1
References: [1] A. Negoi, K. Triantafyllidis, V.I. Parvulescu, S.M. Coman, Catal. Today 223 (2014) 122-128. [2] L.S. Ribeiro, J.J.M. Órfão, M.F.R. Pereira, Green Chem. 17 (2015) 2973-2980. Acknowledgements: This work was financially supported by: project POCI-01-0145-FEDER-006984 – Associate Laboratory LSRE- LCM funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT - Fundao para a Cincia e a Tecnologia. L.S. Ribeiro acknowledges her scholarship (SFRH/BD/86580/2012) by FCT. V ALORISATION OF B IOMASS : T RANSFORMATION INTO V ALUE - A DDED P RODUCTS Lucília S . Ribeiro 1,* , José J. Melo Órfão 1 and M. Fernando R. Pereira 1 1 Laboratório de Processos de Separação e Reação - Laboratório de Catálise e Materiais (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Portugal. *[email protected] O 2 CO 2 H 2 O C + O 2 = CO 2 2014 2039 2064 2089 2114 Coal Gas Oil Impact of anthropogenic CO 2 emissions Increasing energy demand Depletion of fossil fuel reserves Inexpensive Renewable Abundant source of carbon CO 2 neutral alternative Biomass : Efficient utilization of bioresource material Environmental friendliness High selectivity to desired products Less production of waste Cost effectiveness Catalytic process : Ease of catalyst separation after reaction Reutillization of catalyst is possible Heterogeneous catalyst : Energy consumption has increased steadily over the last century as the world population has grown and more countries have become industrialized. Search of alternative renewable resources for the production of chemicals and fuel Cellulose is one of the most abundant form of biomass on Earth. The efficient conversion of cellulose into target products allows to reduce CO 2 emissions and alleviates the energy crisis. It is the case of the one-pot hydrolytic hydrogenation of cellulose to sugar alcohols, specially sorbitol. Sorbitol is an important platform molecule and can be used as sweetener, dispersing agent and humectant in pharmaceuticals, cosmetics, and textiles [1]. INTRODUCTION ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// EXPERIMENTAL METHODS ///////////////////////////////////////////////////////////////////////// RESULTS ///////////////////////////////////////////////////////////////////////////////////////// Catalyst Ru Metal phase CNT Support Incipient wetness impregnation method Activation: thermal treatment → N 2 metal reduction → H 2 Ru/CNT Commercial Microcrystalline Cellulose Ball-milling Reduce the crystallinity Cellulose Standard conditions : T reaction = 205 ºC P H 2 = 50 bar 300 mL H 2 O 750 mg of cellulose 300 mg of catalyst 150 rpm Reaction Hydrolysis Hydrogenation One-pot Sweetener Bioethanol Isosorbide PET additive EG, PG Antifreeze 1,4-Sorbitan Surfactant Lactic acid Biodegradable plastics Glycerol Plastics MIX-MILLING Catalyst (Ru/CNT) Cellulose 0 20 40 60 80 microcrystalline cellulose Ball-milled cellulose Mix-milled cellulose Selectivity to sorbitol (%) 0 20 40 60 80 100 0 60 120 180 240 300 Conversion (%) Time (min) Mix-milled cellulose Ball-milled cellulose Commercial microcrystalline cellulose Ball-milling 10 15 20 25 30 Intensity (a.u.) Commercial microcrystalline cellulose Ball-milled cellulose 92% 23% Crystallinity Decrease with ball-milling Ball-milling: Increases cellulose conversion Increases sorbitol selectivity Mix-milling [2]: Greatly increases cellulose conversion and selectivity to sorbitol Ball-milling Mix-milling Commercial 1 h of reaction

VALORISATION OF BIOMASS TRANSFORMATION INTO … · This work was financially supported by: project POCI-01-0145-FEDER-006984 –Associate Laboratory LSRE-LCM funded by FEDER funds

Embed Size (px)

Citation preview

Page 1: VALORISATION OF BIOMASS TRANSFORMATION INTO … · This work was financially supported by: project POCI-01-0145-FEDER-006984 –Associate Laboratory LSRE-LCM funded by FEDER funds

References:[1] A. Negoi, K. Triantafyllidis, V.I. Parvulescu, S.M. Coman, Catal. Today 223 (2014) 122-128.[2] L.S. Ribeiro, J.J.M. Órfão, M.F.R. Pereira, Green Chem. 17 (2015) 2973-2980.

Acknowledgements:This work was financially supported by: project POCI-01-0145-FEDER-006984 – Associate Laboratory LSRE-LCM funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade eInternacionalização (POCI) – and by national funds through FCT - Fundacao para a Ciencia e a Tecnologia.L.S. Ribeiro acknowledges her scholarship (SFRH/BD/86580/2012) by FCT.

VALORISATION OF BIOMASS: TRANSFORMATION INTO VALUE-ADDED PRODUCTS

Lucília S. Ribeiro1,*, José J. Melo Órfão1 and M. Fernando R. Pereira1

1 Laboratório de Processos de Separação e Reação - Laboratório de Catálise e Materiais (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Portugal. *[email protected]

O2

CO2

H2O

C + O2 = CO2

2014 2039 2064 2089 2114

Coal

Gas

Oil

Impact of anthropogenic CO2 emissions

Increasing energy demand

Depletion of fossil fuel reserves

• Inexpensive• Renewable• Abundant source of carbon• CO2 neutral alternative

Biomass:

• Efficient utilization of bioresource material• Environmental friendliness• High selectivity to desired products• Less production of waste• Cost effectiveness

Catalytic process:

• Ease of catalyst separation after reaction• Reutillization of catalyst is possible

Heterogeneous catalyst:

Energy consumption has increased steadily over the last century as the world population has grown and more countries have becomeindustrialized.

Search of alternativerenewable resourcesfor the production ofchemicals and fuel

Cellulose is one of the most abundant form of biomass on Earth.

The efficient conversion of cellulose into target products allows to reduce CO2 emissionsand alleviates the energy crisis. It is the case of the one-pot hydrolytic hydrogenationof cellulose to sugar alcohols, specially sorbitol.

Sorbitol is an important platform molecule and can be used as sweetener, dispersing agentand humectant in pharmaceuticals, cosmetics, and textiles [1].

INTRODUCTION

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

EXPERIMENTAL METHODS

/////////////////////////////////////////////////////////////////////////

RESULTS

/////////////////////////////////////////////////////////////////////////////////////////

Cat

alys

t Ru

Met

al p

has

e

CNT

Sup

po

rt

Incipient wetnessimpregnation

method

Activation:• thermal treatment → N2

•metal reduction → H2

Ru/CNT

CommercialMicrocrystalline Cellulose

Ball-milling

Reduce the crystallinity

Ce

llulo

se

Standard conditions :

•Treaction = 205 ºC

•PH2= 50 bar

•300 mL H2O

•750 mg of cellulose

•300 mg of catalyst

•150 rpm

Re

acti

on

Hydrolysis Hydrogenation

One-pot

Sweetener

Bioethanol

Isosorbide

PET additive

EG, PG

Antifreeze

1,4-Sorbitan

Surfactant

Lactic acid

Biodegradable plastics

Glycerol

Plastics

MIX-MILLING

Catalyst

(Ru/CNT)

Cellulose

0

20

40

60

80

Comercialmicrocrystalline

cellulose

Ball-milledcellulose

Mix-milledcellulose

Sele

ctiv

ity

to s

orb

ito

l(%

)

0

20

40

60

80

100

0 60 120 180 240 300

Co

nve

rsio

n(%

)

Time (min)

Mix-milledcellulose

Ball-milledcellulose

Commercialmicrocrystallinecellulose

Ball-milling

10 15 20 25 30

Inte

nsi

ty(a

.u.)

Commercialmicrocrystalline cellulose

Ball-milled cellulose

92%

23% Cry

stal

linit

yDecrease with

ball-milling

Ball-milling:

Increases cellulose conversion

Increases sorbitol selectivity

Mix-milling [2]:

Greatly increases cellulose conversion

and selectivity to sorbitol

Ball-milling

Mix-milling

Commercial

1 h of reaction