22
Addition rxn Alcohol Aldehyde Alkane Alkene Alkyne Amide Amine Amino acid Dehydration synthesis Ester Unit Vocabulary: Esterification Ether Fermentation Functional group Halide (halocarbon) Hydrocarbon Isomer Ketone Monomer Organic acid Organic chemistry Polymer Polymerization Primary Saponification Saturated hydrocarbon Secondary Substitution rxn Tertiary Unsaturated hydrocarbon Unit Objectives: 1. Identify organic compounds versus inorganic compounds based on structure, name, or characteristics of an unknown compound 2. Recognize the characteristics of organic compounds 3. Differentiate between aliphatic, aromatic, saturated, and unsaturated compounds Name organic compounds based on lUPAC rules, with the help of table P and Q 4. Draw organic compounds from a lUPAC name 5. Distinguish between alkynes, alkenes, and alkanes Name and identify isomers 6. Identify various functional groups of organic compounds using Table R: Halide (halocarbon) o Organic Acid Alcohol o Ester Ether o Amine o Aldehyde o Amide o Ketone Categorize various organic reactions properly including addition, substitution. o o o polymerization, esterification, fermentation, saponification, and combustion. 1

Unit Vocabulary - Weeblywebutuckchemistry.weebly.com/uploads/2/5/1/1/25111863/unit_10... · Unit Vocabulary: Esterification ... (Halides) - Organic compounds in which one or more

Embed Size (px)

Citation preview

Add i t i on r x n

Alcohol

A ldehyde

Alkane

Alkene

A lkyne

Amide

Amine

Amino acid

Dehydrat ion synthes is

Es te r

Unit Vocabulary:

Es t e r i f i c a t i on

E the r

Fe rmenta t ion

Functional group

Hal ide (halocarbon)

Hydrocarbon

I s ome r

Ketone

Monomer

Organic acid

Organic chem i s t r y

Polymer

Polymer izat ion

Pr imary

Sapon i f i ca t ion

S a t u r a t e d hydrocarbon

Secondary

Sub s t i t u t i o n r x n

T e r t i a r y

Unsa tu ra ted hydrocarbon

Unit Object ives:

1. I d e n t i f y organic compounds versus inorganic compounds based on s t r u c t u r e , name,

or cha ra c t e r i s t i c s o f an unknown compound

2. Recognize t h e cha r a c t e r i s t i c s o f organic compounds

3. D i f f e r en t i a t e between al iphatic, aromatic, sa tu ra ted , and unsaturated compounds

Name organic compounds based on lUPAC rules, w i th t he help o f table P and Q

4. Draw organic compounds f r o m a lUPAC name

5. Dist inguish be tween alkynes, alkenes, and

alkanes Name and i d e n t i f y isomers

6. I d e n t i f y var ious f unc t i ona l groups o f organic compounds using Table R:

Hal ide (ha locarbon) o Organic Acid

Alcohol o Es te r

E t h e r o Amine

o A ldehyde o Amide

o Ketone

Categorize various organic reactions properly including addit ion, subst i tut ion.

o

o

o

polymerization, es te r i f i ca t i on , fe rmentat ion , saponif icat ion, and combustion.

1

I . Organic Chemistryi t h e s tudy o f compounds t h a t conta in CARBON

I I . Properties of Organic Compounds A. Mos t l y nonpolar

B. So lub i l i ty: most a r e INSOLUBLE in wa te r

a. L IKE D ISSOLVES L IKE

C. Conduct iv i ty:

a. most ly N O N CONDUCTORS (s), (I), A (aq) s t a t e s

b. Only ORGAN IC A C I D S I O N I Z E in so lut ion = POOR CONDUCTORS

D. Me l t ing/bo i l i ng points:

a. WEAK IMF ' s ^ LOW MP's/BP's

E. React iv i ty Rate:

a. REACT SLOWLY

i. covalent molecules t end t o have re l a t i ve l y H I G H # OF BONDS ->

MORE STEPS in reac t ion -> r x n t akes longer

I I I . Bonding

A. Carbon has 4 VALENCE ELECTRONS and can f o r m 4 bonds

B. These 4 single bonds spread out evenly t o c r e a t e a TETRAHEDRAL molecule

( l ike a t r i p o d )

(on paper, 2-

2

C. Carbon a toms S H A R E E L E C T R O N S w i t h o t h e r carbon atoms, f o rm i ng C O V A L E N T

C H A I N S , R I N G S , and NETWORKS ; C\\<x\x\s of carbon atoms can be open or closed, or

even fo rm three-dimensional networks.

GH3-<:%C;HJ-Q-CH

D. S A T U R A T E D HYDROCARBONS - all S I N G L E BONDS be tween carbons

{N^AXmUl^ number o f HYDROGENS a t t a ched )

a. When 1 pair o f e lec t rons is shared between two carbon atoms t h e bond is

cal led a single covalent bond.

E. U N S A T U R A T E D HYDROCARBONS - a t least one MULT I P LE BOND in carbon

chain

a. I f carbon atoms share two pairs o f e lec t rons t h e bond is cal led a double

covalent bond. t t

b. Carbons can even share th ree pairs o f e lec t rons . This bond is cal led a triple

covalent bond.

t

IV . Types Of Chemical Formulas

A. Molecular Formula: shows t h e # d F A T O M S o f each ELEMENT in a compound;

least i n f o rma t i v e f o rmu la

B. St ructura l Formula: shows t h e # OF A T O M S o f each ELEMENT A N D t h e

ARRANGEMENT o f t h e ATOtAS: most i n f o rma t i v e f o rmu l a

C. Condensed Formula = C O M B I N A T I O N o f b o t h STRUCTURAL and

MOLECULAR formulas; each carbon is w r i t t e n w i t h i t s cons t i t uen t hydrogens

fo l lowed by t h e proper subsc r ip t

C . \ 2 lr̂ V ^

Mcl hane Ethane

Molecular Formula C

Structural Formula -< "V,

\

I ^

- c -

1 \

Condensed Formula

\

Ball-and-Stick

Model

Space-Filling Model

4

V. H0M0L060US S E R I E S of Hydrocarbons

rA. a group o f R E L A T E D CONiPOUms in

which each member d i f f e r s f r o m t h e one

b e f o r e i t by O N E CARBON U N I T

B. Th ree Groups:

a . Alkanes:

Table Q Homologous Series of Hydrocarbons

1 General Fonmila

Examples 1 General Fonmila Name S trucl iiral Ft»rimila

a kunes ethane H H 1 1

H—C—C-H I 1

I I H

al kenes ethene n H \c=c

a] kynes eth)iie H - C s C - H

. hydrocarbons w i t h single covalent bonds

. general fo rmu la= ^ h \ A x y ^ V

. example:

n = number of carbon atoms

Y iv. fo l l ows lUPAC naming rules-name ends in-.

V. shows isomer ism s t a r t i n g w i t h J;^ member o f t h e ser ies

. hydrocarbons w i t h double covalent bonds

b. Alkenes: — ^

. i f you have 2 double bonds, i t is cal led a _

. general f o r m u l a = _ C

iv, example: CL:)^'\(/

V. fo l l ows lUPAC naming rules-name ends in-.

v i . shows isomer ism s t a r t i n g w i t h M memper o f t h e ser ies

c. Alkynes:

i. hydrocarbons w i t h t r i p l e covalent bonds

. general f o rmu la= ^

. example:

r ^

Jv. follows lUPAC naming rules-name ends in- \^

V. shows isomerism starting with _i member of the series

V I . Structural Formula:

A. S t ra ight Chains: also r e f e r r e d t o as n-alkanes ("normal" alkanes); n-alkenes, n-alkynes

B. Branched: not a s t r a i g h t continuous chain; organic molecule t h a t has smal ler branches comi

o f f a longer cont inuous chain

example:

V I I . Nomenclature (TUPAC Naming):

A. S t ra igh t Chains of Hydrocarbons

a. p r e f i x e s (Tab le P)-dependent on t h e number o f C's

b. s u f f i x e s (Tab le Q) -dependent on t h e t ypes o f bonds

example:

c c

6

B. Branched Hydrocarbons

a. t h e r o o t name is t h a t o f t h e longest continuous chain o f C a toms (aka: main chain)

b. any branches o f f t h e main chain a r e called subs t i t uen t s

c. t h e main chain is numbered so t h a t t h e subs t i t uen t s rece ive t h e lowest possible

numbers

i. each subs t i t u en t rzcev^zs a name and a number t o locate i t

1. p r e f i x corresponds t o number o f carbons (Tab le P)

2. su f f i x -a lways " - y l "

i i . s ub s t i t uen t s a re l i s ted in a lphabet ica l o r de r

i i i . when more than one o f t h e same subs t i t uen t is p resen t use t h e appropr ia te

p r e f i x (d i=two, t r i = t h r e e )

d. Unsa tu ra ted Hydrocarbons

i. t h e double or t r i p l e bond must be included in t h e main chain.

i i . when number ing w i t h subs t i t uen t s , t h e bond ge t s t h e lowest possible number.

Example 1:

Example 2:

V I I I . Drawlnq Structural Formulas of Hydrocarbons:

/Alkanes: Example: Pentane

1. De te rm ine t h e number o f carbons and draw

t h a t many in a row

2. Because t h e molecule name ends in -one you

know t h a t t h e r e a r e only single bonds. Connect all o f t h e carbons w i t h a single line.

3. Each carbon a t om must have 4 bonds connected t o i t . Add enough hydrogens so t h a t

each carbon has 4 t o t a l bonds connected t o i t .

4. Use t h e molecular f o rmu la t o make sure t h a t you have t h e c o r r e c t number o f

hydrogens.

Draw t h e s t r u c t u r a l f o rmu l a f o r propane:

Alkenes: Example:-a'Perilene

1. De te rm ine t h e number o f carbons and draw

t h a t many in a row connected by a single line.

2. Because t h e molecule name ends in -ene you

know t h a t t h e r e is a double bond. The name o f t h e molecule wi l l t e l l you where t h a t

bond is located. For example, 2-butene wi l l t e l l you t h a t t h e r e a re 4 carbons and t h e

double bond is located a f t e r t h e second one. Add another l ine f o r t h e double bond.

3. Each carbon a tom must have 4 bonds connected t o i t . Add enough hydrogens so t h a t

each carbon has 4 t o t a l bonds connected t o i t .

4. Use t h e molecular f o rmu l a t o make sure t h a t you have t h e c o r r e c t number o f

hydrogens.

r a w t h e s t r u c t u r a l f o rmu l a fo/^htxem:

Alkynes

1. fo l low t h e same ru les as alkenes, excep t t h e r e is a t r i p l e bond, not a double bond.

Draw t h e s t r u c t u r a l f o rmu l a f o r 2-but^fne:

I X . Isomers

H H H H H H H 1 ( 1 \ 1 II

- c - - c - -C—H H-C—C—C—H 1 \ f 11 A l!

H H H H H H H—C—H

1 H

As t h e number o f carbon atoms increases, -the number o f possible i somers increases.

The l e t t e r /? b e f o r e t h e name o f a hydroca rbon s ign i f ies t h a t i t is t h e normal , or s t r a i gh t chain

isomer. Branched isomers must have d i f f e r e n t names.

Naming Isomers; The ru les f o r naming organic compounds a re governed by t h e In te rna t i ona l

Union o f Pure and Appl ied Chemis t ry ( lUPAC) .

9

Procedure'.

1. Find t h e longest cont inuous chain o f carbons and use i t s nan\ as t h e base. (Example: 4 carbons

- butane)

Z. Count t h e number o f carbons in t h e s ide branch and

assign a p r e f i x based on t h e name o f t h e corresponding

alkane.

(Example: 1 carbon = methane = methyl)

Alkane A Iky 1 Group

Methane Methyl

Ethane Ethyl

Propane Propyl

c - c - c - c I c

c - c - c - c I c -butane

c - c - c - c

c methylbutane

- - - c-

2-methylbutane

3. I f necessary, t h e locat ion o f t h e s ide branch (alkyI group) is shown by assigning numbers t o t h e |

carbons in t h e longest chain. Number ing should begin a t t h e end t h a t has t h e side chain a t t a ched

t o t h e lowest number possible. (Example: Z-methylbutane, not 3-methyl butane)

4. I f more than 1 s ide branch is a t t a c h ed commas a re used t o CH3 I

s epara te t h e numbers in t h e name and p r e f i x e s a re used t o deno te more C H 3 - C H 2 - C - C H 3

than one o f t h e same group, such as 2,2-d imethy lbutane:

( I - c - c c -

1

10

b o

X. Functional Groups - Tab le R

rganic compounds in which one or more hydrogen atoms of a hydrocarbon are replaced by

other elements

Halocarbons (Hal ides)

- Organic compounds in wh ich one or more hydrogen a toms a re replaced by a halogen

(Group 17 e lement)

- Naming -> Same as hydrocarbons, bu t add a p r e f i x t o s i gn i f y which halogen is

a t tached .

Br H H Br H I I I f !

, H-C—C —C—C—C-H Example: \

H H H H H

- 5 carbons, s ingly bonded = P ^ ^ V̂ K̂̂

- Bromine is p resen t on t h e \t and carbons.

- The r e a r e 2 , Bromines.

- We l l , t h e f i r s t ha l f would be named 1, 4 - d ib romo ^

- The f i na l name is t

Name t h e fo l lowing halocarbons:

3 ^ 1

H F H F a I I I I

1 I I I H H H H

b. 0 % - C H - C H - C H 2 - C H 3

F CI

11

Alcohols

- Organic conr^pounds in which one or nr^ore hydrogen atoms a re replaced by an

-OH group. (No more than one OH can be a t t a c h ed t o a carbon)

- They a re no t bases! (Do not f o r m -OH ions in aqueous solution!)

- Naming Same as hydrocarbons, bu t d rop t h e "e" ending and add "o l "

(For example: methano l , 2 ,2 -d imethy lbu tano l . . . )

Primary alcohols

One -OH group is a t t a ched t o a carbon on t h e end o f a chain.

Represented by R-OH, where R is a hydroca rbon chain o f any length

Typical example =

1 ca rbon -OH

Name t h e fo l l ow ing alcohols:

a. CH3CH2OH

Secondary Alcohols:

CH3OH

/ b. m^CHgCH^OH propc^no

One -OH group is a t t a c h ed t o a secondary carbon a tom. (A carbon a t t a ched t o 2

o the r carbons)

12

Tertiary Alcohol:

One -OH is a t t a c h e d t o a t e r t i a r y carbon a tom. (A carbon a t t a ched t o 3 o t he r

carbons)

H CH. 1 1

CH3CH2CH2~C—OH C H 3 C H 2 — C — O H C H 3 - - C — O H

H H CH3 l-Rnfanol 2-Rnianol Mftthvl-2-nmnanol

(a primary alcohol) (a secondary alcohol) (a tertiary alcohol)

* Alcohols can also be c lass i f i ed by t h e number o f hyd roxy l groups a t t a ched t o t h e carbon

chain.

Pi hyd roxy (2 - OH's) and T r i h i d r o x y (3 - OH's) Alcohols conta in 2 and 3 hyd roxy l groups, j u s t

t h e i r names s ta te . OH OH

H - C — C - H I I H H

1,2,*ethanddiol

OH OH OH

H-C-—C—C-H I I I

H H H t,2,3>propanetrlor

Draw the followino molecules:

1. 2-chloro, 2-propanol

o n

C i

2. 2 - f luoro , 1,2-butanediol

1+

c c - c

13

The Carbonyi Group

One o f t h e most func t iona l groups in chem i s t r y , which consists o f a \ ,C= 0

carbon a t om connected t o an oxygen a tom by a double bond.

A f am i l y o f organic compounds contain ing t h e func t iona l group - COOH.

Organic acids a r e f o r m e d by.

1. Dropping t h e f ina l "e" o f t h e alkane member.

2. Replace t h e V w i t h olc" .

3. Then add t h e word "ac id" .

Example: Me thane Methano ic Ac id Ethane Ethanoic Ac id

0

QH OH

Name t h i s ac id:

OH

O

14

Aldehydes OJ^cA p ^ ^ ^ f r u ' < x h ^ ^ ^

- The carbon o f t h e carbonyl group is bonded t o a t least one hydrogen atom.

- Named by adding t h e s u f f i x " - a l " t o t h e name o f t h e paren t hydrocarbon.

R

H

H > . o

H

CH,

H aldehyde methanai

Name t h i s a ldehyde;

C H 3 — C H 2 p H

Ketones

- Has no hydrogen atoms d i r e c t l y a t t a ched t o t h e carbonyl group

- Named by adding t h e s u f f i x "-one" t o t h e name o f t h e paren t hydrocarbon.

c = o CH3

CH3 ketone propanone

Name t h i s ketone:

CH3—CHj—C O

0 I I

CK3

I

/

1 15

b o

Es t e r s O

Made f r o m an organic acid and an alcohol, resu l t ing in: R c O R

Naming use t h e names o f t h e component alcohol and

ac id and add t h e s u f f i x -oa te .

Have s t r ong aromas; responsib le f o r t h e odors o f many foods and

f l avo r i ngs

Example: .0

C H 3 C H 2 — G , = Methy lp ropanoa te

Ethers

0 - C H 3

- General f o rmu la Ri - O - R2 whe re each R rep resen ts a carbon chain

- Commonly named by naming t h e two branches f i r s t and adding t h e word

" e t he r "

H H H H

Examples H — c — c — o — c — c — H ~ d'^f^yl e t h e r

H H H H

Name t h i s C H 3 - C H 2 — 0 - C H 3

e the r :

Ah4

-^vFormed when 1 or more hydrogens in ammonia (NHs) are rep laced

by an a lkyI group

R

R

N

- Named by changing t h e -e ending o f t h e alkane name t o -amine and adding

a number t o show t h e locat ion o f t h e amine group 16

H30 V Example: N - H = d imethy lamine

Name t h i s amine: H

H - C - N 1 \

H

H

H

Amides

o

Basically organic acids whe re t h e -OH is rep laced by an amine R —

group ^-^2

- Named by changing t h e -e ending o f t h e alkane name t o -amide

and adding a number t o show t h e locat ion o f t h e amine group

Example: q = e thanamide

NH2

Name t h i s amide: v O r 6 | ^ 0 v ^ q i ^ i c { e_

CH3CH2— 3SfH2

17

XI.Organic Reactions-

C O M B U S T I O N

- When s a t u r a t e d hydrocarbons ( l i ke methane) r eac t w i t h oxygen a t a high

t e m p e r a t u r e t h e y produce carbon d iox ide and wa te r - comp le te combust ion

CH4 + 2O2 ^ CO2 + 2H2O

- I f t h e r e is i n su f f i c i e n t oxygen, carbon monoxide is produced - incomplete

combust ion.

2CH4 + 3 0 2 - ^ 2CO + 4H2O

W r i t e t h e balanced reac t i on f o r t h e complete combust ion o f propane:

S U B S T I T U T I O N R E A C T I O N

- The rep lacement o f one kind o f a t om or group by ano the r k ind o f a t om or group

- An example o f t h i s occurs in s a t u r a t e d hydrocarbons whe re a hydrogen is

replaced.

- I f t h e hydrogen is rep laced by a halogen (F,CI, Br, I , A t ) ha logenat ion is said t o

have occu r red . H H H H Heat or light

H — C — C — H + C I — C I I I H H

> H — C — C — C I + H — C l I I H H

Name these compounds

18

H H

Ethene Chlorine

H H I I

H - C ~ C ~ H I I

CI CI

1, 2-Dichloroethan© A D D I T I O N R E A C T I O N

- The adding o f one or more a toms or

groups a t a double or t r i p l e bond.

- The double or t r i p l e bond is changed t o a single ( s a tu r a t ed ) bond or double bond.

- I f hydrogen is added, t h e process is r e f e r r e d t o as hydrogenation. Th is react ion

is done on unsa tu ra ted hydrocarbons , such as vegetab le oi ls, t o make t h e oils

so l i d i f y a t room t empe ra tu r e : s a t u r a t e d f a t s t end t o be sol id a t h igher

t empe ra t u r e s t han ^ ^

unsaturated fats. H

Name these compounds:

H

V

a

E S T E R I F I C A T I O N CH3

H I C == O esterification

hydrolysis

CH3 H I

H-C—O ; c=o

H alcohol

H acid ester

+ H2O

water

Organic ac ids (COOH) r eac t w i t h alcohol's t o produce an e s t e r plus water.

The process is reve rs ib l e and slow: E s t e r i f i c a t i on = acid + alcohol <r-^ e s t e r +

wa te r

E s t e r i f i c a t i on is also r e f e r r e d t o as a hydrolysis (adding w a t e r ) and is

cons idered t o be a dehydration react ion (removing w a t e r ) o r condensation

(wa te r p roduc t ) . ^

Name these

compounds:

CH^q0H4-ha0CH^CH, J Z l CH3COCH2CH3 + H2O

wate r

19

S A P O N I F I C A T I O N

- The hydro lys is o f an e s t e r such as f a t w i t h an inorganic base t o produce an

alcohol and a soap.

B&l

F E R M E N T A T I O N

- Chemical process where molecules a re broken down.

- For example, zymase, an enzyme (which ac t as ca ta lys t s ) f r o m yeast , breaks

down glucose t o f o r m ethano l ( t h e alcohol we d r i nk ) and carbon d iox ide

(carbonat ion.)

y ^ t enzymes C^E^P^ >2C^EpE + 2CO2

glucose ef&anoi cariioii dlf̂ dde

P O L Y M E R I Z A T I O N

- A polymer is a large molecule composed o f many repeat ing un i t s cal led monomers,

- I n po lymer izat ion , a number o f smal ler monomers j o i n t o f o r m a larger polymer.

- Natural polymers: p ro te ins , cel lulose, s t a r ch

- Synthet ic polymers: po lyethy lene, nylon and po lyester .

20

C O N D E N S A T I O N P O L Y M E R I Z A T I O N

- Monomers a re j o i ned by a dehyd ra t i on reac t ion o f two alcohols whereby

wa te r is re leased and an e s t e r linkage is f o r m e d .

H H H H H H H H

H O - C - C - 0 ( H + H ^ C - C - O H - H O - C - C - 0 - C - C - O H +HiO I i I I I I I I ^

H H H H H H H H monomer monomer dimer water

This wi l l cont inue t o grow as addi t iona l monomers a t t a c h t o t h e d imer.

Polyester is f o r m e d t h i s way.

A D D I T I O N P O L Y M E R I Z A T I O N

- Jo in ing o f unsa tu ra ted monomers t o f o r m long chains

- The double or t r i p l e bonds a re reduced t o single o r double bonds j u s t l ike we

learned ear l i e r in add i t i on react ions.

n

H \ . C = C

\ H/

n unite of ethene

addition

/ H H \ I I

^ H H polyethylene

The l e t t e r n is used t o denote t h a t t h e monomer un i t repeats .

21