●●

●●

●●

● ●●

●●

● ●

●●

●●

●●

●●●

●●

●●

●●

● ●

●●

●●

●●●

●●

●●

●● ●

● ●

●●

●●●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●●

●●● ● ●

●●

●●

●●

●●●

● ●●

●●

●●

●●

●●

● ●

●●

● ●●●

●●

●●

●● ●

●● ●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

● ●

● ●

●●

●●

●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●●

●●●

●●

●●●

● ●

● ●●

●●

●●

●●

● ●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●●

● ●●

●●●●

●●●

●●●●

●●

● ●●

●●

●●●●

●●●

● ●●

●● ●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●●

●●

● ●

● ●

●●

●●

●●●

● ●●

●●

●●●

●●

●●

● ●●

●●●

●●

●●

●●

●●

●●●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

● ●●●●

● ●

●●

●●●

●●●

●●

●●

●●

●● ●

●●

●●

●●●

●● ●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●●●

●●

●●

●●

●●●

●●

●●

●●

● ●

●●●

●●

●●

●●●

●●

● ●●

●●

●●●

●●

● ●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●●

● ●

● ●

●● ●

● ●●

● ●

●●

●●

● ●●

● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●● ●●

● ●●

●●●

●●

●●

●●

●●

● ●

● ●● ●

● ●

●●

●●

●● ●●●

● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●● ●

●●

●●●

●●

●●

●●●

●●●

●●● ● ●

●●●

●●

●●

●●

● ●

●●

●●

●●●

●●●

●●

●●

●●

●●●

● ●

● ●●

●●

●●

●●

● ●

●●

●●

● ●

●● ●

● ●

●●

●●

●●

●●

●●

●●

● ●

●● ●

●●

●●●

●●

●●

●●

●●

●●●

● ●

●●

●●

●●

●●

● ●

●●

●●

● ●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●● ●

● ●

●●

●●●

●●

●●●

●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●●●

●●

● ●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●● ●

●●

●●

●●●

●●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●● ●

●●

●●

●●●

●●

● ●

●●

●●

●●

●●

●● ●●

●●

● ●●●

●●

●●

●●

●●

●●

● ●

● ●

●●

● ●

●●

●●

●●●●

●●

●●● ●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

● ●●

● ●●●

●● ●● ●

● ●

●●

●●

●●

●●

● ●

●●●

●●●●

● ●

● ●

●●

●●

●●

●●●

●●

● ●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●●

●● ●●

●●

●●

● ●

●●

●● ●

●●

●●

●●●

●●

●●

●● ●

●●

●●

● ●

●●

● ●●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●●

●●● ●●

●●

●●

● ●

● ●●

●●

●●●

●●

● ●

●● ●

●●

● ●●

●●

●●

●●

●●

●●

●●

● ●●

5%25%50%75%

95%

(a)

15 20 25 30 35

0.00

0.05

0.10

0.15

BMI

dens

ity 2030

(b)

Fig. 15.4 (a) Quantile and (b) density plots of w0.LMS. In (b) the estimated densities are for 20

and 30 year olds, and the vertical lines denote an approximate healthy range.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 108: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 15

20 30 40 50 60 70 80 90

20

30

40

50

60

age

BM

I50%

o

o

o

o

o

o

o oo o

o

o

o

o

o

o oo oo

o

o

oo

o

o

o

oo

oo

o o

o

o o

oo o

o

o

oo

o

o

o

o

o

oo

o

o

oo

oo

o

o

o

o

oo

oo oo

ooo

o o

o

o

o

oo

o

o

o o

o

o

o

oo

o

o

ooo

oo

o

oo

oo

o

o oo

o

o

o

o

ooo

oo

o

o

ooooo

oo

oo oo

o oo

ooo

ooo

oo

o

o

oo

o

o

oo

oo

oo

o

o

o

o

o

o

o

oo

o

oo

oo

oo

oo

oo

o

o

o

o

o

o

o

o

o o

oo

o

o

o

o ooo o

o

oo

o

o

oo

ooo

ooo o o

o

o

o

o

oo

o

o

oo

o

o

oo

o

o oo

o

o oo

o

ooo

o

o

oo

o

o

oo

o

oo

oo

o

o

oo

o

o

o o

o

oo

o

o oo ooo

o

oo

oo o

o

ooo oo

oo

o

oo o

o

o

o

oo

o

o o

o

o

o

o

oo

oo

oo

o o

o

oo

o

oo oo

o

o

o

o o

o

o

o

o

o

oo

o

o

o

o

o o

o o

oo

o

oo

oo

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

oo oo

ooo o

o

o

oo

o

o

o

oo

o

o

o

o oo

o

o

o

o

o

o

o

o

o o

oo

o

o

o

o

oo

o oo

o

o

o

o

o

o

ooo

o

oo

o

oooo o

o

o oo

o

oo

o

o o

o

o

oo

oo

o

o o

oo o

o

oo

o

o

o oo

oo o

oo

ooo

o

o

oo

oo

o

oo

oo

o

oo

o oo

oo o

o

o

o

o

oo

o

o ooo

oo

oooo

o

o

o

o

o

o

ooo

o

o

o

o

oo

ooo o

o

o

o

o

o

oo

oo

oo

o oo

o

oo

o

oooo

o

o

ooo

o

o

o

o

o

o

o o o

o

o

oo

o

o

o

o o o

o

o

o

oo

o

o

o

o o

o

o

oo

o

o o

o

o

o

oo

oo

oo

o

o

oo

oo

oo

o

o

ooo

o

o

o

o

oo

oo

o

o

oo

o oo

o

o

oo

o

oo

o

oo

o

o

o

o

o

o

o

o

o

o

ooo

oo

o

o

o

o

o

o o

o o

o

oo

o

o

oo

o

o

oo

oo

oo o

o

o oo

oo

o

ooo o

o

o

oo

ooo

o

o

oo

o

o

o

o

o

o

oo

o

o oo

o oo

oo

o

oo

oo

o

o

oo

o

o

o

o ooo

oo

o

o

oo

o

o

o

oo

ooo

o

o

o

oo o

o

oo

oooo

o

o

o o

o

o

o

o o

ooo

o

oo

oo

o

oo

ooo

ooo

o o

o

o

o

o

o

oo

o

ooo

o

o

oo

o

oo

o

o

o

o

o

o

o

oo

o

oo

o

oo

ooo

o

o

o

o

o

oo

o ooooo o

oo

o

ooo

o

o

o

o

o

o

ooo

o

oo

o

o

oo

oo

o

o

o

o

oo o

o

o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

oo

o

o

oo

o

o

oo

ooo

ooo o

o

o

o

o o

o o

o

o

o

oo

o

oo

o

o

oo

o

oo

oo

oo

o

o

oo

o o

oo

oo

oo

o

o

ooo o

oo o

o

o

oo

o

oo

o

o

oo

oo

oooo

o

oo

oo

oo o o

o

ooo

o

o

o

o

o

o

oooo

o

o ooo

ooo

o

o oo

oo

o

oo ooo

o

o

o o

o

o

o

o

oo

o

o

oooo

oo

o

o

oo o

o

o

o

o

o o

o

o oo

oo

oo

oo

o

o o

oo o

oo

oo

o

o

oo

o o

oo

o

oo o

oo

o o

o

o

o

o o

oo o

o oo

o

oo o

oo

oo

oo

o

o

o

o oo

o oo

oo

o

o

o oo

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo

o

oo

oo

oo

o

oo

o

o

oo

o

o

ooo

o

o

o

o

ooo

oo

o

o

o

o

oo

ooo

oo oo

o

oo

o oo

o

o

o

o

oo oo

o

o

o

o

oo

o

o

o

oo

oo

o

o

oo

o

o

o

o

o

o

o

o o

oo oo o

o

o

o o

oo

o

o

oo

ooo o

ooo

o

o

o

o oo

o

ooo

oo

o

o

o

o

o

o

oo

oo

oo

oo

oo

oo

o o

o

o

o

o

o

o o

o

oo

oo

oooo

o

o

o

oo

o

oo o

o

o

oo

ooo

o

oo

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

oo o o

o

o

ooo

oo

oo

o

o

ooo o oo

ooo

o

o

o

o

oo

oo

o

ooo

o

o oo

o oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

oo

o

o

o

oo

oo

oo

ooo

oo

o

oo

o

oo

oooo

oo

o

o

o o

o

o oo

o

ooooo

o

o

o

oo

o

o oo

o

o

o

o

o

oo

oo

o

oo

o

o

o

o

ooo

o

o

o

o oo

oo

o

o

o o oo

o

o

o o

oo

o

oo

o

o

o

oo

oo

o

oo

o

o

oo

ooo

o

o

o

ooo o

o

o

o

o o o

o

o

o

oo

oo

o

ooo

oo

oo

o

o

o

o

o

o

o

o

oo

o

ooo

o

o

o ooo

o o

oo

o

o ooo

o

oo

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

oo

o o

o

oo

o

oo

o ooo

o

o

o

o

oo

oo

o

o

o

oooo

ooo

o

o

o

o

o

o

o

o

oo

ooo o

o

oo

o

o

o

o

o

o

o

o

o

o

oo

o

oo

o

oo o

oo o

o

o

oo

ooo

oo

oooo

oo

o

o

o

o

o

o

o

oo

o

o

o

o ooo

o

o

o oo

o

o

o

ooo

oo

oo

ooo o

o

oo

o ooooo

o

o

oo

o o

oo

oo

o

o

o

o

o

oo

oo

o

o

o

oo

o

o

ooo

oo

oo

o

o

o

o

oo

o

o

oo

o

o

oo

o

o

o

oo

o

o

o

o

o

o

oo

o

o

oo

oo

oo

oo

oo

oo

ooo

oo o

o

o

ooo

o

o

o o o

o

o

o

o

o

oo

ooo

oo

o oo

o

oo o

o

o

o

o

o

oo

o o

o o

o

ooo

oo

oo

o

o

o

o

o

oooo

o

o

oo

o o

o

o

o

oo

o

o

o o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo o

o

o

o

oo

oo

o

o

ooo o

oo

o oo

oo

o

o

o

o

oo

o

o

oo

oo

o o

o

o o o

o

o

oo

o o

o

o

o

o o

o

o

o

o

o

o o

o

o

o

o o

o

o

o

oo o

o

o

o oo

o

o

o

o

oo

o

oo

o

o

o

o

oo

o

o

o

oo

oo

oo

o o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

oo

o

o

o

oo

o

o

ooo

o o

o

o o

o

oo o

o

o

o

oo

oo

o

o

oo

oo

o

oooo

oo o

o

o

o o

o

o

ooo o

oo

o

o

o

o

o

o

o

oo

o

oo

oo

oo

o

o

oo oo

o

oo

o

oo

o

o o oo

o

o

o

oo

o

oo

ooo

oo

o

oo

o

o

o

o

o

o

oo

o o

o

o o

o

o

o

oo

o

o o

o

oo

o

o

o

o

o

o

o

oo

oo

oo

o

oo

o

o

o

o

oo

oo ooo

o

o

o

o

o

oo

ooo o

o

o

o

o

o

oo

o

o

oo

o o

o

o

oo

o

oo

o

o

oo

o

oo

oo

o

o

ooo

o

o

o

o

o o

oo

o

oo

o

o

o o

oo

oo

o o

oo o

oo

o

o

o

o ooo

o o ooo

o

oo

o

o

o

o

o

o o oo oo

o o

o

oo

o

o

o

o

o

oo

o

oo

o

o

o

o

o

oo

oo

ooo

o

o oo

o oo

oo oo

o o

o

o o

oo

oo

o

o

o

o

o

o

oo

oo

oo

o

o

o

o oo

o

oo

o

oooo

o o o

o o

o o

o

o

o

o

o ooo

o

oo

oo

o

o

o

o o

oo

o

oo

o

o

oo o

o o

oo

oo

o

o

o

o

o

o

o

o

oo

o

o

o

o

oo

oo

o

o

o

o

o

o

o

oo

o

o

oo

o

o

o

o

o

o

o

o

o

o o

oo

oo

o

oo

o o

o o

ooo

o

o

o

o

o

o

o

o

o

o

o

o

oo ooo

oo

o

o

ooo

o o

o

oo

oo

o

o o ooo

o

oo

o

oo

o

o ooo o

o

oo

o

ooo oo

o

o

oo

oo

o

o

o

o o

o

o

o

oo

o

o

o

o

o

o

o ooo

o

o

o

o o

oo

o

o

oo

o

o

oo

oo o

o

o

o

o

o o

o

o

o

o

oo

oo

o

oo

o

o

o

o

ooo o

o

o

ooo oo

o

oo

oo

oo

o

o oo oo

o

oo

o

ooo

oo

oo

o

o o

o

oo oo

o

oo

o

o oo

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

oo

o

oo

o

o o

oo

o

o

o

oo

o

o

oo

o

oo

o

o oo

o

o

oo

o

o

o

oo

o

o

o50%

Fig. 15.5 Output of qtplot() when there are non-primary variables. The two groups are

European and Pacific island women. The fitted 50-percentiles differ by a constant.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 109: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 15

−2 −1 0 1 2

0.0

0.5

1.0

1.5

2.0

Loss

(a)τ = 0.5τ = 0.9

−2 −1 0 1 2

0.0

0.5

1.0

1.5

2.0 (b)ω = 0.5ω = 0.9

Fig. 15.6 Loss functions for: (a) quantile regression with τ = 0.5 (L1 regression) and τ = 0.9;

(b) expectile regression with ω = 0.5 (least squares) and ω = 0.9. Note: (a) is also known as the

asymmetric absolute loss function or pinball loss function.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 110: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 15

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooo

ooooo

ooooooooo

o

o

ooo

o

ooo

o

oo

ooo

o

oo

o

ooo

o

o

o

ooo

oo

o

oooo

o

o

ooo

o

o

oo

o

oo

oo

o

o

oo

o

oo

oooo

o

o

oo

oo

oo

o

ooooo

o

oo

oo

o

o

oo

o

o

o

o

o

o

o

ooo

o

o

oo

ooooo

oo

o

oo

o

oo

oo

o

oo

oo

o

o

o

o

o

ooo

o

o

oooo

oo

oo

o

o

o

oo

o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

ooo

o

o

o

o

o

o

o

o

o

o

o

ooooo

oo

o

o

oo

oo

o

o

o

oo

o

o

o

ooo

o

o

o

o

o

o

o

o

o

o

o

o

ooooo

o

o

o

oo

o

o

o

o

o

ooo

o

o

ooo

o

oo

o

o

o

ooo

ooo

oo

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oooo

oooo

oo

o

o

o

oo

o

o

ooo

ooo

o

o

o

o

o

o

o

oooo

o

o

o

ooo

oo

o

oo

o

oo

o

o

o

oo

o

o

ooo

ooooooo

o

o

o

o

o

o

o

ooooo

o

o

oo

o

ooo

o

o

ooo

o

o

oooo

o

o

oo

oooo

ooooo

oooo

oooo

oo

oo

oo

ooooo

o

ooooooooo

o

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

x2

y

(a)

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooo

ooooo

ooooooooo

o

o

ooo

o

ooo

o

oo

ooo

o

oo

o

ooo

o

o

o

ooo

oo

o

oooo

o

o

ooo

o

o

oo

o

oo

oo

o

o

oo

o

oo

oooo

o

o

oo

oo

oo

o

ooooo

o

oo

oo

o

o

oo

o

o

o

o

o

o

o

ooo

o

o

oo

ooooo

oo

o

oo

o

oo

oo

o

oo

oo

o

o

o

o

o

ooo

o

o

oooo

oo

oo

o

o

o

oo

o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

ooo

o

o

o

o

o

o

o

o

o

o

o

ooooo

oo

o

o

oo

oo

o

o

o

oo

o

o

o

ooo

o

o

o

o

o

o

o

o

o

o

o

o

ooooo

o

o

o

oo

o

o

o

o

o

ooo

o

o

ooo

o

oo

o

o

o

ooo

ooo

oo

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oooo

oooo

oo

o

o

o

oo

o

o

ooo

ooo

o

o

o

o

o

o

o

oooo

o

o

o

ooo

oo

o

oo

o

oo

o

o

o

oo

o

o

ooo

ooooooo

o

o

o

o

o

o

o

ooooo

o

o

oo

o

ooo

o

o

ooo

o

o

oooo

o

o

oo

oooo

ooooo

oooo

oooo

oo

oo

oo

ooooo

o

ooooooooo

o

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

x2

y

(b)

Fig. 15.7 (a) Scatter plot of simulated Poisson counts (15.19). The points have been jittered

slightly. (b) Fitted L∗(ξ = exp{β∗(s)1

+ f∗(s)2

(xi2)}, σ = 1, τ = ( 14, 34

)T ) model to the data. The

smooth curves are the fitted τ = 0.25 and 0.75 quantiles from a vector smoothing spline fit. The

step functions are the output from qpois() at the corresponding τ values. The actual sampleproportions lying below the curves are 35.2 and 79.6 percent. See also Fig. 15.8(b).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 111: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 15

0.0 0.2 0.4 0.6 0.8 1.0

−4

−3

−2

−1

0

x2

s(x2

, df =

4)

(a)

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooo

ooooo

ooooooooo

o

o

ooo

o

ooo

o

oo

ooo

o

oo

o

ooo

o

o

o

ooo

oo

o

oooo

o

o

ooo

o

o

oo

o

oo

oo

o

o

oo

o

oo

oooo

o

o

oo

oo

oo

o

ooooo

o

oo

oo

o

o

oo

o

o

o

o

o

o

o

ooo

o

o

oo

ooooo

oo

o

oo

o

oo

oo

o

oo

oo

o

o

o

o

o

ooo

o

o

oooo

oo

oo

o

o

o

oo

o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

ooo

o

o

o

o

o

o

o

o

o

o

o

ooooo

oo

o

o

oo

oo

o

o

o

oo

o

o

o

ooo

o

o

o

o

o

o

o

o

o

o

o

o

ooooo

o

o

o

oo

o

o

o

o

o

ooo

o

o

ooo

o

oo

o

o

o

ooo

ooo

oo

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oooo

oooo

oo

o

o

o

oo

o

o

ooo

ooo

o

o

o

o

o

o

o

oooo

o

o

o

ooo

oo

o

oo

o

oo

o

o

o

oo

o

o

ooo

ooooooo

o

o

o

o

o

o

o

ooooo

o

o

oo

o

ooo

o

o

ooo

o

o

oooo

o

o

oo

oooo

ooooo

oooo

oooo

oo

oo

oo

ooooo

o

ooooooooo

o

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

x2

y

(b)

Fig. 15.8 (a) Fitted functions f(s)2(xi2) in (15.20) overlaid, with pointwise ±2 SE bands.

(b) Same as Fig. 15.7(b) except the quantiles (purple curves) are constrained to be parallel on

the η-scale (log scale here). The actual sample proportion lying below the curves are 36.4 and 78.4percent.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 112: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 15

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●

●●●●●●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●●

●●●

●●●

●●

●●

●●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

x2

y

(a)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●

●●●●●●●

●●

●●

●●

●●

●● ●

●●●

●● ●

0.00 0.05 0.10 0.15 0.20

0.0

0.2

0.4

0.6

0.8

1.0

x2

y

(b)

Fig. 15.9 (a) Quantile plot from the onion method applied to some simulated Poisson data.

The quantiles are positive, nonparallel and noncrossing. Here, τ has values 0.2(0.1)0.9. (b) A

zoom-in view of the LHS of (a).

Then Fig. 15.9(a) was produced by

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 113: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 15

−4 −2 0 2 4

0.00.10.20.30.40.50.6 (a) Normal

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0 (b) Uniform

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0 (c) Exponential (d)

µ(ω = 0.1)

c1 c2

Fig. 15.10 (a)–(c) Density plots of expectile derived g (orange solid lines; (15.30)) for theoriginal f of standard normal, standard uniform and standard exponential distributions (blue

dashed lines). (d) Illustration of the interpretation of expectiles in terms of centres of balance,

the hollow triangles at positions c1 and c2. Here, the vertical dashed line is at the 0.1-expectile,the solid triangle at µ(ω = 0.1), which means that (15.33) is satisfied with ω = 0.1.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 114: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 15

●●

●●●

●●●

●●

●●●

●●●●●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●●●●

●●

●●●

●●●

●●●

●●●●

●●●●

●●

●●

●●●●

●●

●●

●●●

●●●

●●

●●●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●●●

●●●●

●●●

●●●●

●●

●●●

●●●●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●●●●●●●●

●●

●●

●●

●●●

●●

●●●●

●●●

●●

●●

●●

●●

●●●●

●●

●●●●

●●

●●

●●●

●●

●●

●●●●●

●●

●●

●●

●●●

●●

●●

●●

●●●●

●●●

●●

●●●

●●●

●●

●●●

●●●●

●●●

●●

●●

●●●

●●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●●

●●

●●●

●●

●●●

●●●●●

●●

●●●●

●●●

●●●

●●

●●

●●●

●●

●●

●●●

●●

●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●●

●●

●●

●●●

●●

●●

●●●

●●

●●●

●●

●●

●●●

●●●

●●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●●

●●●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●●●

●●●●

●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●●

●●●

●●

●●

●●●

●●

●●●

●●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●●

●●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●

●●

●●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●●●

●●●

●●●

●●

●●●

●●

●●

●●●●

●●

●●

●●

●●●●

●●

●●

●●●

●●

●●●

●●●

●●

●●

●●●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●●●

●●

●●●

●●●●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●●●

●●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●●

●●

20 30 40 50 60 70 80 90

15

20

25

30

35

40

45

age

BM

I

Fig. 15.11 ‘Quantile’ plot from amlnormal() applied to women.eth0: 5, 25, 50, 75, 95 ‘percentile’

curves. Each regression curve is a regression spline with 3 degrees of freedom (1 = linear fit).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 115: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 15

●●

● ●●

●●

●●

●●● ●●

●●

●●

●●●●●●

●●●●●

●●●●●●

●●●●●

●●

●●

●●

●●

●●●

●●●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●

●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

x2

jitte

r(y)

Fig. 15.12 Quantile plot from an amlpoisson() fit using simulated data. The dashed step

functions are the qpois() quantiles calibrated with the true mean function and the proportion

under the expectile curves. The response has been jitted to aid clarity.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 116: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 15

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●●

●●

● ●

●●

●●●

●●

● ●

● ●

●●●

●●

● ●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

● ●●

●●

●●

●●

●●

● ●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

● ●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●●

●●

●●●

●●

●●

● ●

● ●●●

● ●

●●

●●●

● ●●●

● ●

●●●

●●

●●

●●

●●

● ●

● ●●●

● ●

●●

●●

● ●

●●

●●●

● ●●

●●

●●

●●

● ●

● ●●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●●

●●

●●

● ●

● ●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

● ●●

● ●●

●●

●●●

●●●

● ●

●●

●●●

●●

● ●

●●●

●●●

●●●

●●●

● ●●●

●●●●

●●

●●

●●●

●●

●●

●●●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●●

●●

●●

●●

●●

● ●

●●

●●●

●●●

●●

●●

●●

●●●●

●●

●●

● ●

●●

●●●

● ●●●

●●

● ●●

● ●

● ●●

●●●

●●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

● ●

●●●

●●

●● ●

●●

●●

● ●

●●

● ●●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●●

● ●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●

● ●

●●

●●

●●

●●●

●●●

●●

● ●

●●●

●●

●●

● ●

●●●

●●

● ●

●●

●●●●●

● ●

●●

●●

●●●

●●

●●

● ●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●●

●●

●●●

● ●

●●

●● ●

●●

●●

●●

●●

●●

●●

●●

● ●●●

●●

● ●●●

●●●

●●

●●●

● ●

●●

●●●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

● ●

●●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●●

● ●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●●

●●

●●

● ●

●●●

●●

● ●●

●●

●●

●●●

● ●

●●

●●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

● ●

●●●

●●

● ●

●●

●●

● ●

●●

●●

●●

●●

●●●

●●

●●

●●

● ●

●●

●●●

●● ●

●●

●●

●●

●●

●●●

●●

●●

●●

● ●●

● ●●●

●●

●● ●

●●

●●

● ●

●●●●

●●

● ●

●●

●●

●●

● ●●

●●

●●

● ●

●●●

●●●

● ●

● ●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

● ●

●●

● ●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●●

● ●

●●

● ●

● ●● ●

● ●●●●

●●

●●

●●

●●●

●●

●●

● ●

●●

● ●●

●●

● ●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

● ●●

●●

● ●●

●●●

● ●

●●

●●

● ●

●●

●●

●●

● ●

● ●

● ●

●●

●●

● ●

●●●●

●●

●●●

●●

●●

●●●

● ●

●●

●●

●●

●●●

● ●

●●

●●

●●●

●●

●●

● ●

●●

● ●

●●●

●●

●●

●●●

● ●●

●●

●●

● ●

●●

●●●●

● ●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

10 20 30 40

10

20

30

40

Yesterday's Max Temperature

Toda

y's

Max

Tem

pera

ture

(a)

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●●

●●

● ●

●●

●●●

●●

● ●

● ●

●●●

●●

● ●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

● ●●

●●

●●

●●

●●

● ●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

● ●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●●

●●

●●●

●●

●●

● ●

● ●●●

● ●

●●

●●●

● ●●●

● ●

●●●

●●

●●

●●

●●

● ●

● ●●●

● ●

●●

●●

● ●

●●

●●●

● ●●

●●

●●

●●

● ●

● ●●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●●

●●

●●

● ●

● ●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

● ●●

● ●●

●●

●●●

●●●

● ●

●●

●●●

●●

● ●

●●●

●●●

●●●

●●●

● ●●●

●●●●

●●

●●

●●●

●●

●●

●●●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●●

●●

●●

●●

●●

● ●

●●

●●●

●●●

●●

●●

●●

●●●●

●●

●●

● ●

●●

●●●

● ●●●

●●

● ●●

● ●

● ●●

●●●

●●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

● ●

●●●

●●

●● ●

●●

●●

● ●

●●

● ●●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●●

● ●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●

● ●

●●

●●

●●

●●●

●●●

●●

● ●

●●●

●●

●●

● ●

●●●

●●

● ●

●●

●●●●●

● ●

●●

●●

●●●

●●

●●

● ●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●●

●●

●●●

● ●

●●

●● ●

●●

●●

●●

●●

●●

●●

●●

● ●●●

●●

● ●●●

●●●

●●

●●●

● ●

●●

●●●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

● ●

●●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●●

● ●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●●

●●

●●

● ●

●●●

●●

● ●●

●●

●●

●●●

● ●

●●

●●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

● ●

●●●

●●

● ●

●●

●●

● ●

●●

●●

●●

●●

●●●

●●

●●

●●

● ●

●●

●●●

●● ●

●●

●●

●●

●●

●●●

●●

●●

●●

● ●●

● ●●●

●●

●● ●

●●

●●

● ●

●●●●

●●

● ●

●●

●●

●●

● ●●

●●

●●

● ●

●●●

●●●

● ●

● ●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

● ●

●●

● ●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●●

● ●

●●

● ●

● ●● ●

● ●●●●

●●

●●

●●

●●●

●●

●●

● ●

●●

● ●●

●●

● ●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

● ●●

●●

● ●●

●●●

● ●

●●

●●

● ●

●●

●●

●●

● ●

● ●

● ●

●●

●●

● ●

●●●●

●●

●●●

●●

●●

●●●

● ●

●●

●●

●●

●●●

● ●

●●

●●

●●●

●●

●●

● ●

●●

● ●

●●●

●●

●●

●●●

● ●●

●●

●●

● ●

●●

●●●●

● ●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

10 20 30 40

10

20

30

40

Yesterday's Max Temperature

Toda

y's

Max

Tem

pera

ture

(b)

Fig. 15.13 (a) Melbourne maximum temperature data, called melbmaxtemp, in ◦C. (b) Onion

method using amlnormal() expectiles applied to the data with an assortment of wj values. The

sample proportions below the curves are 1, 4.8, 20.2, 54.9, 65.2, 74.8, 82.7, 88.2, 91.7, 94.8 percent.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 117: Vector Generalized Linear and Additive Models: With an

Chapter 16

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

111

Page 118: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 16

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0ξ = −0.33

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0ξ = 0

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0ξ = 0.33

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4ξ = − 0.33ξ = 0ξ = 0.33

Fig. 16.1 GEV densities for values µ = 0, σ = 1, and ξ = − 13

, 0, 13

(Weibull-, Gumbel- andFrechet-types respectively). The orange curve is the CDF, the dashed purple segments divide the

density into areas of 110

. The bottom RHS plot has the densities overlaid.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 119: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 16

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

ξ = −0.33

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

ξ = 0

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

ξ = 0.33

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

ξ = − 0.33ξ = 0ξ = 0.33

Fig. 16.2 GPD densities for values µ = 0, σ = 1, and ξ = − 13

, 0, 13

(beta-, exponential- andPareto-types, respectively). The orange curve is the CDF, the dashed purple segments divide the

density into areas of 110

. The bottom RHS plot has the densities overlaid.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 120: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 16

● ●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●● ●

● ● ●●

−1 0 1 2 3 4

80

100

120

140

160

180

Gumbel Plot

Reduced data

Obs

erve

d da

ta

●●

●●

●●●●●●●

●●●●●●

●●●●●●●

●●●●●●

●●●●●●●●●●●

●● ●

● ● ●

−1 0 1 2 3 4

80

90

100

110

120

130

140Gumbel Plot

Reduced data

Obs

erve

d da

ta

Fig. 16.3 Gumbel plot of the two highest annual sea levels of the Venice data (venice).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 121: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 16

●●

●●

●●●

●●

●●

●●

1930 1940 1950 1960 1970 1980

3.6

3.8

4.0

4.2

4.4

4.6

(a)

Year

Sea

leve

l (m

)

● ●●●●● ●●

●●●●●●●● ● ●●

●●●●

●●● ● ●●

● ●● ●●●●

●● ●●●● ●●●

●●●●● ●●

●●●●●

● ●●●●

●●●

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0(b)

Empirical

Mod

el●

● ●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●●

●●●●

●●●●

●●●●●

●●●●●

●● ●

● ●● ●

● ●

3.6 3.8 4.0 4.2 4.4 4.6

3.6

3.8

4.0

4.2

4.4

4.6

(c)

Model

Em

piric

al

(d)

depvar(fit1.pp)

Den

sity

3.6 3.8 4.0 4.2 4.4 4.6

0.0

0.5

1.0

1.5

2.0

0 2 4 6

4.0

4.5

5.0

(e)

Return Period (log−scale)

Ret

urn

Leve

l

● ●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●●

●●●●

●●●●

●●●●●

●●●●●

● ● ●

● ●● ●

● ●

5e−01 5e+00 5e+01 5e+02

4.0

4.5

5.0

(f)

Return Period

Ret

urn

Leve

l

● ●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●●

●●●●

●●●●

●●●●●

●●●●●

● ● ●

● ●● ●

● ●

Fig. 16.4 Intercept-only GEV model fitted to the portpirie annual maximum sea levelsdata. (a) Scatter plot, and the dashed horizontal lines are the resulting 95% and 99% quan-

tiles. (b) Probability plot. (c) Quantile plot. (d) Density plot. (e)–(f) Return level plots, with

slight changes in the x-axis labelling.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 122: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 16

1930 1940 1950 1960 1970 1980

−10

010

20

year

s(ye

ar, d

f = c

(9, 3

)):1

1930 1940 1950 1960 1970 1980

−0.

20.

00.

2

year

s(ye

ar, d

f = c

(9, 3

)):2

Fig. 16.5 VGAM fitted to the Venice sea level data (fit1).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 123: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 16

●●

●●

●●

●●

●●

●●●

●●

1930 1940 1950 1960 1970 1980

80

100

120

140

160

180

200(a)

year

Sea

leve

l (cm

)

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●●●

●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●● ●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

● ●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●●●

1930 1940 1950 1960 1970 1980

80

100

120

140

160

180

200(b)

year

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●●●

●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●● ●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

● ●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●●●

95%

99%

MPV

Fig. 16.6 (a) Quantile plot of the Venice sea level data (fit2). (b) Venice data overlaid with

the fitted values of fit3. This model underfits.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 124: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 16

4

4

44444

4444444444444

44444

444444444444

4444444444

4

4

4

4

1930 1950 1970

80

100

120

140

160

180

(a)

year

sea

leve

l

1

1

111

1

11

1111111

111

11

1

11111

111

1

11111

1

1111111

1

1111

1

11

1930 1950 1970

80

100

120

140

160

180

(b)

year

sea

leve

l

Fig. 16.7 (a) The fitted 99 percentile of fit2 and the 99 percentile data values (4th highest sealevel each year). (b) Fitted median predicted value (MPV) of the Venice sea level data from fit2.

The points are the highest sea levels for each year.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 125: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 16

●●●

●●

●●●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●

●●●

●●

●●

●●●●●

●●●●

●●

●●

●●

●●

●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●●●●●●●●

●●●●●●●●●

●●

●●●●●

●●●●●

●●●

●●

●●

●●●●●●

●●●●

●●●

●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●

●●

●●

●●●●●●●●

●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●

●●●

●●

●●●●●●

●●●●●●

●●

●●

●●

●●

●●●●●

●●●●●

●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●

●●

●●

●●●●●●

●●

●●

●●

●●●

●●●

●●

●●●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●

●●

●●●●●●●

●●

●●

●●●●●●●●

●●●●●●●●●●●●●

●●

●●

●●

●●●●●●

●●

●●

●●

●●●●●●●●

●●

●●●●●●●●●●●●●●

●●●●

●●

●●

●●●

●●●●●

●●●

●●

●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●●●●●●●

●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●

●●

●●

●●

●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●

●●●

●●

●●●●●●●●●●●●

●●●●●●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●

●●●●●●●

●●

●●●●●●●●●●

●●

●●●●●●●●●

●●

●●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●

●●●

●●

●●●●●●●●●●

●●

●●●

●●

●●●●●●●●

●●●●●●●

●●●

●●●●●●●●●●●●●

●●●●

●●

●●●●

●●

●●●●●●

●●●●●●

●●

●●●●●●●●

●●●●●●

●●

●●

●●

●●●●

●●

●●●

●●

●●

●●

●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●

●●●●

●●●●●●●●●●●●●●●●

●●

●●

●●●

●●●●●●●●

●●

●●

●●●●●●●●●●●●●

●●●

●●●

●●●●

●●

●●●●

●●●●●●

●●●●●●●●●

●●

●●●●

●●●

●●●●●●

●●●

●●●●●

●●●

●●●●

●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●●●●●

●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●

●●

●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●

●●

●●●●

●●

●●●

●●

●●

●●●

●●●

●●●●

●●

●●●

●●●●●●●●●

●●

●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●●

●●●●●

●●

●●

●●

●●●

●●●

●●●●●●●

●●●

●●●●●●●

●●●●●●●

●●●

●●

●●●●

●●●●●●●

●●

●●

●●●●●

●●

●●●●●●●●●●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●●●

●●●●

●●●●●●

●●●●●●

●●

●●●●●●●●

●●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●●

●●●●

●●●●●●●●●●

●●●●

●●●●●●●

●●●●●●●●●●●●●●

●●

●●●●

●●●

●●

●●

●●●●

●●

●●

●●●

●●●

●●●●

●●

●●

●●

●●●●●

●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●●●

●●●

●●●

●●●●●●●●●

●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●

●●

●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●●●

●●

●●●●

●●●

●●●●

●●●●

●●●●●●●

●●

●●●●●

●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●

●●●●

●●●●●●●●●

●●●●●

●●●●

●●●●

●●●

●●●●●●●●●●●●●

●●●●●●

●●

●●

●●●

●●●●●

●●●

●●●

●●

●●●●●●

●●

●●●●●●●●●●●●●

●●

●●

●●

●●

●●●●

●●●●●●

●●●●●●●●●

●●●●●

●●

●●

●●

●●●●

●●●●●●

●●●●●

●●

●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●

●●

●●

●●●●●●●●

●●●●

●●●●

●●●●

●●

●●●

●●

●●●

●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●●●●

●●

●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●

●●●●●●●

●●

●●●

●●●

●●

●●

●●●

●●

●●●●●●●●●

●●●●●●●●●●

●●

●●●●●●

●●●●●

●●

●●●

●●●●●●

●●

●●●

●●

●●●●

●●

●●

●●●

●●

●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●

●●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●●

●●●

●●●

●●●●●●●●●●

●●

●●

●●●

●●

●●●

●●

●●●●

●●

●●

●●●

●●

●●

●●●

●●

●●●

●●●●●●●●●●

●●

●●

●●●●●

●●●●●●●●●●

●●

●●

●●

●●

●●●●

●●

●●

●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●

●●●●●●●

●●●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●

●●●●●●●●●●

●●

●●

●●

●●

●●●●●

●●

●●

●●●●

●●

●●●

●●

●●

●●●●●●●●●

●●●●●●●●●●

●●●

●●

●●●●●●●●

●●

●●●●

●●●

●●●●●

●●

●●

●●

●●●●

●●

●●

●●●●●●

●●●●

●●●●●

●●

●●●

●●●●●

●●

●●●●●●●●●●

●●●

●●

●●●●●●●

●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●

●●●

●●●●●●

●●

●●●●●

●●●●●

●●●●●●●

●●●

●●

●●●●

●●

●●●

●●●●

●●●●●●●●●●●●

●●

●●●●●●●●●

●●

●●●●●●

●●

●●

●●●

●●●

●●●●●●

●●●

●●

●●

●●●

●●●●●●

●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●

●●

●●●●●

●●

●●●●●●●●

●●●●

●●●●

●●●

●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●●●●●●●●●

●●●

●●●●

●●●●●●●

●●●●●

●●●●

●●

●●

●●

●●●●●●●●

●●

●●

●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●

●●●●●●●

●●

●●●●●●●●●

●●●●●

●●

●●●

●●●

●●●●●●

●●

●●●●●●●●●●●

●●●

●●

●●●●●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●

●●●●

●●

●●

●●

●●●●

●●●

●●●●●●●●●●●●●

●●●

●●

●●●

●●●

●●●●●●●●●●●

●●●

●●

●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●

●●●●●●

●●●

●●●●●●

●●●●●●●●●●

●●●●

●●

●●●●

●●●●●●●

●●●●

●●●

●●

●●●●●●●●

●●

●●●

●●●●●●●●

●●●●●●

●●

●●

●●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●●●

●●

●●●

●●

●●

●●●

●●●

●●

●●●

●●●●

●●●●

●●●●●●

●●●●

●●●●●

●●●●●●

●●●

●●●

●●

●●

●●

●●●●

●●

●●●●●●●●●●●

●●●●

●●●●●●●●●

●●

●●●

●●

●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●

●●

●●●●●●●

●●●

●●

●●●●●

●●●

●●●●●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●

●●●

●●●●

●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●

●●

●●●●●

●●

●●●●

●●

●●

●●●

●●●●●●●●●●●●

●●●

●●

●●●●

●●●●●●

●●●●●●●●●

●●●●

●●●

●●●●●

●●●

●●●●●●●●●

●●●●●●●●●●●●

●●●●●

●●●

●●

●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●

●●●●●●

●●●●●

●●

●●●●●●●●

●●●

●●●●●●

●●

●●●

●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●

●●●●●●●

●●

●●

●●

●●●●●●

●●●

●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●●

●●

●●

●●●●●●

●●

●●

●●

●●●

●●●

●●●●

●●●

●●

●●

●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●

●●

●●●●●●●

●●

●●●●●●

●●●

●●●

●●●●●

●●●●●●●

●●●●●●●●●

●●●

●●

●●●

●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●

●●●

●●●●

●●

●●

●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●●●

●●●●●●●

●●●

●●●●●●

●●

●●

●●●●●●

●●●●●●●

●●

●●●

●●

●●●●●●●●

●●●

●●

●●●●●●●●●

●●

●●●●●●●

●●●●●●●●●

●●

●●

●●●●

●●●●

●●●●

●●●●

●●

●●●●●●●●●●

●●

●●●●●●●●●●●●●●●

●●●●●●●

●●●

●●

●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●

●●

●●●●●●●●●●

●●●

●●●●

●●

●●●

●●

●●

●●●●●●●●●●●

●●

●●

●●

●●●●●

●●●●●●●●

●●●●●

●●●

●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●

●●●

●●●

●●

●●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●

●●●

●●

●●

●●●

●●

●●

●●●

●●●●●●●●●●

●●

●●●●●●●

●●

●●●

●●●●●●

●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●

●●

●●●●●●

●●

●●●●●●●●●●●

●●●●●●●

●●●●●●●

●●●

●●

●●●●●●●●●

●●●

●●●

●●

●●●

●●

●●●

●●●●

●●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●●●

●●●●●●●

●●●

●●●●●●●

●●

●●●●●●●●●

●●

●●●●

●●

●●●●●●

●●●●●

●●●

●●

●●●●●●●●●

●●

●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●

●●

●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●

●●●●●

●●

●●

●●●●●●●●●●●●●●●

●●●

●●

●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●

●●●●●●●●

●●

●●●●●

●●

●●

●●●●●●●●●●●

●●

●●

●●

●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●

●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●

●●●

●●●●●●●●●●●●●●●●

●●●

●●

●●●●

●●

●●●●●●●●

●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●

●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●●

●●

●●

●●

●●●●●●●●●

●●●

●●●

●●●●

●●

●●●●●

●●

●●●●

●●●●

●●●●●●●

●●●

●●

●●●●●●

●●

●●●●●●●●●

●●●●●●●●●●●●●●

●●●●

●●●

●●●●●●

●●●●●●

●●

●●●

●●

●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●

●●●

●●●●

●●

●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●

●●●●●

●●●●●

●●●●

●●

●●

●●●●●●●●●

●●

●●●●●●●●●

●●

●●●●

●●●●

●●●●

●●●●●

●●

●●●●●

●●●

●●●●●

●●●●

●●

●●

●●

●●●●

●●●●●●●●●●

●●●

●●

●●

●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●

●●●●●●●●

●●●●●●●●●●●●

●●●●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●

●●

●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●

●●

●●●

●●

●●●●●●●●●●●●●

●●●●

●●

●●●●

●●●●●●●●●●

●●

●●●●●●

●●

●●●●●

●●●●

●●

●●

●●

●●●

●●●●●

●●

●●

●●

●●●●

●●●●●●

●●

●●●

●●

●●

●●

●●●

●●

●●●●●●●●●●●●●

●●●

●●

●●●●●●

●●●●●●●●●●●●●●

●●

●●●

●●●●●

●●●●●●●●●●●●●●

●●●●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●

●●●●

●●

●●

●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●

●●

●●

●●●

●●●

●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●

●●●●●●●●

●●●●●●●●

●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●

●●●●●●●●●●●

●●●

●●●●

●●

●●●●

●●

●●

●●●●●●●●●●

●●●●

●●

●●●●●

●●●●●●●

●●

●●●●

●●●●●●●●●

●●●●●●●●●

●●

●●●●●●●●●

●●

●●

●●●

●●●●●●●●

●●●●●

●●

●●●●●●●

●●

●●

●●●●●●

●●

●●

●●●●●●●●●●

●●●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●

●●●●●●●●●●

●●

●●

●●

●●

●●●●●

●●●●●●●●●●

●●●

●●●●●●●

●●

●●●●●

●●●●●●

●●●●●●

●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●

●●

●●

●●●●●●●

●●

●●

●●●●

●●●

●●●

●●●●●

●●●

●●●●●●

●●●●●●●●●

●●

●●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●●●●●●●●

●●●●●

●●

●●

●●

●●●

●●●

●●●

●●

●●

●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●

●●

●●●●●

●●●●●●●

●●

●●

●●●

●●

●●●●●●●●●●●●

●●

●●

●●

●●

●●●●●

●●●●●

●●●●●●●●●●

●●

●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●●

●●

●●

●●●●

●●●

●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●

●●

●●●●●●●●●●

●●

●●●●

●●●●●●●●●

●●

●●

●●●

●●●●●●●●●●●

●●

●●

●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●●

●●●

●●

●●●●

●●●

●●●●●●

●●

●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●

●●

●●●●●●●

●●

●●

●●

●●

●●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●

●●

●●

●●●●●●●●

●●●●●●

●●●

●●●●●

●●

●●

●●

●●

●●●●

●●●●●●

●●

●●●●●●

●●●●

●●●●●●

●●●●●●●

●●

●●●

●●

●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●

●●

●●

●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●

●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●

●●●●●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●

●●●●●●●●●●●●●

●●●●●●

●●

●●●●

●●

●●●●●●

●●●

●●●

●●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●●

●●●●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●

●●●●●

●●

●●●●●●●●●

●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●

●●●●●●●●●●●

●●

●●

●●●●●

●●●●●●

●●

●●●

●●●

●●

●●●●●●

●●●

●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●

●●●●

●●●●●●●

●●●●●●●

●●

●●●●

●●●●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●

●●

●●●

●●●

●●●

●●

●●●●●●●●

●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●

●●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●

●●●●●●●●

●●●●

●●

●●●

●●●

●●●

●●

●●●●●●●●●

●●

●●●●

●●●●●

●●●●●

●●●

●●●

●●●●●●●

●●●●●●●●●

●●●

●●●●

●●

●●●

●●

●●●●●●

●●●●●●●

●●●●●●

●●●●●

●●

●●

●●

●●

●●●●●●●

●●●●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●●●●

●●●●●●●●●●●●

●●●

●●●●●●●

●●

●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●●●●●●

●●●

●●

●●

●●

●●

●●●●●●●●

●●

●●●●

●●

●●

●●●●●●●

●●

●●●

●●●●●

●●●●●●●●●●●●

●●●●●●

●●●●●

●●●●

●●●

●●●●●●●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●●●●●●●●●●

●●●●

●●

●●●●●●●●

●●

●●●●●●

●●●

●●

●●●

●●●●●●●●●●

●●●●●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●

●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●

●●

●●●●●

●●

●●●

●●●●

●●

●●

●●

●●

●●●●●

●●●●●●

●●●●●●●●●

●●●

●●

●●●

●●

●●●●●●●

●●●

●●

●●●

●●

●●●●●●

●●

●●●

●●●

●●●●●

●●●●●●

●●●●●●●●●●●●●●●

●●●●

●●●●●

●●●●●●●●●●●●

●●●●

●●

●●

●●

●●

●●

●●●●●●●●●●●

●●●

●●●

●●●

●●

●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●

●●●

●●●●●●●●●●

●●●

●●●●●

●●

●●●

●●●

●●

●●●●

●●●●●●

●●●●

●●

●●●●●●●

●●●●●

●●●●●●

●●

●●●

●●

●●

●●●●●●●●●

●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●

●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●

●●

●●●●●●●

●●

●●●

●●

●●

●●●●●●●

●●●●●●●●

●●●

●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●

●●

●●

●●●●●

●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●

●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●

●●

●●

●●

●●●●●●●●●

●●

●●●●●●●

●●

●●●●

●●

●●●●●●●

●●●

●●

●●

●●●●●●●●●

●●

●●

●●

●●●●●●

●●

●●●●●●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●

●●●●●

●●

●●●

●●●●●●●

●●

●●●●●●●●●●●

●●●

●●

●●

●●

●●●●●●●●●●●●

●●●

●●

●●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●

●●

●●●●●●●●●●●

●●●●●●●

●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●

●●

●●●

●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●

●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●

●●●●●●

●●●●

●●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●●

●●●

●●

●●

●●●●●

●●●●●●●●

●●●

●●●

●●●

●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●

●●

●●

●●

●●

●●●●

●●

●●●

●●●●●●●●●●●

●●

●●●

●●●●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●

●●

●●●●●

●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●

●●

●●●

●●

●●●●●●●●●●

●●●●●

●●●

●●

●●

●●●●●

●●

●●●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●

●●●●●●●●●●●●

●●

●●

●●●●●

●●

●●

●●●

●●

●●●

●●

●●●●●

●●

●●

●●●●●●●●●●●●

●●

●●

●●●●●

●●●●

●●●●●●

●●●●●●●

●●

●●

●●●●●

●●●●●●●

●●●●

●●

●●

●●●

●●●

●●●●●●●●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●

●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●

●●●●●●●●●

●●

●●●●●●●●●

●●●●●●●●●●

●●●

●●●●●●

●●●

●●

●●●

●●●●●●

●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●●

●●

●●●●

●●

●●

●●●●●●●●●

●●

●●●●●●●●●

●●

●●●

●●

●●●

●●

●●

●●●●●●●

●●

●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●

●●

●●●●●●●●●●

●●

●●

●●

●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●

●●●

●●●●

●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●

●●●

●●

●●●●●●●●●●

●●●●

●●●

●●

●●

●●●

●●

●●●●●●●

●●

●●

●●●

●●●

●●

●●

●●●●●●●●●

●●

●●

●●

●●●●●●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●●

●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●

●●●

●●●●●

●●

●●●●●●●●●●●●

●●

●●●●

●●●●●●●●●●●●●●●

●●●●●●

●●

●●●●

●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●

●●●

●●●●●

●●●

●●

●●●●●●●●●●●

●●

●●

●●●

●●●

●●

●●

●●

●●●●●●●

●●●

●●

●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●

●●

●●●●●●●

●●

●●●●●●●●●●●

●●●●

●●●●●●

●●

●●●●●●●

●●●●●●●●●●

●●

●●●

●●

●●●●

●●●●●●●●●●●●●●

●●

●●

●●●

●●●●

●●

●●●●●●

●●

●●

●●●●●●●●

●●●●●

●●●

●●

●●

●●●●●●●

●●

●●

●●

●●

●●●

●●●●●

●●●●●●●●●●●

●●●●●

●●

●●●

●●●●●

●●●

●●

●●●●●●●

●●●●●

●●●●●●●

●●●●●●●●●●●●

●●

●●

●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●

●●

●●●●●●●●

●●

●●●●●●

●●

●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●

●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●●●●●●●

●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●

●●●

●●●●●●

●●●●●●●●●●●●●●

●●

●●●●●●

●●●●●●●

●●

●●●●●●●●

●●●●

●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●

●●

●●●

●●

●●●●

●●●●

●●

●●●●●

●●

●●

●●

●●●●●

●●●

●●●●

●●●

●●

●●●●

●●●●●●●

●●

●●●●

●●

●●

●●●●●●●●●●

●●●●●●●

●●●●●

●●

●●

●●●●●●●●

●●

●●

●●●●●●

●●●

●●●●●●●●●●●●●●

●●

●●●

●●

●●●●

●●

●●●

●●●●●●●

●●●●●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●

●●●

●●●

●●●

●●●

●●●●●●●●●●●●●

●●●●●●●●●●

●●

●●

●●●●●

●●

●●

●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●

●●●●

●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●

●●●

●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●●

●●●●●●

●●●

●●●●●●●●

●●●

●●●

●●●●●●

●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●

●●

●●●●

●●●●●●

●●

●●●

●●●

●●●

●●

●●●●●●●●●

●●

●●●●●●●

●●●

●●●●

●●

●●●●●

●●

●●

●●●●

●●

●●

●●●●

●●

●●●●●●●●

●●●

●●●●●●

●●●●

●●

●●●

●●

●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●

●●

●●●

●●●●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●

●●●●●●

●●●●

●●

●●●●●●●●●

●●

●●●

●●●

●●●

●●

●●●

●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●●●●●

●●●●●●●

●●

●●●●●●●●●●●●

●●●

●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●

●●●

●●

●●●●

●●●●●

●●●

●●

●●

●●●●●

●●●●●

●●

●●

●●

●●

●●●●●●●●●

●●●●

●●●●

●●

●●●●●●

●●

●●●

●●●●●

●●●

●●

●●●●●●●●

●●●●●

●●●●●●●●●

●●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●

●●●●●●●●●●●●

●●●

●●●●●●●●●

●●●●●●●●●●

●●●●

●●

●●

●●●●

●●

●●●●●●●●

●●●

●●●●●●●

●●

●●

●●

●●●

●●

●●

●●●●●●●

●●●●

●●

●●●

●●

●●●●●●

●●●●

●●

●●●

●●

●●●

●●

●●●●●

●●●●●●●

●●●●●

●●●

●●●●●●●●

●●●

●●

●●●●●●

●●●

●●

●●

●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●

●●

●●●●●

●●

●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●

●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●

●●

●●

●●

●●●●●●●●●●

●●●

●●●●●●

●●

●●

●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●

●●●

●●

●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●

●●●

●●●●●●

●●●●

●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●

●●

●●●●

●●

●●●●●●●●●●

●●

●●●●●●●●●●●●

●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●

●●

●●

●●●●●

●●

●●

●●●●

●●

●●●●●●●●

●●●●●

●●●●

●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●

●●

●●●●●●●●●●●●●●●

●●

●●●●

●●●

●●●●●●●●●●●●

0 5000 10000 15000

0

20

40

60

80

(a)

day

rain

0 20 40 60 80

0

5

10

15

20

(b)

Threshold

Mea

n E

xces

s

Fig. 16.8 The rain daily rainfall data. (a) Scatter plot. (b) Mean excess plot.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 126: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 16

●●●

●●

●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●

●●

●●●

●●

●●

●●●●●

●●●●

●●

●●

●●

●●

●●

●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●●●●●●●●

●●●●●●●●●

●●

●●●●●

●●●●●

●●●

●●●

●●

●●●●●●

●●●●

●●●

●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●

●●

●●

●●●●●●●●

●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●

●●●

●●

●●●●●●

●●●●●●

●●

●●

●●

●●

●●●●●

●●●●●

●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●

●●

●●

●●●●●●

●●

●●

●●

●●●

●●●

●●

●●●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●

●●

●●●●●●●

●●

●●

●●●●●●●●

●●●●●●●●●●●●●

●●

●●

●●

●●●●●●

●●

●●

●●

●●

●●●●●●●●

●●

●●●●●●●●●●●●●●

●●●●

●●

●●

●●●

●●●●●

●●●

●●

●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●●●●●●●

●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●

●●

●●

●●

●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●

●●●

●●

●●●●●●●●●●●●

●●●●●●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●

●●●●●●●

●●

●●●●●●●●●●

●●

●●●●●●●●●

●●

●●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●

●●●

●●

●●●●●●●●●●

●●

●●●

●●

●●●●●●●●

●●●●●●●

●●●

●●●●●●●●●●●●●

●●●●

●●

●●●●

●●

●●●●●●

●●●●●●

●●

●●●●●●●●

●●●●●●

●●

●●

●●

●●

●●●●

●●

●●●

●●

●●

●●

●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●

●●●●

●●●●●●●●●●●●●●●●

●●

●●

●●

●●●

●●●●●●●●

●●

●●

●●●●●●●●●●●●●

●●●

●●●

●●●●

●●

●●●●

●●●●●●

●●●●●●●●●

●●

●●●●

●●●

●●●●●●

●●●

●●●●●

●●●

●●●●

●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●●●●●

●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●

●●

●●●●

●●●

●●

●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●

●●

●●●●

●●

●●●

●●

●●

●●●

●●●

●●●●

●●

●●●

●●●●●●●●●

●●

●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●●

●●●●●

●●

●●

●●

●●●

●●●

●●●●●●●

●●●

●●●●●●●

●●●●●●●

●●●

●●

●●●●

●●●●●●●

●●

●●

●●●●●

●●

●●

●●●●●●●●●●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●●●

●●●●

●●●●●●

●●●●●●

●●

●●●●●●●●

●●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●●

●●●●

●●●●●●●●●●

●●●●

●●●●●●●

●●●●●●●●●●●●●●

●●

●●●●

●●●

●●

●●

●●●●

●●

●●

●●●

●●●

●●●●

●●

●●

●●

●●●●●

●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●●●

●●●

●●●

●●●●●●●●●

●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●

●●

●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●●●

●●

●●●●

●●●

●●●●

●●●●

●●●●●●●

●●

●●●●●

●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●

●●●●

●●●●●●●●●

●●●●●

●●●●

●●●●

●●●

●●●●●●●●●●●●●

●●●●●●

●●

●●

●●●

●●●●●

●●●

●●●

●●

●●●●●●

●●

●●●●●●●●●●●●●

●●

●●

●●

●●

●●●●

●●●●●●

●●●●●●●●●

●●●●●

●●

●●

●●

●●●●

●●●●●●

●●●●●

●●

●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●

●●

●●

●●●●●●●●

●●●●

●●●●

●●●●

●●

●●●●

●●

●●●

●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●●●●

●●

●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●

●●

●●●

●●

●●●

●●

●●

●●

●●●●●●●●●●●

●●●●●●●

●●

●●●

●●●

●●

●●

●●●

●●

●●●●●●●●●

●●●●●●●●●●

●●

●●●●●●

●●●●●

●●

●●●

●●●●●●

●●

●●●

●●

●●●●

●●

●●

●●●

●●

●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●

●●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●●

●●●

●●●

●●●●●●●●●●

●●

●●

●●●

●●

●●●

●●

●●●●

●●

●●

●●●

●●

●●

●●●

●●

●●●

●●●●●●●●●●

●●

●●

●●●●●

●●●●●●●●●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●

●●●●●●●

●●●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●

●●●●●●●●●●

●●

●●

●●

●●

●●●●●

●●

●●

●●●●

●●●

●●●

●●

●●

●●●●●●●●●

●●●●●●●●●●

●●●

●●

●●●●●●●●

●●

●●●●

●●●

●●●●●

●●

●●

●●

●●●●

●●

●●

●●●●●●

●●●●●●

●●●●●

●●

●●●

●●●●●

●●

●●●●●●●●●●

●●●

●●

●●●●●●●

●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●

●●●

●●●●●●

●●

●●●●●

●●●●●

●●●●●●●

●●●

●●

●●●●

●●

●●●

●●●●

●●●●●●●●●●●●

●●

●●●●●●●●●

●●●

●●●●●●

●●

●●

●●●

●●●

●●●●●●

●●●

●●

●●

●●●

●●●●●●

●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●

●●

●●●●●

●●

●●●●●●●●

●●●●

●●●●

●●●

●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●●●●●●●●●

●●●

●●●●

●●●●●●●

●●●●●

●●●●

●●

●●

●●

●●●●●●●●

●●

●●

●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●

●●●●●●●

●●

●●●●●●●●●

●●●●●

●●

●●●

●●●

●●●●●●

●●

●●●●●●●●●●●

●●●

●●

●●●●●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●

●●●●

●●

●●

●●

●●●●

●●●

●●●●●●●●●●●●●

●●●

●●

●●●

●●●

●●●●●●●●●●●

●●●

●●

●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●

●●●●●●

●●●

●●●●●●

●●●●●●●●●●

●●●●

●●

●●●●

●●●●●●●

●●●●

●●●

●●

●●●●●●●●

●●

●●●

●●●●●●●●

●●●●●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●●●●●●●●●●●●●●●

●●

●●●

●●

●●

●●●

●●●

●●

●●●

●●●●

●●●●

●●●●●●

●●●●

●●●●●

●●●●●●

●●●

●●●

●●

●●

●●

●●●●●

●●●

●●●●●●●●●●●

●●●●

●●●●●●●●●

●●

●●●

●●

●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●

●●

●●●●●●●

●●●

●●

●●●●●

●●●

●●●●●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●

●●●

●●●●

●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●

●●

●●●●●

●●

●●●●

●●

●●

●●●

●●●●●●●●●●●●

●●●

●●

●●●●

●●●●●●

●●●●●●●●●

●●●●

●●●

●●●●●

●●●

●●●●●●●●●

●●●●●●●●●●●●

●●●●●

●●●

●●

●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●

●●●●●●

●●●●●

●●

●●●●●●●●

●●●

●●●●●●

●●

●●●

●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●

●●●●●●●

●●

●●

●●●

●●●●●●

●●●

●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●●

●●

●●

●●●●●●

●●

●●

●●

●●

●●●

●●●

●●●●

●●●

●●

●●

●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●

●●

●●●●●●●

●●

●●●●●●

●●●

●●●

●●●●●

●●●●●●●

●●●●●●●●●

●●●

●●

●●●

●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●

●●●

●●●●

●●

●●

●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●●●

●●●●●●●

●●●

●●●●●●

●●

●●

●●●●●●

●●●●●●●

●●

●●●

●●

●●●●●●●●

●●●

●●

●●●●●●●●●

●●

●●●●●●●

●●●●●●●●●

●●

●●

●●●●

●●●●

●●●●

●●●●●

●●

●●●●●●●●●●

●●

●●●●●●●●●●●●●●●

●●●●●●●

●●●

●●

●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●

●●

●●●●●●●●●●

●●●

●●●●

●●

●●●

●●

●●

●●●●●●●●●●●

●●

●●

●●

●●●●●

●●●●●●●●

●●●●●

●●●

●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●

●●●

●●●

●●

●●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●

●●●

●●

●●

●●●

●●

●●

●●●

●●●●●●●●●●

●●

●●●●●●●

●●

●●●

●●●●●●

●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●

●●

●●●●●●

●●

●●●●●●●●●●●

●●●●●●●

●●●●●●●

●●●

●●

●●●●●●●●●

●●●

●●●

●●

●●●

●●

●●●

●●●●

●●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●●●

●●●●●●●

●●●

●●●●●●●

●●

●●●●●●●●●

●●

●●●●

●●

●●●●●●

●●●●●

●●●●

●●

●●●●●●●●●

●●

●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●

●●

●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●

●●●●●

●●

●●

●●●●●●●●●●●●●●●

●●●

●●

●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●

●●●●●●●●

●●

●●●●●

●●

●●

●●●●●●●●●●●

●●

●●

●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●

●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●

●●●

●●●●●●●●●●●●●●●●

●●●

●●

●●●●

●●

●●●●●●●●

●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●

●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●●●●●●●●

●●●

●●●

●●●●

●●

●●●●●

●●

●●●●

●●●●

●●●●●●●

●●●

●●

●●●●●●

●●

●●

●●●●●●●●●

●●●●●●●●●●●●●●

●●●●

●●●

●●●●●●

●●●●●●

●●

●●●

●●

●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●

●●●

●●●●

●●

●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●

●●●●●

●●●●●

●●●●

●●

●●

●●●●●●●●●

●●

●●●●●●●●●

●●

●●●●

●●●●

●●●●

●●●●●

●●

●●●●●

●●●

●●●●●

●●●●

●●

●●

●●

●●●●

●●●●●●●●●●

●●●

●●

●●

●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●

●●●●●●●●

●●●●●●●●●●●●

●●●●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●

●●

●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●

●●

●●●

●●

●●●●●●●●●●●●●

●●●●

●●

●●●●

●●●●●●●●●●

●●

●●●●●●

●●

●●●●●

●●●●

●●

●●

●●

●●●

●●●●●

●●

●●

●●

●●●●

●●●●●●

●●

●●●

●●

●●●●

●●●

●●

●●●●●●●●●●●●●

●●●

●●

●●●●●●

●●●●●●●●●●●●●●

●●

●●●

●●●●●

●●●●●●●●●●●●●●

●●●●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●

●●●●

●●

●●

●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●

●●

●●

●●●

●●●

●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●

●●●●●●●●

●●●●●●●●

●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●

●●●●●●●●●●●

●●●

●●●●

●●

●●●●

●●

●●

●●●●●●●●●●

●●●●

●●

●●●●●

●●●●●●●

●●

●●●●

●●●●●●●●●●

●●●●●●●●●

●●

●●●●●●●●●

●●

●●

●●●

●●●●●●●●

●●●●●

●●

●●●●●●●

●●

●●

●●●●●●

●●

●●

●●●●●●●●●●

●●●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●

●●●●●●●●●●

●●

●●

●●

●●

●●●●●●

●●●●●●●●●●

●●●

●●●●●●●

●●

●●●●●

●●

●●●●●●

●●●●●●

●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●

●●

●●

●●●●●●●

●●

●●

●●●●

●●●●

●●●

●●●●●

●●●

●●●●●●

●●●●●●●●●

●●

●●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●●●●●●●●

●●●●●

●●

●●

●●

●●●

●●●

●●●

●●

●●

●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●

●●

●●●●●

●●●●●●●

●●

●●

●●●

●●

●●●●●●●●●●●●

●●

●●

●●

●●

●●●●●

●●●●●

●●●●●●●●●●

●●

●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●●

●●

●●

●●●●

●●●

●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●

●●

●●●●●●●●●●

●●

●●

●●●●

●●●●●●●●●

●●

●●

●●●

●●●●●●●●●●●

●●

●●

●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●●

●●●

●●

●●●●

●●●

●●●●●●

●●

●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●

●●

●●●●●●●

●●

●●

●●

●●

●●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●

●●

●●

●●●●●●●●

●●●●●●

●●●

●●●●●

●●

●●

●●

●●

●●●●

●●●●●●

●●

●●

●●●●●●

●●●●

●●●●●●

●●●●●●●

●●

●●●

●●

●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●

●●

●●

●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●

●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●

●●●●●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●

●●●●●●●●●●●●●

●●●●●●

●●

●●●●

●●

●●●●●●●

●●●

●●●

●●●

●●

●●●●●●

●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●●

●●●●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●

●●●●●

●●

●●●●●●●●●

●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●

●●●●●●●●●●●

●●

●●

●●

●●●●●

●●●●●●

●●

●●●

●●●

●●

●●●●●●

●●

●●●

●●

●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●

●●●●

●●●●●●●

●●●●●●●

●●

●●●●

●●●●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●

●●

●●●

●●●

●●●

●●

●●●●●●●●

●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●

●●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●

●●●●●●●●

●●●●

●●

●●●

●●●

●●●

●●●

●●●●●●●●●

●●

●●

●●●●

●●●●●

●●●●●

●●●

●●●

●●●●●●●

●●●●●●●●●

●●●

●●●●

●●

●●●

●●

●●●●●●

●●●●●●●

●●●●●●

●●●●●

●●

●●

●●

●●●

●●●●●●●

●●●●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●●●●

●●●●●●●●●●●●

●●●

●●●●●●●

●●

●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●●●●●●

●●●

●●

●●

●●

●●

●●●●●●●●

●●

●●●●

●●

●●

●●●●●●●

●●

●●●

●●●●●

●●●●●●●●●●●●

●●●●●●

●●●●●

●●●●

●●●

●●●●●●●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●●●●●●●●●●

●●●●

●●

●●●●●●●●

●●

●●●●●●

●●●

●●

●●●

●●●●●●●●●●

●●●●●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●

●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●

●●

●●●●●

●●

●●●

●●●●

●●

●●

●●

●●

●●●●●

●●●●●●

●●●●●●●●●

●●

●●●

●●

●●●

●●

●●●●●●●

●●●

●●

●●●

●●

●●●●●●

●●

●●●

●●●

●●●●●

●●●●●●

●●●●●●●●●●●●●●●

●●●●

●●●●●

●●●●●●●●●●●●

●●●●

●●

●●

●●

●●

●●

●●●●●●●●●●●

●●●

●●●

●●●

●●

●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●

●●●

●●●●●●●●●●

●●●

●●●●●

●●

●●●●

●●●

●●

●●●●

●●●●●●

●●●●

●●

●●●●●●●

●●●●●

●●●●●●

●●

●●●

●●

●●

●●

●●●●●●●●●

●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●

●●

●●

●●●●●

●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●

●●

●●●●●●●

●●

●●●

●●

●●

●●●●●●●

●●●●●●●●

●●●

●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●

●●●

●●

●●●●●

●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●

●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●

●●

●●

●●

●●●●●●●●●

●●

●●●●●●●

●●

●●●●

●●

●●●●●●●

●●●

●●

●●

●●●●●●●●●

●●

●●

●●

●●●●●●

●●

●●●●●●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●

●●●●●

●●

●●●

●●●●●●●

●●

●●●●●●●●●●●

●●●

●●

●●

●●

●●●●●●●●●●●●

●●●

●●

●●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●

●●

●●●●●●●●●●●

●●●●●●●

●●●●●

●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●

●●

●●●

●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●

●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●

●●●●●●

●●●●

●●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●●

●●●

●●

●●

●●●●●

●●●●●●●●

●●

●●●

●●●

●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●

●●

●●

●●

●●

●●●●

●●

●●●

●●●●●●●●●●●

●●

●●●

●●●●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●

●●

●●●●●

●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●

●●

●●●

●●

●●●●●●●●●●

●●●●●

●●●

●●

●●

●●●●●

●●

●●●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●

●●●●●●●●●●●●

●●

●●

●●●●●

●●

●●

●●●

●●

●●●

●●

●●●●●

●●●

●●

●●●●●●●●●●●●

●●

●●

●●●●●

●●●●

●●●●●●

●●●●●●●

●●

●●

●●●●●

●●●●●●●

●●●●●

●●

●●

●●●

●●●

●●●●●●●●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●

●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●

●●●●●●●●●

●●

●●●●●●●●●

●●●●●●●●●●

●●●

●●●●●●

●●●

●●

●●●

●●●●●●

●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●●●

●●

●●●●

●●

●●

●●●●●●●●●

●●

●●●●●●●●●

●●

●●●

●●

●●●

●●

●●

●●●●●●●

●●●●

●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●

●●

●●●●●●●●●●

●●

●●

●●

●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●●●

●●●●

●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●

●●●

●●

●●●●●●●●●●

●●●●

●●●

●●

●●

●●●

●●

●●●●●●●

●●

●●

●●●

●●●

●●

●●

●●●●●●●●●

●●

●●

●●

●●●●●●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●●

●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●

●●●

●●●●●

●●

●●●●●●●●●●●●

●●

●●●●

●●●●●●●●●●●●●●●

●●●●●●

●●

●●●●

●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●

●●●●●

●●●

●●

●●●●●●●●●●●

●●

●●

●●●

●●●

●●

●●

●●

●●●●●●●

●●●

●●

●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●

●●

●●●●●●●

●●

●●●●●●●●●●●●

●●●●

●●●●●●

●●

●●●●●●●

●●●●●●●●●●

●●

●●●

●●

●●●●

●●●●●●●●●●●●●●

●●

●●

●●●

●●●●

●●

●●●●●●

●●

●●

●●●●●●●●

●●●●●

●●●

●●

●●

●●●●●●●

●●

●●

●●

●●

●●●

●●●●●

●●●●●●●●●●●

●●●●●

●●

●●●

●●●●●

●●●

●●

●●●●●●●

●●●●●

●●●●●●●

●●●●●●●●●●●●

●●

●●

●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●

●●

●●●●●●●●

●●

●●●●●●

●●

●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●

●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●●●●●●●

●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●

●●●

●●●●●●

●●●●●●●●●●●●●●●

●●

●●●●●●

●●●●●●●

●●

●●●●●●●●

●●●●

●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●

●●

●●●

●●

●●●●

●●●●

●●

●●●●●

●●

●●

●●

●●●●●

●●●

●●●●

●●●

●●

●●●●

●●●●●●●

●●

●●●●

●●

●●

●●●●●●●●●●●

●●●●●●●

●●●●●

●●

●●

●●●●●●●●

●●

●●

●●●●●●

●●●

●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●●●

●●

●●

●●●

●●●●●●●

●●●●●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●

●●●

●●●

●●●

●●●

●●●●●●●●●●●●●

●●●●●●●●●●

●●

●●

●●●●●

●●

●●

●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●

●●●●

●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●

●●●

●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●●

●●●●●●

●●●

●●●●●●●●

●●●

●●●

●●●●●●

●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●

●●

●●●●

●●●●●●

●●

●●●

●●●

●●●

●●

●●●●●●●●●

●●

●●●●●●●

●●●

●●●●

●●

●●●●●

●●

●●●

●●●●

●●

●●

●●●●

●●

●●●●●●●●

●●●

●●●●●●

●●●●

●●

●●●

●●

●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●

●●

●●●

●●●●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●

●●●●●●

●●●●

●●

●●●●●●●●●

●●

●●●

●●●

●●●

●●

●●●

●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●●●●●●

●●●●●●●

●●

●●●●●●●●●●●●

●●●

●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●

●●●

●●

●●●●

●●●●●

●●●

●●

●●

●●●●●

●●●●●

●●

●●

●●

●●

●●●●●●●●●

●●●●

●●

●●●●

●●

●●●●●●

●●

●●●

●●●●●

●●●

●●

●●●●●●●●

●●●●●

●●●●●●●●●

●●●

●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●

●●●●●●●●●●●●

●●●

●●●●●●●●●

●●●●●●●●●●

●●●●

●●

●●

●●●●

●●

●●●●●●●●

●●●

●●●●●●●

●●

●●

●●

●●●

●●

●●

●●●●●●●

●●●●

●●

●●●

●●

●●●●●●

●●●●

●●

●●●

●●

●●

●●●

●●

●●

●●●●●

●●●●●●●

●●●●●

●●●

●●●●●●●●

●●●

●●

●●●●●●

●●●

●●

●●

●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●

●●

●●

●●●●●

●●

●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●

●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●●●●●

●●●

●●●●●●

●●

●●

●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●

●●●

●●●●●●

●●

●●●●

●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●

●●

●●●●

●●

●●●●●●●●●●

●●

●●●●●●●●●●●●

●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●●●●●●●

●●

●●

●●●●●●●

●●

●●●●

●●

●●●●●●●●

●●●●●

●●●●●

●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●●

●●●●

●●●

●●●●●●●●●●●●

0 5000 10000 15000

0

20

40

60

80

(a)

day

rain

●●● ●●●●●●●●●●●●●●● ●●●●●● ●●●●

●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●

●●●●●●● ●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0(b)

Empirical

Mod

el●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●

●●●●●

●●●

●● ●

0 20 40 60

0

10

20

30

40

50

(c)

Model

Em

piric

al

(d)

depvar(fit2.rain)

Den

sity

30 40 50 60 70 80 900.

000.

040.

08

Fig. 16.9 Intercept-only GPD model fitted to the rain daily rainfall data. (a) Scatter plot,

with the solid black horizontal line denoting the threshold at 30. The dashed horizontal lines arethe resulting 90% and 99% quantiles. (b) Probability plot. (c) Quantile plot. (d) Density plot.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 127: Vector Generalized Linear and Additive Models: With an

Chapter 17

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

121

Page 128: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 17

*

(b)(a)

φ 1 − φ1 − ω

Y = Y =

Y

ω

Y | Y > 0* * 00

Fig. 17.1 Decision tree diagram for (a) zero-alteration versus (b) zero-inflation. They de-

pict (17.4) and (17.7) respectively. Here, Y ∗ corresponds to a parent distribution such as the

binomial or Poisson, and Y is the response of interest. The probabilities ω and φ dictate thedecisions.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 129: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 17

0 1 2 3 4 5 6 7 8 9

y

Pro

babi

lity

0.00

0.05

0.10

0.15

0.20(a)

0 1 2 3 4 5 6 7 8 9

y

0.00

0.05

0.10

0.15

0.20(b)

Fig. 17.2 Probability functions of a (a) zero-inflated Poisson with φ = 0.2, (b) zero-deflated

Poisson with ω = −0.035. Both are compared to their parent distribution which is a Poisson(µ =3) in orange.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 130: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 17

5 10 15 20

−3

−2

−1

0

1

2

weight

s(w

eigh

t, df

= 3

)

−0.2 0.2 0.6 1.0

−2

−1

0

1

2

Sex

part

ial f

or S

ex

−0.2 0.2 0.6 1.0

−3

−2

−1

0

1

2

Age

part

ial f

or A

ge

Fig. 17.3 Estimated component functions for the deermice VGAM.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 131: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 17

Fig. 17.4 Capture probability

estimates with approximate ±2pointwise SEs, versus wing length

with (blue) and without (or-

ange) fat content present fittinga Mh-VGAM, using the prinia

data.

−2 −1 0 1 2 3

0.00

0.05

0.10

0.15

0.20

0.25

Wing length (standardized)

p

Fat presentFat not present

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 132: Vector Generalized Linear and Additive Models: With an
Page 133: Vector Generalized Linear and Additive Models: With an

Appendix A

Figures from Vector Generalized Linearand Additive Models: With anImplementation in Rc© T. W. Yee, 2015

127

Page 134: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 17

0.2 0.4 0.6 0.8 1.0 1.2 1.4

−14

00−

1200

−10

00−

800

µ

log−

likel

ihoo

d

θ

θ(1)

θ(2)

θ(3)

Fig. A.1 The first few Newton-like iterations for a Poisson regression fitted to the V1 data set.

The solid orange curve is `(θ) with θ = µ. The initial value is θ(1) = 0.2. Each iteration θ(a)

corresponds to the maximum of the quadratic (dashed curves) from the previous iteration.

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 135: Vector Generalized Linear and Additive Models: With an

c© T. W. Yee, 2015. Chap. 17

0.2 0.4 0.6 0.8 1.0

−395

−390

−385

(a)

k

θ0 θ

Wald test

LR testScore test●

−395

−390

−385

(b)

k (log scale)

0.2 0.3 0.4 0.5 0.7 0.9

θ0 θ

Wald test

LR testScore test●

Fig. A.2 Negative binomial NB(µ, k) distribution fitted to the machinists data set. The y-axis

is `. Let θ = k and θ∗ = log k. (a) `(θ) is the solid blue curve. (b) `(θ∗) is the solid blue curve.Note: for H0 : θ = θ0 (where θ0 = 1

3), the likelihood-ratio test, score test and Wald test statistics

are based on quantities highlighted with respect to `. In particular, the score statistic is based

on the tangent `′(θ0).

Vector Generalized Linear and Additive Models: With an Implementation in R

Page 136: Vector Generalized Linear and Additive Models: With an
Page 137: Vector Generalized Linear and Additive Models: With an

References

Yee, T. W. (2015). Vector Generalized Linear and Additive Models: With anImplementation in R. New York, USA: Springer.

131