Transcript

Add i t i on r x n

Alcohol

A ldehyde

Alkane

Alkene

A lkyne

Amide

Amine

Amino acid

Dehydrat ion synthes is

Es te r

Unit Vocabulary:

Es t e r i f i c a t i on

E the r

Fe rmenta t ion

Functional group

Hal ide (halocarbon)

Hydrocarbon

I s ome r

Ketone

Monomer

Organic acid

Organic chem i s t r y

Polymer

Polymer izat ion

Pr imary

Sapon i f i ca t ion

S a t u r a t e d hydrocarbon

Secondary

Sub s t i t u t i o n r x n

T e r t i a r y

Unsa tu ra ted hydrocarbon

Unit Object ives:

1. I d e n t i f y organic compounds versus inorganic compounds based on s t r u c t u r e , name,

or cha ra c t e r i s t i c s o f an unknown compound

2. Recognize t h e cha r a c t e r i s t i c s o f organic compounds

3. D i f f e r en t i a t e between al iphatic, aromatic, sa tu ra ted , and unsaturated compounds

Name organic compounds based on lUPAC rules, w i th t he help o f table P and Q

4. Draw organic compounds f r o m a lUPAC name

5. Dist inguish be tween alkynes, alkenes, and

alkanes Name and i d e n t i f y isomers

6. I d e n t i f y var ious f unc t i ona l groups o f organic compounds using Table R:

Hal ide (ha locarbon) o Organic Acid

Alcohol o Es te r

E t h e r o Amine

o A ldehyde o Amide

o Ketone

Categorize various organic reactions properly including addit ion, subst i tut ion.

o

o

o

polymerization, es te r i f i ca t i on , fe rmentat ion , saponif icat ion, and combustion.

1

I . Organic Chemistryi t h e s tudy o f compounds t h a t conta in CARBON

I I . Properties of Organic Compounds A. Mos t l y nonpolar

B. So lub i l i ty: most a r e INSOLUBLE in wa te r

a. L IKE D ISSOLVES L IKE

C. Conduct iv i ty:

a. most ly N O N CONDUCTORS (s), (I), A (aq) s t a t e s

b. Only ORGAN IC A C I D S I O N I Z E in so lut ion = POOR CONDUCTORS

D. Me l t ing/bo i l i ng points:

a. WEAK IMF ' s ^ LOW MP's/BP's

E. React iv i ty Rate:

a. REACT SLOWLY

i. covalent molecules t end t o have re l a t i ve l y H I G H # OF BONDS ->

MORE STEPS in reac t ion -> r x n t akes longer

I I I . Bonding

A. Carbon has 4 VALENCE ELECTRONS and can f o r m 4 bonds

B. These 4 single bonds spread out evenly t o c r e a t e a TETRAHEDRAL molecule

( l ike a t r i p o d )

(on paper, 2-

2

C. Carbon a toms S H A R E E L E C T R O N S w i t h o t h e r carbon atoms, f o rm i ng C O V A L E N T

C H A I N S , R I N G S , and NETWORKS ; C\\<x\x\s of carbon atoms can be open or closed, or

even fo rm three-dimensional networks.

GH3-<:%C;HJ-Q-CH

D. S A T U R A T E D HYDROCARBONS - all S I N G L E BONDS be tween carbons

{N^AXmUl^ number o f HYDROGENS a t t a ched )

a. When 1 pair o f e lec t rons is shared between two carbon atoms t h e bond is

cal led a single covalent bond.

E. U N S A T U R A T E D HYDROCARBONS - a t least one MULT I P LE BOND in carbon

chain

a. I f carbon atoms share two pairs o f e lec t rons t h e bond is cal led a double

covalent bond. t t

b. Carbons can even share th ree pairs o f e lec t rons . This bond is cal led a triple

covalent bond.

t

IV . Types Of Chemical Formulas

A. Molecular Formula: shows t h e # d F A T O M S o f each ELEMENT in a compound;

least i n f o rma t i v e f o rmu la

B. St ructura l Formula: shows t h e # OF A T O M S o f each ELEMENT A N D t h e

ARRANGEMENT o f t h e ATOtAS: most i n f o rma t i v e f o rmu l a

C. Condensed Formula = C O M B I N A T I O N o f b o t h STRUCTURAL and

MOLECULAR formulas; each carbon is w r i t t e n w i t h i t s cons t i t uen t hydrogens

fo l lowed by t h e proper subsc r ip t

C . \ 2 lr̂ V ^

Mcl hane Ethane

Molecular Formula C

Structural Formula -< "V,

\

I ^

- c -

1 \

Condensed Formula

\

Ball-and-Stick

Model

Space-Filling Model

4

V. H0M0L060US S E R I E S of Hydrocarbons

rA. a group o f R E L A T E D CONiPOUms in

which each member d i f f e r s f r o m t h e one

b e f o r e i t by O N E CARBON U N I T

B. Th ree Groups:

a . Alkanes:

Table Q Homologous Series of Hydrocarbons

1 General Fonmila

Examples 1 General Fonmila Name S trucl iiral Ft»rimila

a kunes ethane H H 1 1

H—C—C-H I 1

I I H

al kenes ethene n H \c=c

a] kynes eth)iie H - C s C - H

. hydrocarbons w i t h single covalent bonds

. general fo rmu la= ^ h \ A x y ^ V

. example:

n = number of carbon atoms

Y iv. fo l l ows lUPAC naming rules-name ends in-.

V. shows isomer ism s t a r t i n g w i t h J;^ member o f t h e ser ies

. hydrocarbons w i t h double covalent bonds

b. Alkenes: — ^

. i f you have 2 double bonds, i t is cal led a _

. general f o r m u l a = _ C

iv, example: CL:)^'\(/

V. fo l l ows lUPAC naming rules-name ends in-.

v i . shows isomer ism s t a r t i n g w i t h M memper o f t h e ser ies

c. Alkynes:

i. hydrocarbons w i t h t r i p l e covalent bonds

. general f o rmu la= ^

. example:

r ^

Jv. follows lUPAC naming rules-name ends in- \^

V. shows isomerism starting with _i member of the series

V I . Structural Formula:

A. S t ra ight Chains: also r e f e r r e d t o as n-alkanes ("normal" alkanes); n-alkenes, n-alkynes

B. Branched: not a s t r a i g h t continuous chain; organic molecule t h a t has smal ler branches comi

o f f a longer cont inuous chain

example:

V I I . Nomenclature (TUPAC Naming):

A. S t ra igh t Chains of Hydrocarbons

a. p r e f i x e s (Tab le P)-dependent on t h e number o f C's

b. s u f f i x e s (Tab le Q) -dependent on t h e t ypes o f bonds

example:

c c

6

B. Branched Hydrocarbons

a. t h e r o o t name is t h a t o f t h e longest continuous chain o f C a toms (aka: main chain)

b. any branches o f f t h e main chain a r e called subs t i t uen t s

c. t h e main chain is numbered so t h a t t h e subs t i t uen t s rece ive t h e lowest possible

numbers

i. each subs t i t u en t rzcev^zs a name and a number t o locate i t

1. p r e f i x corresponds t o number o f carbons (Tab le P)

2. su f f i x -a lways " - y l "

i i . s ub s t i t uen t s a re l i s ted in a lphabet ica l o r de r

i i i . when more than one o f t h e same subs t i t uen t is p resen t use t h e appropr ia te

p r e f i x (d i=two, t r i = t h r e e )

d. Unsa tu ra ted Hydrocarbons

i. t h e double or t r i p l e bond must be included in t h e main chain.

i i . when number ing w i t h subs t i t uen t s , t h e bond ge t s t h e lowest possible number.

Example 1:

Example 2:

V I I I . Drawlnq Structural Formulas of Hydrocarbons:

/Alkanes: Example: Pentane

1. De te rm ine t h e number o f carbons and draw

t h a t many in a row

2. Because t h e molecule name ends in -one you

know t h a t t h e r e a r e only single bonds. Connect all o f t h e carbons w i t h a single line.

3. Each carbon a t om must have 4 bonds connected t o i t . Add enough hydrogens so t h a t

each carbon has 4 t o t a l bonds connected t o i t .

4. Use t h e molecular f o rmu la t o make sure t h a t you have t h e c o r r e c t number o f

hydrogens.

Draw t h e s t r u c t u r a l f o rmu l a f o r propane:

Alkenes: Example:-a'Perilene

1. De te rm ine t h e number o f carbons and draw

t h a t many in a row connected by a single line.

2. Because t h e molecule name ends in -ene you

know t h a t t h e r e is a double bond. The name o f t h e molecule wi l l t e l l you where t h a t

bond is located. For example, 2-butene wi l l t e l l you t h a t t h e r e a re 4 carbons and t h e

double bond is located a f t e r t h e second one. Add another l ine f o r t h e double bond.

3. Each carbon a tom must have 4 bonds connected t o i t . Add enough hydrogens so t h a t

each carbon has 4 t o t a l bonds connected t o i t .

4. Use t h e molecular f o rmu l a t o make sure t h a t you have t h e c o r r e c t number o f

hydrogens.

r a w t h e s t r u c t u r a l f o rmu l a fo/^htxem:

Alkynes

1. fo l low t h e same ru les as alkenes, excep t t h e r e is a t r i p l e bond, not a double bond.

Draw t h e s t r u c t u r a l f o rmu l a f o r 2-but^fne:

I X . Isomers

H H H H H H H 1 ( 1 \ 1 II

- c - - c - -C—H H-C—C—C—H 1 \ f 11 A l!

H H H H H H H—C—H

1 H

As t h e number o f carbon atoms increases, -the number o f possible i somers increases.

The l e t t e r /? b e f o r e t h e name o f a hydroca rbon s ign i f ies t h a t i t is t h e normal , or s t r a i gh t chain

isomer. Branched isomers must have d i f f e r e n t names.

Naming Isomers; The ru les f o r naming organic compounds a re governed by t h e In te rna t i ona l

Union o f Pure and Appl ied Chemis t ry ( lUPAC) .

9

Procedure'.

1. Find t h e longest cont inuous chain o f carbons and use i t s nan\ as t h e base. (Example: 4 carbons

- butane)

Z. Count t h e number o f carbons in t h e s ide branch and

assign a p r e f i x based on t h e name o f t h e corresponding

alkane.

(Example: 1 carbon = methane = methyl)

Alkane A Iky 1 Group

Methane Methyl

Ethane Ethyl

Propane Propyl

c - c - c - c I c

c - c - c - c I c -butane

c - c - c - c

c methylbutane

- - - c-

2-methylbutane

3. I f necessary, t h e locat ion o f t h e s ide branch (alkyI group) is shown by assigning numbers t o t h e |

carbons in t h e longest chain. Number ing should begin a t t h e end t h a t has t h e side chain a t t a ched

t o t h e lowest number possible. (Example: Z-methylbutane, not 3-methyl butane)

4. I f more than 1 s ide branch is a t t a c h ed commas a re used t o CH3 I

s epara te t h e numbers in t h e name and p r e f i x e s a re used t o deno te more C H 3 - C H 2 - C - C H 3

than one o f t h e same group, such as 2,2-d imethy lbutane:

( I - c - c c -

1

10

b o

X. Functional Groups - Tab le R

rganic compounds in which one or more hydrogen atoms of a hydrocarbon are replaced by

other elements

Halocarbons (Hal ides)

- Organic compounds in wh ich one or more hydrogen a toms a re replaced by a halogen

(Group 17 e lement)

- Naming -> Same as hydrocarbons, bu t add a p r e f i x t o s i gn i f y which halogen is

a t tached .

Br H H Br H I I I f !

, H-C—C —C—C—C-H Example: \

H H H H H

- 5 carbons, s ingly bonded = P ^ ^ V̂ K̂̂

- Bromine is p resen t on t h e \t and carbons.

- The r e a r e 2 , Bromines.

- We l l , t h e f i r s t ha l f would be named 1, 4 - d ib romo ^

- The f i na l name is t

Name t h e fo l lowing halocarbons:

3 ^ 1

H F H F a I I I I

1 I I I H H H H

b. 0 % - C H - C H - C H 2 - C H 3

F CI

11

Alcohols

- Organic conr^pounds in which one or nr^ore hydrogen atoms a re replaced by an

-OH group. (No more than one OH can be a t t a c h ed t o a carbon)

- They a re no t bases! (Do not f o r m -OH ions in aqueous solution!)

- Naming Same as hydrocarbons, bu t d rop t h e "e" ending and add "o l "

(For example: methano l , 2 ,2 -d imethy lbu tano l . . . )

Primary alcohols

One -OH group is a t t a ched t o a carbon on t h e end o f a chain.

Represented by R-OH, where R is a hydroca rbon chain o f any length

Typical example =

1 ca rbon -OH

Name t h e fo l l ow ing alcohols:

a. CH3CH2OH

Secondary Alcohols:

CH3OH

/ b. m^CHgCH^OH propc^no

One -OH group is a t t a c h ed t o a secondary carbon a tom. (A carbon a t t a ched t o 2

o the r carbons)

12

Tertiary Alcohol:

One -OH is a t t a c h e d t o a t e r t i a r y carbon a tom. (A carbon a t t a ched t o 3 o t he r

carbons)

H CH. 1 1

CH3CH2CH2~C—OH C H 3 C H 2 — C — O H C H 3 - - C — O H

H H CH3 l-Rnfanol 2-Rnianol Mftthvl-2-nmnanol

(a primary alcohol) (a secondary alcohol) (a tertiary alcohol)

* Alcohols can also be c lass i f i ed by t h e number o f hyd roxy l groups a t t a ched t o t h e carbon

chain.

Pi hyd roxy (2 - OH's) and T r i h i d r o x y (3 - OH's) Alcohols conta in 2 and 3 hyd roxy l groups, j u s t

t h e i r names s ta te . OH OH

H - C — C - H I I H H

1,2,*ethanddiol

OH OH OH

H-C-—C—C-H I I I

H H H t,2,3>propanetrlor

Draw the followino molecules:

1. 2-chloro, 2-propanol

o n

C i

2. 2 - f luoro , 1,2-butanediol

1+

c c - c

13

The Carbonyi Group

One o f t h e most func t iona l groups in chem i s t r y , which consists o f a \ ,C= 0

carbon a t om connected t o an oxygen a tom by a double bond.

A f am i l y o f organic compounds contain ing t h e func t iona l group - COOH.

Organic acids a r e f o r m e d by.

1. Dropping t h e f ina l "e" o f t h e alkane member.

2. Replace t h e V w i t h olc" .

3. Then add t h e word "ac id" .

Example: Me thane Methano ic Ac id Ethane Ethanoic Ac id

0

QH OH

Name t h i s ac id:

OH

O

14

Aldehydes OJ^cA p ^ ^ ^ f r u ' < x h ^ ^ ^

- The carbon o f t h e carbonyl group is bonded t o a t least one hydrogen atom.

- Named by adding t h e s u f f i x " - a l " t o t h e name o f t h e paren t hydrocarbon.

R

H

H > . o

H

CH,

H aldehyde methanai

Name t h i s a ldehyde;

C H 3 — C H 2 p H

Ketones

- Has no hydrogen atoms d i r e c t l y a t t a ched t o t h e carbonyl group

- Named by adding t h e s u f f i x "-one" t o t h e name o f t h e paren t hydrocarbon.

c = o CH3

CH3 ketone propanone

Name t h i s ketone:

CH3—CHj—C O

0 I I

CK3

I

/

1 15

b o

Es t e r s O

Made f r o m an organic acid and an alcohol, resu l t ing in: R c O R

Naming use t h e names o f t h e component alcohol and

ac id and add t h e s u f f i x -oa te .

Have s t r ong aromas; responsib le f o r t h e odors o f many foods and

f l avo r i ngs

Example: .0

C H 3 C H 2 — G , = Methy lp ropanoa te

Ethers

0 - C H 3

- General f o rmu la Ri - O - R2 whe re each R rep resen ts a carbon chain

- Commonly named by naming t h e two branches f i r s t and adding t h e word

" e t he r "

H H H H

Examples H — c — c — o — c — c — H ~ d'^f^yl e t h e r

H H H H

Name t h i s C H 3 - C H 2 — 0 - C H 3

e the r :

Ah4

-^vFormed when 1 or more hydrogens in ammonia (NHs) are rep laced

by an a lkyI group

R

R

N

- Named by changing t h e -e ending o f t h e alkane name t o -amine and adding

a number t o show t h e locat ion o f t h e amine group 16

H30 V Example: N - H = d imethy lamine

Name t h i s amine: H

H - C - N 1 \

H

H

H

Amides

o

Basically organic acids whe re t h e -OH is rep laced by an amine R —

group ^-^2

- Named by changing t h e -e ending o f t h e alkane name t o -amide

and adding a number t o show t h e locat ion o f t h e amine group

Example: q = e thanamide

NH2

Name t h i s amide: v O r 6 | ^ 0 v ^ q i ^ i c { e_

CH3CH2— 3SfH2

17

XI.Organic Reactions-

C O M B U S T I O N

- When s a t u r a t e d hydrocarbons ( l i ke methane) r eac t w i t h oxygen a t a high

t e m p e r a t u r e t h e y produce carbon d iox ide and wa te r - comp le te combust ion

CH4 + 2O2 ^ CO2 + 2H2O

- I f t h e r e is i n su f f i c i e n t oxygen, carbon monoxide is produced - incomplete

combust ion.

2CH4 + 3 0 2 - ^ 2CO + 4H2O

W r i t e t h e balanced reac t i on f o r t h e complete combust ion o f propane:

S U B S T I T U T I O N R E A C T I O N

- The rep lacement o f one kind o f a t om or group by ano the r k ind o f a t om or group

- An example o f t h i s occurs in s a t u r a t e d hydrocarbons whe re a hydrogen is

replaced.

- I f t h e hydrogen is rep laced by a halogen (F,CI, Br, I , A t ) ha logenat ion is said t o

have occu r red . H H H H Heat or light

H — C — C — H + C I — C I I I H H

> H — C — C — C I + H — C l I I H H

Name these compounds

18

H H

Ethene Chlorine

H H I I

H - C ~ C ~ H I I

CI CI

1, 2-Dichloroethan© A D D I T I O N R E A C T I O N

- The adding o f one or more a toms or

groups a t a double or t r i p l e bond.

- The double or t r i p l e bond is changed t o a single ( s a tu r a t ed ) bond or double bond.

- I f hydrogen is added, t h e process is r e f e r r e d t o as hydrogenation. Th is react ion

is done on unsa tu ra ted hydrocarbons , such as vegetab le oi ls, t o make t h e oils

so l i d i f y a t room t empe ra tu r e : s a t u r a t e d f a t s t end t o be sol id a t h igher

t empe ra t u r e s t han ^ ^

unsaturated fats. H

Name these compounds:

H

V

a

E S T E R I F I C A T I O N CH3

H I C == O esterification

hydrolysis

CH3 H I

H-C—O ; c=o

H alcohol

H acid ester

+ H2O

water

Organic ac ids (COOH) r eac t w i t h alcohol's t o produce an e s t e r plus water.

The process is reve rs ib l e and slow: E s t e r i f i c a t i on = acid + alcohol <r-^ e s t e r +

wa te r

E s t e r i f i c a t i on is also r e f e r r e d t o as a hydrolysis (adding w a t e r ) and is

cons idered t o be a dehydration react ion (removing w a t e r ) o r condensation

(wa te r p roduc t ) . ^

Name these

compounds:

CH^q0H4-ha0CH^CH, J Z l CH3COCH2CH3 + H2O

wate r

19

S A P O N I F I C A T I O N

- The hydro lys is o f an e s t e r such as f a t w i t h an inorganic base t o produce an

alcohol and a soap.

B&l

F E R M E N T A T I O N

- Chemical process where molecules a re broken down.

- For example, zymase, an enzyme (which ac t as ca ta lys t s ) f r o m yeast , breaks

down glucose t o f o r m ethano l ( t h e alcohol we d r i nk ) and carbon d iox ide

(carbonat ion.)

y ^ t enzymes C^E^P^ >2C^EpE + 2CO2

glucose ef&anoi cariioii dlf̂ dde

P O L Y M E R I Z A T I O N

- A polymer is a large molecule composed o f many repeat ing un i t s cal led monomers,

- I n po lymer izat ion , a number o f smal ler monomers j o i n t o f o r m a larger polymer.

- Natural polymers: p ro te ins , cel lulose, s t a r ch

- Synthet ic polymers: po lyethy lene, nylon and po lyester .

20

C O N D E N S A T I O N P O L Y M E R I Z A T I O N

- Monomers a re j o i ned by a dehyd ra t i on reac t ion o f two alcohols whereby

wa te r is re leased and an e s t e r linkage is f o r m e d .

H H H H H H H H

H O - C - C - 0 ( H + H ^ C - C - O H - H O - C - C - 0 - C - C - O H +HiO I i I I I I I I ^

H H H H H H H H monomer monomer dimer water

This wi l l cont inue t o grow as addi t iona l monomers a t t a c h t o t h e d imer.

Polyester is f o r m e d t h i s way.

A D D I T I O N P O L Y M E R I Z A T I O N

- Jo in ing o f unsa tu ra ted monomers t o f o r m long chains

- The double or t r i p l e bonds a re reduced t o single o r double bonds j u s t l ike we

learned ear l i e r in add i t i on react ions.

n

H \ . C = C

\ H/

n unite of ethene

addition

/ H H \ I I

^ H H polyethylene

The l e t t e r n is used t o denote t h a t t h e monomer un i t repeats .

21


Recommended