173
Today’s Outline - November 02, 2015 C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 1 / 17

Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Today’s Outline - November 02, 2015

• Generating the Clebsch-Gordan coefficients

• Chapter 4 problems

Midterm Exam 2: Monday, November 16, 2015 covers through Chapter4.4.2 (at least!)

Homework Assignment #08:Chapter 4: 10,13,14,15,16,38due Wednesday, November 04, 2015

Homework Assignment #09:Chapter 4: 20,23,27,31,43,55due Wednesday, November 11, 2015

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 1 / 17

Page 2: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Today’s Outline - November 02, 2015

• Generating the Clebsch-Gordan coefficients

• Chapter 4 problems

Midterm Exam 2: Monday, November 16, 2015 covers through Chapter4.4.2 (at least!)

Homework Assignment #08:Chapter 4: 10,13,14,15,16,38due Wednesday, November 04, 2015

Homework Assignment #09:Chapter 4: 20,23,27,31,43,55due Wednesday, November 11, 2015

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 1 / 17

Page 3: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Today’s Outline - November 02, 2015

• Generating the Clebsch-Gordan coefficients

• Chapter 4 problems

Midterm Exam 2: Monday, November 16, 2015 covers through Chapter4.4.2 (at least!)

Homework Assignment #08:Chapter 4: 10,13,14,15,16,38due Wednesday, November 04, 2015

Homework Assignment #09:Chapter 4: 20,23,27,31,43,55due Wednesday, November 11, 2015

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 1 / 17

Page 4: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Today’s Outline - November 02, 2015

• Generating the Clebsch-Gordan coefficients

• Chapter 4 problems

Midterm Exam 2: Monday, November 16, 2015 covers through Chapter4.4.2 (at least!)

Homework Assignment #08:Chapter 4: 10,13,14,15,16,38due Wednesday, November 04, 2015

Homework Assignment #09:Chapter 4: 20,23,27,31,43,55due Wednesday, November 11, 2015

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 1 / 17

Page 5: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Today’s Outline - November 02, 2015

• Generating the Clebsch-Gordan coefficients

• Chapter 4 problems

Midterm Exam 2: Monday, November 16, 2015 covers through Chapter4.4.2 (at least!)

Homework Assignment #08:Chapter 4: 10,13,14,15,16,38due Wednesday, November 04, 2015

Homework Assignment #09:Chapter 4: 20,23,27,31,43,55due Wednesday, November 11, 2015

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 1 / 17

Page 6: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Today’s Outline - November 02, 2015

• Generating the Clebsch-Gordan coefficients

• Chapter 4 problems

Midterm Exam 2: Monday, November 16, 2015 covers through Chapter4.4.2 (at least!)

Homework Assignment #08:Chapter 4: 10,13,14,15,16,38due Wednesday, November 04, 2015

Homework Assignment #09:Chapter 4: 20,23,27,31,43,55due Wednesday, November 11, 2015

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 1 / 17

Page 7: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Deriving the Clebsch-Gordan coefficients

Deriving the Clebsch-Gordan coefficients is non-trivial and there are anumber of ways to do it in the literature.

We will start with the generalderivation, then apply it to a specific case s1 = 1, s2 = 1

The goal is to find an expression for each of the total spin states |s m〉 interms of the states of the individual particle spins.

starting with the initial basis states

each of these are eigenstates of thetotal spin in the z direction,Sz = S1z + S2z

the state with highest m = s1 + s2must be a singlet and haves = s1 + s2 so we can extract thefirst Clebsch-Gordan coefficient

|s1m1 s2m2〉 ≡ |m1 m2〉

Sz |m1 m2〉 = (m1 + m2)|m1 m2〉

|(s1+s2) (s1+s2)〉 = |s1 s2〉

〈(s1+s2) (s1+s2)|s1 s2〉 = 1

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 2 / 17

Page 8: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Deriving the Clebsch-Gordan coefficients

Deriving the Clebsch-Gordan coefficients is non-trivial and there are anumber of ways to do it in the literature. We will start with the generalderivation, then apply it to a specific case s1 = 1, s2 = 1

The goal is to find an expression for each of the total spin states |s m〉 interms of the states of the individual particle spins.

starting with the initial basis states

each of these are eigenstates of thetotal spin in the z direction,Sz = S1z + S2z

the state with highest m = s1 + s2must be a singlet and haves = s1 + s2 so we can extract thefirst Clebsch-Gordan coefficient

|s1m1 s2m2〉 ≡ |m1 m2〉

Sz |m1 m2〉 = (m1 + m2)|m1 m2〉

|(s1+s2) (s1+s2)〉 = |s1 s2〉

〈(s1+s2) (s1+s2)|s1 s2〉 = 1

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 2 / 17

Page 9: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Deriving the Clebsch-Gordan coefficients

Deriving the Clebsch-Gordan coefficients is non-trivial and there are anumber of ways to do it in the literature. We will start with the generalderivation, then apply it to a specific case s1 = 1, s2 = 1

The goal is to find an expression for each of the total spin states |s m〉 interms of the states of the individual particle spins.

starting with the initial basis states

each of these are eigenstates of thetotal spin in the z direction,Sz = S1z + S2z

the state with highest m = s1 + s2must be a singlet and haves = s1 + s2 so we can extract thefirst Clebsch-Gordan coefficient

|s1m1 s2m2〉 ≡ |m1 m2〉

Sz |m1 m2〉 = (m1 + m2)|m1 m2〉

|(s1+s2) (s1+s2)〉 = |s1 s2〉

〈(s1+s2) (s1+s2)|s1 s2〉 = 1

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 2 / 17

Page 10: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Deriving the Clebsch-Gordan coefficients

Deriving the Clebsch-Gordan coefficients is non-trivial and there are anumber of ways to do it in the literature. We will start with the generalderivation, then apply it to a specific case s1 = 1, s2 = 1

The goal is to find an expression for each of the total spin states |s m〉 interms of the states of the individual particle spins.

starting with the initial basis states

each of these are eigenstates of thetotal spin in the z direction,Sz = S1z + S2z

the state with highest m = s1 + s2must be a singlet and haves = s1 + s2 so we can extract thefirst Clebsch-Gordan coefficient

|s1m1 s2m2〉 ≡ |m1 m2〉

Sz |m1 m2〉 = (m1 + m2)|m1 m2〉

|(s1+s2) (s1+s2)〉 = |s1 s2〉

〈(s1+s2) (s1+s2)|s1 s2〉 = 1

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 2 / 17

Page 11: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Deriving the Clebsch-Gordan coefficients

Deriving the Clebsch-Gordan coefficients is non-trivial and there are anumber of ways to do it in the literature. We will start with the generalderivation, then apply it to a specific case s1 = 1, s2 = 1

The goal is to find an expression for each of the total spin states |s m〉 interms of the states of the individual particle spins.

starting with the initial basis states

each of these are eigenstates of thetotal spin in the z direction,Sz = S1z + S2z

the state with highest m = s1 + s2must be a singlet and haves = s1 + s2 so we can extract thefirst Clebsch-Gordan coefficient

|s1m1 s2m2〉

≡ |m1 m2〉

Sz |m1 m2〉 = (m1 + m2)|m1 m2〉

|(s1+s2) (s1+s2)〉 = |s1 s2〉

〈(s1+s2) (s1+s2)|s1 s2〉 = 1

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 2 / 17

Page 12: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Deriving the Clebsch-Gordan coefficients

Deriving the Clebsch-Gordan coefficients is non-trivial and there are anumber of ways to do it in the literature. We will start with the generalderivation, then apply it to a specific case s1 = 1, s2 = 1

The goal is to find an expression for each of the total spin states |s m〉 interms of the states of the individual particle spins.

starting with the initial basis states

each of these are eigenstates of thetotal spin in the z direction,Sz = S1z + S2z

the state with highest m = s1 + s2must be a singlet and haves = s1 + s2 so we can extract thefirst Clebsch-Gordan coefficient

|s1m1 s2m2〉 ≡ |m1 m2〉

Sz |m1 m2〉 = (m1 + m2)|m1 m2〉

|(s1+s2) (s1+s2)〉 = |s1 s2〉

〈(s1+s2) (s1+s2)|s1 s2〉 = 1

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 2 / 17

Page 13: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Deriving the Clebsch-Gordan coefficients

Deriving the Clebsch-Gordan coefficients is non-trivial and there are anumber of ways to do it in the literature. We will start with the generalderivation, then apply it to a specific case s1 = 1, s2 = 1

The goal is to find an expression for each of the total spin states |s m〉 interms of the states of the individual particle spins.

starting with the initial basis states

each of these are eigenstates of thetotal spin in the z direction,Sz = S1z + S2z

the state with highest m = s1 + s2must be a singlet and haves = s1 + s2 so we can extract thefirst Clebsch-Gordan coefficient

|s1m1 s2m2〉 ≡ |m1 m2〉

Sz |m1 m2〉 = (m1 + m2)|m1 m2〉

|(s1+s2) (s1+s2)〉 = |s1 s2〉

〈(s1+s2) (s1+s2)|s1 s2〉 = 1

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 2 / 17

Page 14: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Deriving the Clebsch-Gordan coefficients

Deriving the Clebsch-Gordan coefficients is non-trivial and there are anumber of ways to do it in the literature. We will start with the generalderivation, then apply it to a specific case s1 = 1, s2 = 1

The goal is to find an expression for each of the total spin states |s m〉 interms of the states of the individual particle spins.

starting with the initial basis states

each of these are eigenstates of thetotal spin in the z direction,Sz = S1z + S2z

the state with highest m = s1 + s2must be a singlet and haves = s1 + s2 so we can extract thefirst Clebsch-Gordan coefficient

|s1m1 s2m2〉 ≡ |m1 m2〉

Sz |m1 m2〉 = (m1 + m2)|m1 m2〉

|(s1+s2) (s1+s2)〉 = |s1 s2〉

〈(s1+s2) (s1+s2)|s1 s2〉 = 1

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 2 / 17

Page 15: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Deriving the Clebsch-Gordan coefficients

Deriving the Clebsch-Gordan coefficients is non-trivial and there are anumber of ways to do it in the literature. We will start with the generalderivation, then apply it to a specific case s1 = 1, s2 = 1

The goal is to find an expression for each of the total spin states |s m〉 interms of the states of the individual particle spins.

starting with the initial basis states

each of these are eigenstates of thetotal spin in the z direction,Sz = S1z + S2z

the state with highest m = s1 + s2must be a singlet and haves = s1 + s2

so we can extract thefirst Clebsch-Gordan coefficient

|s1m1 s2m2〉 ≡ |m1 m2〉

Sz |m1 m2〉 = (m1 + m2)|m1 m2〉

|(s1+s2) (s1+s2)〉 = |s1 s2〉

〈(s1+s2) (s1+s2)|s1 s2〉 = 1

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 2 / 17

Page 16: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Deriving the Clebsch-Gordan coefficients

Deriving the Clebsch-Gordan coefficients is non-trivial and there are anumber of ways to do it in the literature. We will start with the generalderivation, then apply it to a specific case s1 = 1, s2 = 1

The goal is to find an expression for each of the total spin states |s m〉 interms of the states of the individual particle spins.

starting with the initial basis states

each of these are eigenstates of thetotal spin in the z direction,Sz = S1z + S2z

the state with highest m = s1 + s2must be a singlet and haves = s1 + s2

so we can extract thefirst Clebsch-Gordan coefficient

|s1m1 s2m2〉 ≡ |m1 m2〉

Sz |m1 m2〉 = (m1 + m2)|m1 m2〉

|(s1+s2) (s1+s2)〉 = |s1 s2〉

〈(s1+s2) (s1+s2)|s1 s2〉 = 1

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 2 / 17

Page 17: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Deriving the Clebsch-Gordan coefficients

Deriving the Clebsch-Gordan coefficients is non-trivial and there are anumber of ways to do it in the literature. We will start with the generalderivation, then apply it to a specific case s1 = 1, s2 = 1

The goal is to find an expression for each of the total spin states |s m〉 interms of the states of the individual particle spins.

starting with the initial basis states

each of these are eigenstates of thetotal spin in the z direction,Sz = S1z + S2z

the state with highest m = s1 + s2must be a singlet and haves = s1 + s2 so we can extract thefirst Clebsch-Gordan coefficient

|s1m1 s2m2〉 ≡ |m1 m2〉

Sz |m1 m2〉 = (m1 + m2)|m1 m2〉

|(s1+s2) (s1+s2)〉 = |s1 s2〉

〈(s1+s2) (s1+s2)|s1 s2〉 = 1

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 2 / 17

Page 18: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Deriving the Clebsch-Gordan coefficients

Deriving the Clebsch-Gordan coefficients is non-trivial and there are anumber of ways to do it in the literature. We will start with the generalderivation, then apply it to a specific case s1 = 1, s2 = 1

The goal is to find an expression for each of the total spin states |s m〉 interms of the states of the individual particle spins.

starting with the initial basis states

each of these are eigenstates of thetotal spin in the z direction,Sz = S1z + S2z

the state with highest m = s1 + s2must be a singlet and haves = s1 + s2 so we can extract thefirst Clebsch-Gordan coefficient

|s1m1 s2m2〉 ≡ |m1 m2〉

Sz |m1 m2〉 = (m1 + m2)|m1 m2〉

|(s1+s2) (s1+s2)〉 = |s1 s2〉

〈(s1+s2) (s1+s2)|s1 s2〉

= 1

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 2 / 17

Page 19: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Deriving the Clebsch-Gordan coefficients

Deriving the Clebsch-Gordan coefficients is non-trivial and there are anumber of ways to do it in the literature. We will start with the generalderivation, then apply it to a specific case s1 = 1, s2 = 1

The goal is to find an expression for each of the total spin states |s m〉 interms of the states of the individual particle spins.

starting with the initial basis states

each of these are eigenstates of thetotal spin in the z direction,Sz = S1z + S2z

the state with highest m = s1 + s2must be a singlet and haves = s1 + s2 so we can extract thefirst Clebsch-Gordan coefficient

|s1m1 s2m2〉 ≡ |m1 m2〉

Sz |m1 m2〉 = (m1 + m2)|m1 m2〉

|(s1+s2) (s1+s2)〉 = |s1 s2〉

〈(s1+s2) (s1+s2)|s1 s2〉 = 1

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 2 / 17

Page 20: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Using the lowering operator

The next states will by necessityhave a value of m lower than themaximum value by 1

there are two possible initial stateswhich satisfy this condition

m = s1+s2 − 1

|(s1−1) s2〉, |s1 (s2−1)〉

One combination must be the state which is obtained by applying thelowering operator S− to the first state.

S−|(s1+s2) (s1+s2)〉

= (S1− + S2−)|s1 s2〉

this is repeated to generate all the states with the same value of s anddifferent values of m

states different values of s are generated using the unused combinations ofthe original basis functions, then lowered

this is best understood with an example

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 3 / 17

Page 21: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Using the lowering operator

The next states will by necessityhave a value of m lower than themaximum value by 1

there are two possible initial stateswhich satisfy this condition

m = s1+s2 − 1

|(s1−1) s2〉, |s1 (s2−1)〉

One combination must be the state which is obtained by applying thelowering operator S− to the first state.

S−|(s1+s2) (s1+s2)〉

= (S1− + S2−)|s1 s2〉

this is repeated to generate all the states with the same value of s anddifferent values of m

states different values of s are generated using the unused combinations ofthe original basis functions, then lowered

this is best understood with an example

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 3 / 17

Page 22: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Using the lowering operator

The next states will by necessityhave a value of m lower than themaximum value by 1

there are two possible initial stateswhich satisfy this condition

m = s1+s2 − 1

|(s1−1) s2〉, |s1 (s2−1)〉

One combination must be the state which is obtained by applying thelowering operator S− to the first state.

S−|(s1+s2) (s1+s2)〉

= (S1− + S2−)|s1 s2〉

this is repeated to generate all the states with the same value of s anddifferent values of m

states different values of s are generated using the unused combinations ofthe original basis functions, then lowered

this is best understood with an example

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 3 / 17

Page 23: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Using the lowering operator

The next states will by necessityhave a value of m lower than themaximum value by 1

there are two possible initial stateswhich satisfy this condition

m = s1+s2 − 1

|(s1−1) s2〉

, |s1 (s2−1)〉

One combination must be the state which is obtained by applying thelowering operator S− to the first state.

S−|(s1+s2) (s1+s2)〉

= (S1− + S2−)|s1 s2〉

this is repeated to generate all the states with the same value of s anddifferent values of m

states different values of s are generated using the unused combinations ofthe original basis functions, then lowered

this is best understood with an example

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 3 / 17

Page 24: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Using the lowering operator

The next states will by necessityhave a value of m lower than themaximum value by 1

there are two possible initial stateswhich satisfy this condition

m = s1+s2 − 1

|(s1−1) s2〉, |s1 (s2−1)〉

One combination must be the state which is obtained by applying thelowering operator S− to the first state.

S−|(s1+s2) (s1+s2)〉

= (S1− + S2−)|s1 s2〉

this is repeated to generate all the states with the same value of s anddifferent values of m

states different values of s are generated using the unused combinations ofthe original basis functions, then lowered

this is best understood with an example

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 3 / 17

Page 25: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Using the lowering operator

The next states will by necessityhave a value of m lower than themaximum value by 1

there are two possible initial stateswhich satisfy this condition

m = s1+s2 − 1

|(s1−1) s2〉, |s1 (s2−1)〉

One combination must be the state which is obtained by applying thelowering operator S− to the first state.

S−|(s1+s2) (s1+s2)〉

= (S1− + S2−)|s1 s2〉

this is repeated to generate all the states with the same value of s anddifferent values of m

states different values of s are generated using the unused combinations ofthe original basis functions, then lowered

this is best understood with an example

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 3 / 17

Page 26: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Using the lowering operator

The next states will by necessityhave a value of m lower than themaximum value by 1

there are two possible initial stateswhich satisfy this condition

m = s1+s2 − 1

|(s1−1) s2〉, |s1 (s2−1)〉

One combination must be the state which is obtained by applying thelowering operator S− to the first state.

S−|(s1+s2) (s1+s2)〉

= (S1− + S2−)|s1 s2〉

this is repeated to generate all the states with the same value of s anddifferent values of m

states different values of s are generated using the unused combinations ofthe original basis functions, then lowered

this is best understood with an example

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 3 / 17

Page 27: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Using the lowering operator

The next states will by necessityhave a value of m lower than themaximum value by 1

there are two possible initial stateswhich satisfy this condition

m = s1+s2 − 1

|(s1−1) s2〉, |s1 (s2−1)〉

One combination must be the state which is obtained by applying thelowering operator S− to the first state.

S−|(s1+s2) (s1+s2)〉 = (S1− + S2−)|s1 s2〉

this is repeated to generate all the states with the same value of s anddifferent values of m

states different values of s are generated using the unused combinations ofthe original basis functions, then lowered

this is best understood with an example

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 3 / 17

Page 28: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Using the lowering operator

The next states will by necessityhave a value of m lower than themaximum value by 1

there are two possible initial stateswhich satisfy this condition

m = s1+s2 − 1

|(s1−1) s2〉, |s1 (s2−1)〉

One combination must be the state which is obtained by applying thelowering operator S− to the first state.

S−|(s1+s2) (s1+s2)〉 = (S1− + S2−)|s1 s2〉

this is repeated to generate all the states with the same value of s anddifferent values of m

states different values of s are generated using the unused combinations ofthe original basis functions, then lowered

this is best understood with an example

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 3 / 17

Page 29: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Using the lowering operator

The next states will by necessityhave a value of m lower than themaximum value by 1

there are two possible initial stateswhich satisfy this condition

m = s1+s2 − 1

|(s1−1) s2〉, |s1 (s2−1)〉

One combination must be the state which is obtained by applying thelowering operator S− to the first state.

S−|(s1+s2) (s1+s2)〉 = (S1− + S2−)|s1 s2〉

this is repeated to generate all the states with the same value of s anddifferent values of m

states different values of s are generated using the unused combinations ofthe original basis functions, then lowered

this is best understood with an example

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 3 / 17

Page 30: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Using the lowering operator

The next states will by necessityhave a value of m lower than themaximum value by 1

there are two possible initial stateswhich satisfy this condition

m = s1+s2 − 1

|(s1−1) s2〉, |s1 (s2−1)〉

One combination must be the state which is obtained by applying thelowering operator S− to the first state.

S−|(s1+s2) (s1+s2)〉 = (S1− + S2−)|s1 s2〉

this is repeated to generate all the states with the same value of s anddifferent values of m

states different values of s are generated using the unused combinations ofthe original basis functions, then lowered

this is best understood with an example

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 3 / 17

Page 31: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Example Clebsch-Gordan computation

Suppose s1 = s2 = 1, the “top”state thus has s = 2, m = 2 and isexpressed as

the next lower state m = 1 is ob-tained

|2 2〉 = |1 1〉

S−|2 2〉 = (S1− + S2−)|1 1〉

√(2)(2 + 1)− (2)(2− 1)|2 1〉

=√

(1)(1 + 1)− (1)(1− 1)|0 1〉

+√

(1)(1 + 1)− (1)(1− 1)|1 0〉

Solving for the |2 1〉 eigenfunction

The Clebsch-Gordan coefficients

are thus both√

12

√4|2 1〉

=√

2|0 1〉+√

2|1 0〉

|2 1〉 =√

12 |0 1〉+

√12 |1 0〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 4 / 17

Page 32: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Example Clebsch-Gordan computation

Suppose s1 = s2 = 1, the “top”state thus has s = 2, m = 2 and isexpressed as

the next lower state m = 1 is ob-tained

|2 2〉 = |1 1〉

S−|2 2〉 = (S1− + S2−)|1 1〉

√(2)(2 + 1)− (2)(2− 1)|2 1〉

=√

(1)(1 + 1)− (1)(1− 1)|0 1〉

+√

(1)(1 + 1)− (1)(1− 1)|1 0〉

Solving for the |2 1〉 eigenfunction

The Clebsch-Gordan coefficients

are thus both√

12

√4|2 1〉

=√

2|0 1〉+√

2|1 0〉

|2 1〉 =√

12 |0 1〉+

√12 |1 0〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 4 / 17

Page 33: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Example Clebsch-Gordan computation

Suppose s1 = s2 = 1, the “top”state thus has s = 2, m = 2 and isexpressed as

the next lower state m = 1 is ob-tained

|2 2〉 = |1 1〉

S−|2 2〉 = (S1− + S2−)|1 1〉

√(2)(2 + 1)− (2)(2− 1)|2 1〉

=√

(1)(1 + 1)− (1)(1− 1)|0 1〉

+√

(1)(1 + 1)− (1)(1− 1)|1 0〉

Solving for the |2 1〉 eigenfunction

The Clebsch-Gordan coefficients

are thus both√

12

√4|2 1〉

=√

2|0 1〉+√

2|1 0〉

|2 1〉 =√

12 |0 1〉+

√12 |1 0〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 4 / 17

Page 34: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Example Clebsch-Gordan computation

Suppose s1 = s2 = 1, the “top”state thus has s = 2, m = 2 and isexpressed as

the next lower state m = 1 is ob-tained

|2 2〉 = |1 1〉

S−|2 2〉 = (S1− + S2−)|1 1〉

√(2)(2 + 1)− (2)(2− 1)|2 1〉

=√

(1)(1 + 1)− (1)(1− 1)|0 1〉

+√

(1)(1 + 1)− (1)(1− 1)|1 0〉

Solving for the |2 1〉 eigenfunction

The Clebsch-Gordan coefficients

are thus both√

12

√4|2 1〉

=√

2|0 1〉+√

2|1 0〉

|2 1〉 =√

12 |0 1〉+

√12 |1 0〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 4 / 17

Page 35: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Example Clebsch-Gordan computation

Suppose s1 = s2 = 1, the “top”state thus has s = 2, m = 2 and isexpressed as

the next lower state m = 1 is ob-tained

|2 2〉 = |1 1〉

S−|2 2〉 = (S1− + S2−)|1 1〉

√(2)(2 + 1)− (2)(2− 1)|2 1〉

=√

(1)(1 + 1)− (1)(1− 1)|0 1〉

+√

(1)(1 + 1)− (1)(1− 1)|1 0〉

Solving for the |2 1〉 eigenfunction

The Clebsch-Gordan coefficients

are thus both√

12

√4|2 1〉

=√

2|0 1〉+√

2|1 0〉

|2 1〉 =√

12 |0 1〉+

√12 |1 0〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 4 / 17

Page 36: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Example Clebsch-Gordan computation

Suppose s1 = s2 = 1, the “top”state thus has s = 2, m = 2 and isexpressed as

the next lower state m = 1 is ob-tained

|2 2〉 = |1 1〉

S−|2 2〉 = (S1− + S2−)|1 1〉

√(2)(2 + 1)− (2)(2− 1)|2 1〉 =

√(1)(1 + 1)− (1)(1− 1)|0 1〉

+√

(1)(1 + 1)− (1)(1− 1)|1 0〉

Solving for the |2 1〉 eigenfunction

The Clebsch-Gordan coefficients

are thus both√

12

√4|2 1〉

=√

2|0 1〉+√

2|1 0〉

|2 1〉 =√

12 |0 1〉+

√12 |1 0〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 4 / 17

Page 37: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Example Clebsch-Gordan computation

Suppose s1 = s2 = 1, the “top”state thus has s = 2, m = 2 and isexpressed as

the next lower state m = 1 is ob-tained

|2 2〉 = |1 1〉

S−|2 2〉 = (S1− + S2−)|1 1〉

√(2)(2 + 1)− (2)(2− 1)|2 1〉 =

√(1)(1 + 1)− (1)(1− 1)|0 1〉

+√

(1)(1 + 1)− (1)(1− 1)|1 0〉

Solving for the |2 1〉 eigenfunction

The Clebsch-Gordan coefficients

are thus both√

12

√4|2 1〉

=√

2|0 1〉+√

2|1 0〉

|2 1〉 =√

12 |0 1〉+

√12 |1 0〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 4 / 17

Page 38: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Example Clebsch-Gordan computation

Suppose s1 = s2 = 1, the “top”state thus has s = 2, m = 2 and isexpressed as

the next lower state m = 1 is ob-tained

|2 2〉 = |1 1〉

S−|2 2〉 = (S1− + S2−)|1 1〉

√(2)(2 + 1)− (2)(2− 1)|2 1〉 =

√(1)(1 + 1)− (1)(1− 1)|0 1〉

+√

(1)(1 + 1)− (1)(1− 1)|1 0〉

Solving for the |2 1〉 eigenfunction

The Clebsch-Gordan coefficients

are thus both√

12

√4|2 1〉

=√

2|0 1〉+√

2|1 0〉

|2 1〉 =√

12 |0 1〉+

√12 |1 0〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 4 / 17

Page 39: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Example Clebsch-Gordan computation

Suppose s1 = s2 = 1, the “top”state thus has s = 2, m = 2 and isexpressed as

the next lower state m = 1 is ob-tained

|2 2〉 = |1 1〉

S−|2 2〉 = (S1− + S2−)|1 1〉

√(2)(2 + 1)− (2)(2− 1)|2 1〉 =

√(1)(1 + 1)− (1)(1− 1)|0 1〉

+√

(1)(1 + 1)− (1)(1− 1)|1 0〉

Solving for the |2 1〉 eigenfunction

The Clebsch-Gordan coefficients

are thus both√

12

√4|2 1〉

=√

2|0 1〉+√

2|1 0〉

|2 1〉 =√

12 |0 1〉+

√12 |1 0〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 4 / 17

Page 40: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Example Clebsch-Gordan computation

Suppose s1 = s2 = 1, the “top”state thus has s = 2, m = 2 and isexpressed as

the next lower state m = 1 is ob-tained

|2 2〉 = |1 1〉

S−|2 2〉 = (S1− + S2−)|1 1〉

√(2)(2 + 1)− (2)(2− 1)|2 1〉 =

√(1)(1 + 1)− (1)(1− 1)|0 1〉

+√

(1)(1 + 1)− (1)(1− 1)|1 0〉

Solving for the |2 1〉 eigenfunction

The Clebsch-Gordan coefficients

are thus both√

12

√4|2 1〉 =

√2|0 1〉

+√

2|1 0〉

|2 1〉 =√

12 |0 1〉+

√12 |1 0〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 4 / 17

Page 41: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Example Clebsch-Gordan computation

Suppose s1 = s2 = 1, the “top”state thus has s = 2, m = 2 and isexpressed as

the next lower state m = 1 is ob-tained

|2 2〉 = |1 1〉

S−|2 2〉 = (S1− + S2−)|1 1〉

√(2)(2 + 1)− (2)(2− 1)|2 1〉 =

√(1)(1 + 1)− (1)(1− 1)|0 1〉

+√

(1)(1 + 1)− (1)(1− 1)|1 0〉

Solving for the |2 1〉 eigenfunction

The Clebsch-Gordan coefficients

are thus both√

12

√4|2 1〉 =

√2|0 1〉+

√2|1 0〉

|2 1〉 =√

12 |0 1〉+

√12 |1 0〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 4 / 17

Page 42: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Example Clebsch-Gordan computation

Suppose s1 = s2 = 1, the “top”state thus has s = 2, m = 2 and isexpressed as

the next lower state m = 1 is ob-tained

|2 2〉 = |1 1〉

S−|2 2〉 = (S1− + S2−)|1 1〉

√(2)(2 + 1)− (2)(2− 1)|2 1〉 =

√(1)(1 + 1)− (1)(1− 1)|0 1〉

+√

(1)(1 + 1)− (1)(1− 1)|1 0〉

Solving for the |2 1〉 eigenfunction

The Clebsch-Gordan coefficients

are thus both√

12

√4|2 1〉 =

√2|0 1〉+

√2|1 0〉

|2 1〉 =√

12 |0 1〉+

√12 |1 0〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 4 / 17

Page 43: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Example Clebsch-Gordan computation

Suppose s1 = s2 = 1, the “top”state thus has s = 2, m = 2 and isexpressed as

the next lower state m = 1 is ob-tained

|2 2〉 = |1 1〉

S−|2 2〉 = (S1− + S2−)|1 1〉

√(2)(2 + 1)− (2)(2− 1)|2 1〉 =

√(1)(1 + 1)− (1)(1− 1)|0 1〉

+√

(1)(1 + 1)− (1)(1− 1)|1 0〉

Solving for the |2 1〉 eigenfunction

The Clebsch-Gordan coefficients

are thus both√

12

√4|2 1〉 =

√2|0 1〉+

√2|1 0〉

|2 1〉 =√

12 |0 1〉+

√12 |1 0〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 4 / 17

Page 44: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]√

(2)(2 + 1)− (1)(1− 1)|2 0〉

=√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉]

√6|2 0〉 =

√12

[

√2|−1 1〉+ 2

√2|0 0〉+

√2|1 −1〉

]|2 0〉 =

√16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉,

|2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 45: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]

√(2)(2 + 1)− (1)(1− 1)|2 0〉

=√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉]

√6|2 0〉 =

√12

[

√2|−1 1〉+ 2

√2|0 0〉+

√2|1 −1〉

]|2 0〉 =

√16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉,

|2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 46: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]√

(2)(2 + 1)− (1)(1− 1)|2 0〉

=√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉]

√6|2 0〉 =

√12

[

√2|−1 1〉+ 2

√2|0 0〉+

√2|1 −1〉

]|2 0〉 =

√16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉,

|2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 47: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]√

(2)(2 + 1)− (1)(1− 1)|2 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉

]

√6|2 0〉 =

√12

[

√2|−1 1〉+ 2

√2|0 0〉+

√2|1 −1〉

]|2 0〉 =

√16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉,

|2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 48: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]√

(2)(2 + 1)− (1)(1− 1)|2 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉

]

√6|2 0〉 =

√12

[

√2|−1 1〉+ 2

√2|0 0〉+

√2|1 −1〉

]|2 0〉 =

√16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉,

|2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 49: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]√

(2)(2 + 1)− (1)(1− 1)|2 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉

]

√6|2 0〉 =

√12

[

√2|−1 1〉+ 2

√2|0 0〉+

√2|1 −1〉

]|2 0〉 =

√16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉,

|2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 50: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]√

(2)(2 + 1)− (1)(1− 1)|2 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉]

√6|2 0〉 =

√12

[

√2|−1 1〉+ 2

√2|0 0〉+

√2|1 −1〉

]|2 0〉 =

√16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉,

|2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 51: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]√

(2)(2 + 1)− (1)(1− 1)|2 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉]

√6|2 0〉 =

√12

[

√2|−1 1〉+ 2

√2|0 0〉+

√2|1 −1〉

]

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉,

|2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 52: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]√

(2)(2 + 1)− (1)(1− 1)|2 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉]

√6|2 0〉 =

√12

[√2|−1 1〉

+ 2√

2|0 0〉+√

2|1 −1〉

]

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉,

|2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 53: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]√

(2)(2 + 1)− (1)(1− 1)|2 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉]

√6|2 0〉 =

√12

[√2|−1 1〉+ 2

√2|0 0〉

+√

2|1 −1〉

]

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉,

|2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 54: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]√

(2)(2 + 1)− (1)(1− 1)|2 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉]

√6|2 0〉 =

√12

[√2|−1 1〉+ 2

√2|0 0〉+

√2|1 −1〉

]

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉,

|2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 55: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]√

(2)(2 + 1)− (1)(1− 1)|2 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉]

√6|2 0〉 =

√12

[√2|−1 1〉+ 2

√2|0 0〉+

√2|1 −1〉

]|2 0〉 =

√16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉,

|2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 56: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]√

(2)(2 + 1)− (1)(1− 1)|2 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉]

√6|2 0〉 =

√12

[√2|−1 1〉+ 2

√2|0 0〉+

√2|1 −1〉

]|2 0〉 =

√16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉,

|2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 57: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]√

(2)(2 + 1)− (1)(1− 1)|2 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉]

√6|2 0〉 =

√12

[√2|−1 1〉+ 2

√2|0 0〉+

√2|1 −1〉

]|2 0〉 =

√16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉,

|2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 58: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Keep lowering. . .

The |2 0〉 state is similarly obtained

S−|2 1〉 = (S1− + S2−)√

12

[|0 1〉+ |1 0〉

]√

(2)(2 + 1)− (1)(1− 1)|2 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (0)(0− 1)|1 −1〉]

√6|2 0〉 =

√12

[√2|−1 1〉+ 2

√2|0 0〉+

√2|1 −1〉

]|2 0〉 =

√16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

the other two eigenvectors with s = 2 are generated in the same way

|2 −1〉 =√

12 |0 −1〉+

√12 |−1 0〉, |2 −2〉 = |−1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 5 / 17

Page 59: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

What about the other combinations?

The remaining eigenvectors must be orthogonal combinations of the onesalready generated so to start, for |1 1〉

|1 1〉 =√

12 |0 1〉 −

√12 |1 0〉

and applying the lowering operator as before

S−|1 1〉 = (S1− + S2−)√

12

[|0 1〉 − |1 0〉

]√

(1)(1 + 1)− (1)(1− 1)|1 0〉

=√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

−√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

−√

(1)(1 + 1)− (0)(0− 1)|1 −1〉

√2|1 0〉 =

√12

[

√2|−1 1〉 −

√2|1 −1〉

]|1 0〉 =

√12 |−1 1〉 −

√12 |1 −1〉,

|1 −1〉 =√

12 |−1 0〉 −

√12 |0 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 6 / 17

Page 60: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

What about the other combinations?

The remaining eigenvectors must be orthogonal combinations of the onesalready generated so to start, for |1 1〉

|1 1〉 =√

12 |0 1〉 −

√12 |1 0〉

and applying the lowering operator as before

S−|1 1〉 = (S1− + S2−)√

12

[|0 1〉 − |1 0〉

]√

(1)(1 + 1)− (1)(1− 1)|1 0〉

=√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

−√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

−√

(1)(1 + 1)− (0)(0− 1)|1 −1〉

√2|1 0〉 =

√12

[

√2|−1 1〉 −

√2|1 −1〉

]|1 0〉 =

√12 |−1 1〉 −

√12 |1 −1〉,

|1 −1〉 =√

12 |−1 0〉 −

√12 |0 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 6 / 17

Page 61: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

What about the other combinations?

The remaining eigenvectors must be orthogonal combinations of the onesalready generated so to start, for |1 1〉

|1 1〉 =√

12 |0 1〉 −

√12 |1 0〉

and applying the lowering operator as before

S−|1 1〉 = (S1− + S2−)√

12

[|0 1〉 − |1 0〉

]√

(1)(1 + 1)− (1)(1− 1)|1 0〉

=√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

−√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

−√

(1)(1 + 1)− (0)(0− 1)|1 −1〉

√2|1 0〉 =

√12

[

√2|−1 1〉 −

√2|1 −1〉

]|1 0〉 =

√12 |−1 1〉 −

√12 |1 −1〉,

|1 −1〉 =√

12 |−1 0〉 −

√12 |0 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 6 / 17

Page 62: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

What about the other combinations?

The remaining eigenvectors must be orthogonal combinations of the onesalready generated so to start, for |1 1〉

|1 1〉 =√

12 |0 1〉 −

√12 |1 0〉

and applying the lowering operator as before

S−|1 1〉 = (S1− + S2−)√

12

[|0 1〉 − |1 0〉

]

√(1)(1 + 1)− (1)(1− 1)|1 0〉

=√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

−√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

−√

(1)(1 + 1)− (0)(0− 1)|1 −1〉

√2|1 0〉 =

√12

[

√2|−1 1〉 −

√2|1 −1〉

]|1 0〉 =

√12 |−1 1〉 −

√12 |1 −1〉,

|1 −1〉 =√

12 |−1 0〉 −

√12 |0 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 6 / 17

Page 63: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

What about the other combinations?

The remaining eigenvectors must be orthogonal combinations of the onesalready generated so to start, for |1 1〉

|1 1〉 =√

12 |0 1〉 −

√12 |1 0〉

and applying the lowering operator as before

S−|1 1〉 = (S1− + S2−)√

12

[|0 1〉 − |1 0〉

]√

(1)(1 + 1)− (1)(1− 1)|1 0〉

=√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

−√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

−√

(1)(1 + 1)− (0)(0− 1)|1 −1〉√

2|1 0〉 =√

12

[

√2|−1 1〉 −

√2|1 −1〉

]|1 0〉 =

√12 |−1 1〉 −

√12 |1 −1〉,

|1 −1〉 =√

12 |−1 0〉 −

√12 |0 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 6 / 17

Page 64: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

What about the other combinations?

The remaining eigenvectors must be orthogonal combinations of the onesalready generated so to start, for |1 1〉

|1 1〉 =√

12 |0 1〉 −

√12 |1 0〉

and applying the lowering operator as before

S−|1 1〉 = (S1− + S2−)√

12

[|0 1〉 − |1 0〉

]√

(1)(1 + 1)− (1)(1− 1)|1 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

−√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

−√

(1)(1 + 1)− (0)(0− 1)|1 −1〉√

2|1 0〉 =√

12

[

√2|−1 1〉 −

√2|1 −1〉

]|1 0〉 =

√12 |−1 1〉 −

√12 |1 −1〉,

|1 −1〉 =√

12 |−1 0〉 −

√12 |0 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 6 / 17

Page 65: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

What about the other combinations?

The remaining eigenvectors must be orthogonal combinations of the onesalready generated so to start, for |1 1〉

|1 1〉 =√

12 |0 1〉 −

√12 |1 0〉

and applying the lowering operator as before

S−|1 1〉 = (S1− + S2−)√

12

[|0 1〉 − |1 0〉

]√

(1)(1 + 1)− (1)(1− 1)|1 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

−√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

−√

(1)(1 + 1)− (0)(0− 1)|1 −1〉√

2|1 0〉 =√

12

[

√2|−1 1〉 −

√2|1 −1〉

]|1 0〉 =

√12 |−1 1〉 −

√12 |1 −1〉,

|1 −1〉 =√

12 |−1 0〉 −

√12 |0 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 6 / 17

Page 66: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

What about the other combinations?

The remaining eigenvectors must be orthogonal combinations of the onesalready generated so to start, for |1 1〉

|1 1〉 =√

12 |0 1〉 −

√12 |1 0〉

and applying the lowering operator as before

S−|1 1〉 = (S1− + S2−)√

12

[|0 1〉 − |1 0〉

]√

(1)(1 + 1)− (1)(1− 1)|1 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

−√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

−√

(1)(1 + 1)− (0)(0− 1)|1 −1〉√

2|1 0〉 =√

12

[

√2|−1 1〉 −

√2|1 −1〉

]|1 0〉 =

√12 |−1 1〉 −

√12 |1 −1〉,

|1 −1〉 =√

12 |−1 0〉 −

√12 |0 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 6 / 17

Page 67: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

What about the other combinations?

The remaining eigenvectors must be orthogonal combinations of the onesalready generated so to start, for |1 1〉

|1 1〉 =√

12 |0 1〉 −

√12 |1 0〉

and applying the lowering operator as before

S−|1 1〉 = (S1− + S2−)√

12

[|0 1〉 − |1 0〉

]√

(1)(1 + 1)− (1)(1− 1)|1 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

−√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

−√

(1)(1 + 1)− (0)(0− 1)|1 −1〉

√2|1 0〉 =

√12

[

√2|−1 1〉 −

√2|1 −1〉

]|1 0〉 =

√12 |−1 1〉 −

√12 |1 −1〉,

|1 −1〉 =√

12 |−1 0〉 −

√12 |0 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 6 / 17

Page 68: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

What about the other combinations?

The remaining eigenvectors must be orthogonal combinations of the onesalready generated so to start, for |1 1〉

|1 1〉 =√

12 |0 1〉 −

√12 |1 0〉

and applying the lowering operator as before

S−|1 1〉 = (S1− + S2−)√

12

[|0 1〉 − |1 0〉

]√

(1)(1 + 1)− (1)(1− 1)|1 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

−√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

−√

(1)(1 + 1)− (0)(0− 1)|1 −1〉√

2|1 0〉 =√

12

[

√2|−1 1〉 −

√2|1 −1〉

]

|1 0〉 =√

12 |−1 1〉 −

√12 |1 −1〉,

|1 −1〉 =√

12 |−1 0〉 −

√12 |0 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 6 / 17

Page 69: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

What about the other combinations?

The remaining eigenvectors must be orthogonal combinations of the onesalready generated so to start, for |1 1〉

|1 1〉 =√

12 |0 1〉 −

√12 |1 0〉

and applying the lowering operator as before

S−|1 1〉 = (S1− + S2−)√

12

[|0 1〉 − |1 0〉

]√

(1)(1 + 1)− (1)(1− 1)|1 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

−√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

−√

(1)(1 + 1)− (0)(0− 1)|1 −1〉√

2|1 0〉 =√

12

[√2|−1 1〉

−√

2|1 −1〉

]

|1 0〉 =√

12 |−1 1〉 −

√12 |1 −1〉,

|1 −1〉 =√

12 |−1 0〉 −

√12 |0 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 6 / 17

Page 70: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

What about the other combinations?

The remaining eigenvectors must be orthogonal combinations of the onesalready generated so to start, for |1 1〉

|1 1〉 =√

12 |0 1〉 −

√12 |1 0〉

and applying the lowering operator as before

S−|1 1〉 = (S1− + S2−)√

12

[|0 1〉 − |1 0〉

]√

(1)(1 + 1)− (1)(1− 1)|1 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

−√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

−√

(1)(1 + 1)− (0)(0− 1)|1 −1〉√

2|1 0〉 =√

12

[√2|−1 1〉 −

√2|1 −1〉

]

|1 0〉 =√

12 |−1 1〉 −

√12 |1 −1〉,

|1 −1〉 =√

12 |−1 0〉 −

√12 |0 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 6 / 17

Page 71: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

What about the other combinations?

The remaining eigenvectors must be orthogonal combinations of the onesalready generated so to start, for |1 1〉

|1 1〉 =√

12 |0 1〉 −

√12 |1 0〉

and applying the lowering operator as before

S−|1 1〉 = (S1− + S2−)√

12

[|0 1〉 − |1 0〉

]√

(1)(1 + 1)− (1)(1− 1)|1 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

−√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

−√

(1)(1 + 1)− (0)(0− 1)|1 −1〉√

2|1 0〉 =√

12

[√2|−1 1〉 −

√2|1 −1〉

]|1 0〉 =

√12 |−1 1〉 −

√12 |1 −1〉,

|1 −1〉 =√

12 |−1 0〉 −

√12 |0 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 6 / 17

Page 72: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

What about the other combinations?

The remaining eigenvectors must be orthogonal combinations of the onesalready generated so to start, for |1 1〉

|1 1〉 =√

12 |0 1〉 −

√12 |1 0〉

and applying the lowering operator as before

S−|1 1〉 = (S1− + S2−)√

12

[|0 1〉 − |1 0〉

]√

(1)(1 + 1)− (1)(1− 1)|1 0〉 =√

12

[√(1)(1 + 1)− (0)(0− 1)|−1 1〉

−√

(1)(1 + 1)− (1)(1− 1)|0 0〉

+√

(1)(1 + 1)− (1)(1− 1)|0 0〉

−√

(1)(1 + 1)− (0)(0− 1)|1 −1〉√

2|1 0〉 =√

12

[√2|−1 1〉 −

√2|1 −1〉

]|1 0〉 =

√12 |−1 1〉 −

√12 |1 −1〉, |1 −1〉 =

√12 |−1 0〉 −

√12 |0 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 6 / 17

Page 73: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Just one left!

So, we started with 9 |m1 m2〉 states and have generated 8 |s m〉 states,the final one must be

|0 0〉 = a|−1 1〉+ b|0 0〉+ c |1 −1〉

where a, b, and c are chosen to ensure that |0 0〉 is orthogonal to theother states with m = 0

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

|1 0〉 =√

12 |−1 1〉 −

√12 |1 −1〉

〈2 0|0 0〉 = 0 =√

16a +

√46b +

√16c

= a + 2b + c

〈1 0|0 0〉 = 0 =√

12a−

√12c

= a− c −→ a = −b = c

|0 0〉 =√

13 |−1 1〉 −

√13 |0 0〉+

√13 |1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 7 / 17

Page 74: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Just one left!

So, we started with 9 |m1 m2〉 states and have generated 8 |s m〉 states,the final one must be

|0 0〉 = a|−1 1〉+ b|0 0〉+ c |1 −1〉

where a, b, and c are chosen to ensure that |0 0〉 is orthogonal to theother states with m = 0

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

|1 0〉 =√

12 |−1 1〉 −

√12 |1 −1〉

〈2 0|0 0〉 = 0 =√

16a +

√46b +

√16c

= a + 2b + c

〈1 0|0 0〉 = 0 =√

12a−

√12c

= a− c −→ a = −b = c

|0 0〉 =√

13 |−1 1〉 −

√13 |0 0〉+

√13 |1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 7 / 17

Page 75: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Just one left!

So, we started with 9 |m1 m2〉 states and have generated 8 |s m〉 states,the final one must be

|0 0〉 = a|−1 1〉+ b|0 0〉+ c |1 −1〉

where a, b, and c are chosen to ensure that |0 0〉 is orthogonal to theother states with m = 0

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

|1 0〉 =√

12 |−1 1〉 −

√12 |1 −1〉

〈2 0|0 0〉 = 0 =√

16a +

√46b +

√16c

= a + 2b + c

〈1 0|0 0〉 = 0 =√

12a−

√12c

= a− c −→ a = −b = c

|0 0〉 =√

13 |−1 1〉 −

√13 |0 0〉+

√13 |1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 7 / 17

Page 76: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Just one left!

So, we started with 9 |m1 m2〉 states and have generated 8 |s m〉 states,the final one must be

|0 0〉 = a|−1 1〉+ b|0 0〉+ c |1 −1〉

where a, b, and c are chosen to ensure that |0 0〉 is orthogonal to theother states with m = 0

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

|1 0〉 =√

12 |−1 1〉 −

√12 |1 −1〉

〈2 0|0 0〉 = 0 =√

16a +

√46b +

√16c

= a + 2b + c

〈1 0|0 0〉 = 0 =√

12a−

√12c

= a− c −→ a = −b = c

|0 0〉 =√

13 |−1 1〉 −

√13 |0 0〉+

√13 |1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 7 / 17

Page 77: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Just one left!

So, we started with 9 |m1 m2〉 states and have generated 8 |s m〉 states,the final one must be

|0 0〉 = a|−1 1〉+ b|0 0〉+ c |1 −1〉

where a, b, and c are chosen to ensure that |0 0〉 is orthogonal to theother states with m = 0

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

|1 0〉 =√

12 |−1 1〉 −

√12 |1 −1〉

〈2 0|0 0〉 = 0 =√

16a +

√46b +

√16c

= a + 2b + c

〈1 0|0 0〉 = 0 =√

12a−

√12c

= a− c −→ a = −b = c

|0 0〉 =√

13 |−1 1〉 −

√13 |0 0〉+

√13 |1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 7 / 17

Page 78: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Just one left!

So, we started with 9 |m1 m2〉 states and have generated 8 |s m〉 states,the final one must be

|0 0〉 = a|−1 1〉+ b|0 0〉+ c |1 −1〉

where a, b, and c are chosen to ensure that |0 0〉 is orthogonal to theother states with m = 0

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

|1 0〉 =√

12 |−1 1〉 −

√12 |1 −1〉

〈2 0|0 0〉 = 0 =√

16a +

√46b +

√16c

= a + 2b + c

〈1 0|0 0〉 = 0 =√

12a−

√12c

= a− c −→ a = −b = c

|0 0〉 =√

13 |−1 1〉 −

√13 |0 0〉+

√13 |1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 7 / 17

Page 79: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Just one left!

So, we started with 9 |m1 m2〉 states and have generated 8 |s m〉 states,the final one must be

|0 0〉 = a|−1 1〉+ b|0 0〉+ c |1 −1〉

where a, b, and c are chosen to ensure that |0 0〉 is orthogonal to theother states with m = 0

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

|1 0〉 =√

12 |−1 1〉 −

√12 |1 −1〉

〈2 0|0 0〉 = 0 =√

16a +

√46b +

√16c

= a + 2b + c

〈1 0|0 0〉 = 0 =√

12a−

√12c

= a− c −→ a = −b = c

|0 0〉 =√

13 |−1 1〉 −

√13 |0 0〉+

√13 |1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 7 / 17

Page 80: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Just one left!

So, we started with 9 |m1 m2〉 states and have generated 8 |s m〉 states,the final one must be

|0 0〉 = a|−1 1〉+ b|0 0〉+ c |1 −1〉

where a, b, and c are chosen to ensure that |0 0〉 is orthogonal to theother states with m = 0

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

|1 0〉 =√

12 |−1 1〉 −

√12 |1 −1〉

〈2 0|0 0〉 = 0 =√

16a +

√46b +

√16c = a + 2b + c

〈1 0|0 0〉 = 0 =√

12a−

√12c

= a− c −→ a = −b = c

|0 0〉 =√

13 |−1 1〉 −

√13 |0 0〉+

√13 |1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 7 / 17

Page 81: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Just one left!

So, we started with 9 |m1 m2〉 states and have generated 8 |s m〉 states,the final one must be

|0 0〉 = a|−1 1〉+ b|0 0〉+ c |1 −1〉

where a, b, and c are chosen to ensure that |0 0〉 is orthogonal to theother states with m = 0

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

|1 0〉 =√

12 |−1 1〉 −

√12 |1 −1〉

〈2 0|0 0〉 = 0 =√

16a +

√46b +

√16c = a + 2b + c

〈1 0|0 0〉 = 0 =√

12a−

√12c = a− c

−→ a = −b = c

|0 0〉 =√

13 |−1 1〉 −

√13 |0 0〉+

√13 |1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 7 / 17

Page 82: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Just one left!

So, we started with 9 |m1 m2〉 states and have generated 8 |s m〉 states,the final one must be

|0 0〉 = a|−1 1〉+ b|0 0〉+ c |1 −1〉

where a, b, and c are chosen to ensure that |0 0〉 is orthogonal to theother states with m = 0

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

|1 0〉 =√

12 |−1 1〉 −

√12 |1 −1〉

〈2 0|0 0〉 = 0 =√

16a +

√46b +

√16c = a + 2b + c

〈1 0|0 0〉 = 0 =√

12a−

√12c = a− c −→ a = −b = c

|0 0〉 =√

13 |−1 1〉 −

√13 |0 0〉+

√13 |1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 7 / 17

Page 83: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Just one left!

So, we started with 9 |m1 m2〉 states and have generated 8 |s m〉 states,the final one must be

|0 0〉 = a|−1 1〉+ b|0 0〉+ c |1 −1〉

where a, b, and c are chosen to ensure that |0 0〉 is orthogonal to theother states with m = 0

|2 0〉 =√

16 |−1 1〉+

√23 |0 0〉+

√16 |1 −1〉

|1 0〉 =√

12 |−1 1〉 −

√12 |1 −1〉

〈2 0|0 0〉 = 0 =√

16a +

√46b +

√16c = a + 2b + c

〈1 0|0 0〉 = 0 =√

12a−

√12c = a− c −→ a = −b = c

|0 0〉 =√

13 |−1 1〉 −

√13 |0 0〉+

√13 |1 −1〉

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 7 / 17

Page 84: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

The 1×1 table

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 8 / 17

Page 85: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8

(a) Check that u = Arj1(kr) satisfies the radial equation with V (r) = 0and l = 1

(b) Determine graphically the allowed energies for the infinite sphericalwell when l = 1. Show that for large n

En1 ≈~2π2

2ma2(n + 1

2)

With V = 0 and l = 1 the radialequation which needs to be verifiedis

with u being

d2u

dr2− 2

r2u = −k2u

u = Ar

[sin(kr)

(kr)2− cos(kr)

kr

]=

A

k

[sin(kr)

kr− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 9 / 17

Page 86: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8

(a) Check that u = Arj1(kr) satisfies the radial equation with V (r) = 0and l = 1

(b) Determine graphically the allowed energies for the infinite sphericalwell when l = 1. Show that for large n

En1 ≈~2π2

2ma2(n + 1

2)

With V = 0 and l = 1 the radialequation which needs to be verifiedis

with u being

d2u

dr2− 2

r2u = −k2u

u = Ar

[sin(kr)

(kr)2− cos(kr)

kr

]=

A

k

[sin(kr)

kr− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 9 / 17

Page 87: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8

(a) Check that u = Arj1(kr) satisfies the radial equation with V (r) = 0and l = 1

(b) Determine graphically the allowed energies for the infinite sphericalwell when l = 1. Show that for large n

En1 ≈~2π2

2ma2(n + 1

2)

With V = 0 and l = 1 the radialequation which needs to be verifiedis

with u being

d2u

dr2− 2

r2u = −k2u

u = Ar

[sin(kr)

(kr)2− cos(kr)

kr

]=

A

k

[sin(kr)

kr− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 9 / 17

Page 88: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8

(a) Check that u = Arj1(kr) satisfies the radial equation with V (r) = 0and l = 1

(b) Determine graphically the allowed energies for the infinite sphericalwell when l = 1. Show that for large n

En1 ≈~2π2

2ma2(n + 1

2)

With V = 0 and l = 1 the radialequation which needs to be verifiedis

with u being

d2u

dr2− 2

r2u = −k2u

u = Ar

[sin(kr)

(kr)2− cos(kr)

kr

]=

A

k

[sin(kr)

kr− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 9 / 17

Page 89: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8

(a) Check that u = Arj1(kr) satisfies the radial equation with V (r) = 0and l = 1

(b) Determine graphically the allowed energies for the infinite sphericalwell when l = 1. Show that for large n

En1 ≈~2π2

2ma2(n + 1

2)

With V = 0 and l = 1 the radialequation which needs to be verifiedis

with u being

d2u

dr2− 2

r2u = −k2u

u = Ar

[sin(kr)

(kr)2− cos(kr)

kr

]

=A

k

[sin(kr)

kr− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 9 / 17

Page 90: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8

(a) Check that u = Arj1(kr) satisfies the radial equation with V (r) = 0and l = 1

(b) Determine graphically the allowed energies for the infinite sphericalwell when l = 1. Show that for large n

En1 ≈~2π2

2ma2(n + 1

2)

With V = 0 and l = 1 the radialequation which needs to be verifiedis

with u being

d2u

dr2− 2

r2u = −k2u

u = Ar

[sin(kr)

(kr)2− cos(kr)

kr

]=

A

k

[sin(kr)

kr− cos(kr)

]C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 9 / 17

Page 91: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]

=A

k

[k2r cos(kr)− k sin(kr)

(kr)2

+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[

−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder+ k cos(kr)

]= Ak

[

− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]= Ak

[

(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 92: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2

+ k sin(kr)

]

= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[

−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder+ k cos(kr)

]= Ak

[

− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]= Ak

[

(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 93: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]

= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[

−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder+ k cos(kr)

]= Ak

[

− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]= Ak

[

(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 94: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]

d2u

dr2= A

[

−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder+ k cos(kr)

]= Ak

[

− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]= Ak

[

(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 95: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[

−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder+ k cos(kr)

]

= Ak

[

− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]= Ak

[

(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 96: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[−k2r sin(kr)− k cos(kr)

(kr)2

− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder+ k cos(kr)

]

= Ak

[

− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]= Ak

[

(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 97: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder+ k cos(kr)

]

= Ak

[

− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]= Ak

[

(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 98: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder

+ k cos(kr)

]

= Ak

[

− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]= Ak

[

(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 99: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder

+ k cos(kr)

]= Ak

[

− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]

= Ak

[

(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 100: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder

+ k cos(kr)

]= Ak

[− sin(kr)

(kr)− cos(kr)

(kr)2

− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]

= Ak

[

(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 101: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder

+ k cos(kr)

]= Ak

[− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3

+ cos(kr)

]

= Ak

[

(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 102: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder

+ k cos(kr)

]= Ak

[− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]

= Ak

[

(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 103: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder

+ k cos(kr)

]= Ak

[− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]= Ak

[

(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]

d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 104: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder

+ k cos(kr)

]= Ak

[− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]= Ak

[(1− 2

(kr)2

)cos(kr)

+

(2

(kr)3− 1

(kr)

)sin(kr)

]

d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 105: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder

+ k cos(kr)

]= Ak

[− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]= Ak

[(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]

d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 106: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder

+ k cos(kr)

]= Ak

[− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]= Ak

[(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]d2u

dr2=

(2

r2− k2

)u

=

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 107: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

du

dr=

d

dr

A

k

[sin(kr)

(kr)− cos(kr)

]=

A

k

[k2r cos(kr)− k sin(kr)

(kr)2+ k sin(kr)

]= A

[cos(kr)

kr− sin(kr)

(kr)2+ sin(kr)

]d2u

dr2= A

[−k2r sin(kr)− k cos(kr)

(kr)2− k3r2 cos(kr)− 2k2r sin(kr)

(kr)4

place2

holder

+ k cos(kr)

]= Ak

[− sin(kr)

(kr)− cos(kr)

(kr)2− cos(kr)

(kr)2+ 2

sin(kr)

(kr)3+ cos(kr)

]= Ak

[(1− 2

(kr)2

)cos(kr) +

(2

(kr)3− 1

(kr)

)sin(kr)

]d2u

dr2=

(2

r2− k2

)u =

(2

r2− k2

)A

k

[sin(kr)

(kr)− cos(kr)

]C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 10 / 17

Page 108: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

According to the boundary conditions im-posed, j1(z) = 0 when z = ka

rearranging, we have

j1 =sin z

z2− cos z

z= 0

z = tan z

plotting these two func-tions, we can identify thecrossing points as the so-lutions

∼ 1.43π, ∼ 2.46π0 π/2 π 3π/2 2π 5π/2

z

as n becomes large, the solutions approach z = (n + 12)π and the energies

become

En =~2k2

2m

=~2z2

2ma2≈ ~2π2

2ma2(n + 1

2

)2

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 11 / 17

Page 109: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

According to the boundary conditions im-posed, j1(z) = 0 when z = ka

rearranging, we have

j1 =sin z

z2− cos z

z= 0

z = tan z

plotting these two func-tions, we can identify thecrossing points as the so-lutions

∼ 1.43π, ∼ 2.46π0 π/2 π 3π/2 2π 5π/2

z

as n becomes large, the solutions approach z = (n + 12)π and the energies

become

En =~2k2

2m

=~2z2

2ma2≈ ~2π2

2ma2(n + 1

2

)2

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 11 / 17

Page 110: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

According to the boundary conditions im-posed, j1(z) = 0 when z = ka

rearranging, we have

j1 =sin z

z2− cos z

z= 0

z = tan z

plotting these two func-tions, we can identify thecrossing points as the so-lutions

∼ 1.43π, ∼ 2.46π0 π/2 π 3π/2 2π 5π/2

z

as n becomes large, the solutions approach z = (n + 12)π and the energies

become

En =~2k2

2m

=~2z2

2ma2≈ ~2π2

2ma2(n + 1

2

)2

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 11 / 17

Page 111: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

According to the boundary conditions im-posed, j1(z) = 0 when z = ka

rearranging, we have

j1 =sin z

z2− cos z

z= 0

z = tan z

plotting these two func-tions, we can identify thecrossing points as the so-lutions

∼ 1.43π, ∼ 2.46π0 π/2 π 3π/2 2π 5π/2

z

as n becomes large, the solutions approach z = (n + 12)π and the energies

become

En =~2k2

2m

=~2z2

2ma2≈ ~2π2

2ma2(n + 1

2

)2

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 11 / 17

Page 112: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

According to the boundary conditions im-posed, j1(z) = 0 when z = ka

rearranging, we have

j1 =sin z

z2− cos z

z= 0

z = tan z

plotting these two func-tions, we can identify thecrossing points as the so-lutions

∼ 1.43π, ∼ 2.46π0 π/2 π 3π/2 2π 5π/2

z

as n becomes large, the solutions approach z = (n + 12)π and the energies

become

En =~2k2

2m

=~2z2

2ma2≈ ~2π2

2ma2(n + 1

2

)2

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 11 / 17

Page 113: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

According to the boundary conditions im-posed, j1(z) = 0 when z = ka

rearranging, we have

j1 =sin z

z2− cos z

z= 0

z = tan z

plotting these two func-tions, we can identify thecrossing points as the so-lutions

∼ 1.43π, ∼ 2.46π

0 π/2 π 3π/2 2π 5π/2

z

as n becomes large, the solutions approach z = (n + 12)π and the energies

become

En =~2k2

2m

=~2z2

2ma2≈ ~2π2

2ma2(n + 1

2

)2

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 11 / 17

Page 114: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

According to the boundary conditions im-posed, j1(z) = 0 when z = ka

rearranging, we have

j1 =sin z

z2− cos z

z= 0

z = tan z

plotting these two func-tions, we can identify thecrossing points as the so-lutions

∼ 1.43π, ∼ 2.46π0 π/2 π 3π/2 2π 5π/2

z

as n becomes large, the solutions approach z = (n + 12)π and the energies

become

En =~2k2

2m

=~2z2

2ma2≈ ~2π2

2ma2(n + 1

2

)2

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 11 / 17

Page 115: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

According to the boundary conditions im-posed, j1(z) = 0 when z = ka

rearranging, we have

j1 =sin z

z2− cos z

z= 0

z = tan z

plotting these two func-tions, we can identify thecrossing points as the so-lutions

∼ 1.43π, ∼ 2.46π0 π/2 π 3π/2 2π 5π/2

z

as n becomes large, the solutions approach z = (n + 12)π and the energies

become

En =~2k2

2m

=~2z2

2ma2≈ ~2π2

2ma2(n + 1

2

)2

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 11 / 17

Page 116: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

According to the boundary conditions im-posed, j1(z) = 0 when z = ka

rearranging, we have

j1 =sin z

z2− cos z

z= 0

z = tan z

plotting these two func-tions, we can identify thecrossing points as the so-lutions

∼ 1.43π, ∼ 2.46π0 π/2 π 3π/2 2π 5π/2

z

as n becomes large, the solutions approach z = (n + 12)π and the energies

become

En =~2k2

2m

=~2z2

2ma2≈ ~2π2

2ma2(n + 1

2

)2

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 11 / 17

Page 117: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

According to the boundary conditions im-posed, j1(z) = 0 when z = ka

rearranging, we have

j1 =sin z

z2− cos z

z= 0

z = tan z

plotting these two func-tions, we can identify thecrossing points as the so-lutions

∼ 1.43π, ∼ 2.46π0 π/2 π 3π/2 2π 5π/2

z

as n becomes large, the solutions approach z = (n + 12)π and the energies

become

En =~2k2

2m=

~2z2

2ma2

≈ ~2π2

2ma2(n + 1

2

)2

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 11 / 17

Page 118: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.8 (cont.)

According to the boundary conditions im-posed, j1(z) = 0 when z = ka

rearranging, we have

j1 =sin z

z2− cos z

z= 0

z = tan z

plotting these two func-tions, we can identify thecrossing points as the so-lutions

∼ 1.43π, ∼ 2.46π0 π/2 π 3π/2 2π 5π/2

z

as n becomes large, the solutions approach z = (n + 12)π and the energies

become

En =~2k2

2m=

~2z2

2ma2≈ ~2π2

2ma2(n + 1

2

)2C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 11 / 17

Page 119: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52

Find the matrix representing Sx for a particle of spin 3/2 (using the basisof eigenstates of Sz). Solve the characteristic equation to determine theeigenvalues of Sx .

First we write down the eigenstates of Sz in the S = 3/2 system.

∣∣32

32

⟩=

1000

∣∣32

12

⟩=

0100

∣∣32 −

12

⟩=

0010

∣∣32 −

32

⟩=

0001

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 12 / 17

Page 120: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52

Find the matrix representing Sx for a particle of spin 3/2 (using the basisof eigenstates of Sz). Solve the characteristic equation to determine theeigenvalues of Sx .

First we write down the eigenstates of Sz in the S = 3/2 system.

∣∣32

32

⟩=

1000

∣∣32

12

⟩=

0100

∣∣32 −

12

⟩=

0010

∣∣32 −

32

⟩=

0001

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 12 / 17

Page 121: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52

Find the matrix representing Sx for a particle of spin 3/2 (using the basisof eigenstates of Sz). Solve the characteristic equation to determine theeigenvalues of Sx .

First we write down the eigenstates of Sz in the S = 3/2 system.

∣∣32

32

⟩=

1000

∣∣32

12

⟩=

0100

∣∣32 −

12

⟩=

0010

∣∣32 −

32

⟩=

0001

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 12 / 17

Page 122: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52

Find the matrix representing Sx for a particle of spin 3/2 (using the basisof eigenstates of Sz). Solve the characteristic equation to determine theeigenvalues of Sx .

First we write down the eigenstates of Sz in the S = 3/2 system.

∣∣32

32

⟩=

1000

∣∣32

12

⟩=

0100

∣∣32 −

12

⟩=

0010

∣∣32 −

32

⟩=

0001

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 12 / 17

Page 123: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52

Find the matrix representing Sx for a particle of spin 3/2 (using the basisof eigenstates of Sz). Solve the characteristic equation to determine theeigenvalues of Sx .

First we write down the eigenstates of Sz in the S = 3/2 system.

∣∣32

32

⟩=

1000

∣∣32

12

⟩=

0100

∣∣32 −

12

⟩=

0010

∣∣32 −

32

⟩=

0001

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 12 / 17

Page 124: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52

Find the matrix representing Sx for a particle of spin 3/2 (using the basisof eigenstates of Sz). Solve the characteristic equation to determine theeigenvalues of Sx .

First we write down the eigenstates of Sz in the S = 3/2 system.

∣∣32

32

⟩=

1000

∣∣32

12

⟩=

0100

∣∣32 −

12

⟩=

0010

∣∣32 −

32

⟩=

0001

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 12 / 17

Page 125: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

The raising and lowering operators are

S±|s m〉 = ~√s(s + 1)−m(m ± 1) |s (m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0 00 0 2 0

0 0 0√

30 0 0 0

S+∣∣32

32

⟩= 0

S+∣∣32

12

⟩=√

32

(52

)− 1

2

(32

)~∣∣32

32

⟩=√

3~∣∣32

32

⟩S+∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(12

)~∣∣32

12

⟩= 2~

∣∣32

12

⟩S+∣∣32 −

32

⟩=√

32

(52

)+ 3

2

(−1

2

)~∣∣32 −

12

⟩=√

3~∣∣32 −

12

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 13 / 17

Page 126: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

The raising and lowering operators are

S±|s m〉 = ~√s(s + 1)−m(m ± 1) |s (m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0 00 0 2 0

0 0 0√

30 0 0 0

S+∣∣32

32

⟩= 0

S+∣∣32

12

⟩=√

32

(52

)− 1

2

(32

)~∣∣32

32

⟩=√

3~∣∣32

32

⟩S+∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(12

)~∣∣32

12

⟩= 2~

∣∣32

12

⟩S+∣∣32 −

32

⟩=√

32

(52

)+ 3

2

(−1

2

)~∣∣32 −

12

⟩=√

3~∣∣32 −

12

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 13 / 17

Page 127: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

The raising and lowering operators are

S±|s m〉 = ~√s(s + 1)−m(m ± 1) |s (m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0 00 0 2 0

0 0 0√

30 0 0 0

S+∣∣32

32

⟩= 0

S+∣∣32

12

⟩=√

32

(52

)− 1

2

(32

)~∣∣32

32

⟩=√

3~∣∣32

32

⟩S+∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(12

)~∣∣32

12

⟩= 2~

∣∣32

12

⟩S+∣∣32 −

32

⟩=√

32

(52

)+ 3

2

(−1

2

)~∣∣32 −

12

⟩=√

3~∣∣32 −

12

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 13 / 17

Page 128: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

The raising and lowering operators are

S±|s m〉 = ~√s(s + 1)−m(m ± 1) |s (m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0 00 0 2 0

0 0 0√

30 0 0 0

S+∣∣32

32

⟩= 0

S+∣∣32

12

⟩=√

32

(52

)− 1

2

(32

)~∣∣32

32

⟩=√

3~∣∣32

32

⟩S+∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(12

)~∣∣32

12

⟩= 2~

∣∣32

12

⟩S+∣∣32 −

32

⟩=√

32

(52

)+ 3

2

(−1

2

)~∣∣32 −

12

⟩=√

3~∣∣32 −

12

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 13 / 17

Page 129: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

The raising and lowering operators are

S±|s m〉 = ~√s(s + 1)−m(m ± 1) |s (m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0

√3 0 0

0

0 2 0

0

0 0√

3

0

0 0 0

S+∣∣32

32

⟩= 0

S+∣∣32

12

⟩=√

32

(52

)− 1

2

(32

)~∣∣32

32

⟩=√

3~∣∣32

32

⟩S+∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(12

)~∣∣32

12

⟩= 2~

∣∣32

12

⟩S+∣∣32 −

32

⟩=√

32

(52

)+ 3

2

(−1

2

)~∣∣32 −

12

⟩=√

3~∣∣32 −

12

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 13 / 17

Page 130: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

The raising and lowering operators are

S±|s m〉 = ~√s(s + 1)−m(m ± 1) |s (m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0

√3 0 0

0

0 2 0

0

0 0√

3

0

0 0 0

S+∣∣32

32

⟩= 0

S+∣∣32

12

⟩=√

32

(52

)− 1

2

(32

)~∣∣32

32

=√

3~∣∣32

32

⟩S+∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(12

)~∣∣32

12

⟩= 2~

∣∣32

12

⟩S+∣∣32 −

32

⟩=√

32

(52

)+ 3

2

(−1

2

)~∣∣32 −

12

⟩=√

3~∣∣32 −

12

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 13 / 17

Page 131: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

The raising and lowering operators are

S±|s m〉 = ~√s(s + 1)−m(m ± 1) |s (m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0

√3 0 0

0

0 2 0

0

0 0√

3

0

0 0 0

S+∣∣32

32

⟩= 0

S+∣∣32

12

⟩=√

32

(52

)− 1

2

(32

)~∣∣32

32

⟩=√

3~∣∣32

32

S+∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(12

)~∣∣32

12

⟩= 2~

∣∣32

12

⟩S+∣∣32 −

32

⟩=√

32

(52

)+ 3

2

(−1

2

)~∣∣32 −

12

⟩=√

3~∣∣32 −

12

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 13 / 17

Page 132: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

The raising and lowering operators are

S±|s m〉 = ~√s(s + 1)−m(m ± 1) |s (m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3

0 0

0 0

2 0

0 0

0√

3

0 0

0 0

S+∣∣32

32

⟩= 0

S+∣∣32

12

⟩=√

32

(52

)− 1

2

(32

)~∣∣32

32

⟩=√

3~∣∣32

32

S+∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(12

)~∣∣32

12

⟩= 2~

∣∣32

12

⟩S+∣∣32 −

32

⟩=√

32

(52

)+ 3

2

(−1

2

)~∣∣32 −

12

⟩=√

3~∣∣32 −

12

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 13 / 17

Page 133: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

The raising and lowering operators are

S±|s m〉 = ~√s(s + 1)−m(m ± 1) |s (m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3

0 0

0 0

2 0

0 0

0√

3

0 0

0 0

S+∣∣32

32

⟩= 0

S+∣∣32

12

⟩=√

32

(52

)− 1

2

(32

)~∣∣32

32

⟩=√

3~∣∣32

32

⟩S+∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(12

)~∣∣32

12

= 2~∣∣32

12

⟩S+∣∣32 −

32

⟩=√

32

(52

)+ 3

2

(−1

2

)~∣∣32 −

12

⟩=√

3~∣∣32 −

12

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 13 / 17

Page 134: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

The raising and lowering operators are

S±|s m〉 = ~√s(s + 1)−m(m ± 1) |s (m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3

0 0

0 0

2 0

0 0

0√

3

0 0

0 0

S+∣∣32

32

⟩= 0

S+∣∣32

12

⟩=√

32

(52

)− 1

2

(32

)~∣∣32

32

⟩=√

3~∣∣32

32

⟩S+∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(12

)~∣∣32

12

⟩= 2~

∣∣32

12

S+∣∣32 −

32

⟩=√

32

(52

)+ 3

2

(−1

2

)~∣∣32 −

12

⟩=√

3~∣∣32 −

12

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 13 / 17

Page 135: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

The raising and lowering operators are

S±|s m〉 = ~√s(s + 1)−m(m ± 1) |s (m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0

0

0 0 2

0

0 0 0

√3

0 0 0

0

S+∣∣32

32

⟩= 0

S+∣∣32

12

⟩=√

32

(52

)− 1

2

(32

)~∣∣32

32

⟩=√

3~∣∣32

32

⟩S+∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(12

)~∣∣32

12

⟩= 2~

∣∣32

12

S+∣∣32 −

32

⟩=√

32

(52

)+ 3

2

(−1

2

)~∣∣32 −

12

⟩=√

3~∣∣32 −

12

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 13 / 17

Page 136: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

The raising and lowering operators are

S±|s m〉 = ~√s(s + 1)−m(m ± 1) |s (m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0

0

0 0 2

0

0 0 0

√3

0 0 0

0

S+∣∣32

32

⟩= 0

S+∣∣32

12

⟩=√

32

(52

)− 1

2

(32

)~∣∣32

32

⟩=√

3~∣∣32

32

⟩S+∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(12

)~∣∣32

12

⟩= 2~

∣∣32

12

⟩S+∣∣32 −

32

⟩=√

32

(52

)+ 3

2

(−1

2

)~∣∣32 −

12

=√

3~∣∣32 −

12

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 13 / 17

Page 137: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

The raising and lowering operators are

S±|s m〉 = ~√s(s + 1)−m(m ± 1) |s (m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0

0

0 0 2

0

0 0 0

√3

0 0 0

0

S+∣∣32

32

⟩= 0

S+∣∣32

12

⟩=√

32

(52

)− 1

2

(32

)~∣∣32

32

⟩=√

3~∣∣32

32

⟩S+∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(12

)~∣∣32

12

⟩= 2~

∣∣32

12

⟩S+∣∣32 −

32

⟩=√

32

(52

)+ 3

2

(−1

2

)~∣∣32 −

12

⟩=√

3~∣∣32 −

12

⟩C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 13 / 17

Page 138: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

The raising and lowering operators are

S±|s m〉 = ~√s(s + 1)−m(m ± 1) |s (m ± 1)〉

we build the matrix for S+ by applying the raising operator to each of theeigenstates

S+ = ~

0√

3 0 00 0 2 0

0 0 0√

30 0 0 0

S+∣∣32

32

⟩= 0

S+∣∣32

12

⟩=√

32

(52

)− 1

2

(32

)~∣∣32

32

⟩=√

3~∣∣32

32

⟩S+∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(12

)~∣∣32

12

⟩= 2~

∣∣32

12

⟩S+∣∣32 −

32

⟩=√

32

(52

)+ 3

2

(−1

2

)~∣∣32 −

12

⟩=√

3~∣∣32 −

12

⟩C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 13 / 17

Page 139: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0 0 0√3 0 0 0

0 2 0 0

0 0√

3 0

S−∣∣32

32

⟩=√

32

(52

)− 3

2

(12

)~∣∣32

12

⟩=√

3~∣∣32

12

⟩S−∣∣32

12

⟩=√

32

(52

)− 1

2

(−1

2

)~∣∣32

−12

⟩= 2~

∣∣32 −

12

⟩S−∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(−3

2

)~∣∣32

−32

⟩=√

3~∣∣32 −

32

⟩S−∣∣32 −

32

⟩= 0

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 14 / 17

Page 140: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0 0 0√3 0 0 0

0 2 0 0

0 0√

3 0

S−∣∣32

32

⟩=√

32

(52

)− 3

2

(12

)~∣∣32

12

⟩=√

3~∣∣32

12

⟩S−∣∣32

12

⟩=√

32

(52

)− 1

2

(−1

2

)~∣∣32

−12

⟩= 2~

∣∣32 −

12

⟩S−∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(−3

2

)~∣∣32

−32

⟩=√

3~∣∣32 −

32

⟩S−∣∣32 −

32

⟩= 0

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 14 / 17

Page 141: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0 0 0√3 0 0 0

0 2 0 0

0 0√

3 0

S−∣∣32

32

⟩=√

32

(52

)− 3

2

(12

)~∣∣32

12

=√

3~∣∣32

12

⟩S−∣∣32

12

⟩=√

32

(52

)− 1

2

(−1

2

)~∣∣32

−12

⟩= 2~

∣∣32 −

12

⟩S−∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(−3

2

)~∣∣32

−32

⟩=√

3~∣∣32 −

32

⟩S−∣∣32 −

32

⟩= 0

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 14 / 17

Page 142: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0 0 0√3 0 0 0

0 2 0 0

0 0√

3 0

S−∣∣32

32

⟩=√

32

(52

)− 3

2

(12

)~∣∣32

12

⟩=√

3~∣∣32

12

S−∣∣32

12

⟩=√

32

(52

)− 1

2

(−1

2

)~∣∣32

−12

⟩= 2~

∣∣32 −

12

⟩S−∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(−3

2

)~∣∣32

−32

⟩=√

3~∣∣32 −

32

⟩S−∣∣32 −

32

⟩= 0

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 14 / 17

Page 143: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0

0 0 0

√3

0 0 0

0

2 0 0

0

0√

3 0

S−∣∣32

32

⟩=√

32

(52

)− 3

2

(12

)~∣∣32

12

⟩=√

3~∣∣32

12

S−∣∣32

12

⟩=√

32

(52

)− 1

2

(−1

2

)~∣∣32

−12

⟩= 2~

∣∣32 −

12

⟩S−∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(−3

2

)~∣∣32

−32

⟩=√

3~∣∣32 −

32

⟩S−∣∣32 −

32

⟩= 0

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 14 / 17

Page 144: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0

0 0 0

√3

0 0 0

0

2 0 0

0

0√

3 0

S−∣∣32

32

⟩=√

32

(52

)− 3

2

(12

)~∣∣32

12

⟩=√

3~∣∣32

12

⟩S−∣∣32

12

⟩=√

32

(52

)− 1

2

(−1

2

)~∣∣32

−12

= 2~∣∣32 −

12

⟩S−∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(−3

2

)~∣∣32

−32

⟩=√

3~∣∣32 −

32

⟩S−∣∣32 −

32

⟩= 0

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 14 / 17

Page 145: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0

0 0 0

√3

0 0 0

0

2 0 0

0

0√

3 0

S−∣∣32

32

⟩=√

32

(52

)− 3

2

(12

)~∣∣32

12

⟩=√

3~∣∣32

12

⟩S−∣∣32

12

⟩=√

32

(52

)− 1

2

(−1

2

)~∣∣32

−12

⟩= 2~

∣∣32 −

12

S−∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(−3

2

)~∣∣32

−32

⟩=√

3~∣∣32 −

32

⟩S−∣∣32 −

32

⟩= 0

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 14 / 17

Page 146: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0

0 0

√3 0

0 0

0 2

0 0

0 0

√3 0

S−∣∣32

32

⟩=√

32

(52

)− 3

2

(12

)~∣∣32

12

⟩=√

3~∣∣32

12

⟩S−∣∣32

12

⟩=√

32

(52

)− 1

2

(−1

2

)~∣∣32

−12

⟩= 2~

∣∣32 −

12

S−∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(−3

2

)~∣∣32

−32

⟩=√

3~∣∣32 −

32

⟩S−∣∣32 −

32

⟩= 0

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 14 / 17

Page 147: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0

0 0

√3 0

0 0

0 2

0 0

0 0

√3 0

S−∣∣32

32

⟩=√

32

(52

)− 3

2

(12

)~∣∣32

12

⟩=√

3~∣∣32

12

⟩S−∣∣32

12

⟩=√

32

(52

)− 1

2

(−1

2

)~∣∣32

−12

⟩= 2~

∣∣32 −

12

⟩S−∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(−3

2

)~∣∣32

−32

=√

3~∣∣32 −

32

⟩S−∣∣32 −

32

⟩= 0

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 14 / 17

Page 148: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0

0 0

√3 0

0 0

0 2

0 0

0 0

√3 0

S−∣∣32

32

⟩=√

32

(52

)− 3

2

(12

)~∣∣32

12

⟩=√

3~∣∣32

12

⟩S−∣∣32

12

⟩=√

32

(52

)− 1

2

(−1

2

)~∣∣32

−12

⟩= 2~

∣∣32 −

12

⟩S−∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(−3

2

)~∣∣32

−32

⟩=√

3~∣∣32 −

32

S−∣∣32 −

32

⟩= 0

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 14 / 17

Page 149: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0 0

0

√3 0 0

0

0 2 0

0

0 0√

3

0

S−∣∣32

32

⟩=√

32

(52

)− 3

2

(12

)~∣∣32

12

⟩=√

3~∣∣32

12

⟩S−∣∣32

12

⟩=√

32

(52

)− 1

2

(−1

2

)~∣∣32

−12

⟩= 2~

∣∣32 −

12

⟩S−∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(−3

2

)~∣∣32

−32

⟩=√

3~∣∣32 −

32

S−∣∣32 −

32

⟩= 0

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 14 / 17

Page 150: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0 0

0

√3 0 0

0

0 2 0

0

0 0√

3

0

S−∣∣32

32

⟩=√

32

(52

)− 3

2

(12

)~∣∣32

12

⟩=√

3~∣∣32

12

⟩S−∣∣32

12

⟩=√

32

(52

)− 1

2

(−1

2

)~∣∣32

−12

⟩= 2~

∣∣32 −

12

⟩S−∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(−3

2

)~∣∣32

−32

⟩=√

3~∣∣32 −

32

⟩S−∣∣32 −

32

⟩= 0

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 14 / 17

Page 151: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Similarly, we build the matrix for S− by applying the lowering operator toeach of the eigenstates

S− = ~

0 0 0 0√3 0 0 0

0 2 0 0

0 0√

3 0

S−∣∣32

32

⟩=√

32

(52

)− 3

2

(12

)~∣∣32

12

⟩=√

3~∣∣32

12

⟩S−∣∣32

12

⟩=√

32

(52

)− 1

2

(−1

2

)~∣∣32

−12

⟩= 2~

∣∣32 −

12

⟩S−∣∣32 −

12

⟩=√

32

(52

)+ 1

2

(−3

2

)~∣∣32

−32

⟩=√

3~∣∣32 −

32

⟩S−∣∣32 −

32

⟩= 0

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 14 / 17

Page 152: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Sx = 12(S+ + S−)

=~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is (Note that λ is really theeigenvalue divided by ~/2 for ease of notation)

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~,

12~,−

12~,−

32~

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 15 / 17

Page 153: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Sx = 12(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is (Note that λ is really theeigenvalue divided by ~/2 for ease of notation)

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~,

12~,−

12~,−

32~

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 15 / 17

Page 154: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Sx = 12(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is (Note that λ is really theeigenvalue divided by ~/2 for ease of notation)

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~,

12~,−

12~,−

32~

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 15 / 17

Page 155: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Sx = 12(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is (Note that λ is really theeigenvalue divided by ~/2 for ease of notation)

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣

= −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~,

12~,−

12~,−

32~

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 15 / 17

Page 156: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Sx = 12(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is (Note that λ is really theeigenvalue divided by ~/2 for ease of notation)

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣

−√

3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~,

12~,−

12~,−

32~

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 15 / 17

Page 157: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Sx = 12(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is (Note that λ is really theeigenvalue divided by ~/2 for ease of notation)

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣

= −λ[−λ(λ2 − 3)− 2(−2λ)]−√

3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~,

12~,−

12~,−

32~

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 15 / 17

Page 158: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Sx = 12(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is (Note that λ is really theeigenvalue divided by ~/2 for ease of notation)

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~,

12~,−

12~,−

32~

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 15 / 17

Page 159: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Sx = 12(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is (Note that λ is really theeigenvalue divided by ~/2 for ease of notation)

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9]

= λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~,

12~,−

12~,−

32~

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 15 / 17

Page 160: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Sx = 12(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is (Note that λ is really theeigenvalue divided by ~/2 for ease of notation)

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~,

12~,−

12~,−

32~

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 15 / 17

Page 161: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Sx = 12(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is (Note that λ is really theeigenvalue divided by ~/2 for ease of notation)

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9

= (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~,

12~,−

12~,−

32~

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 15 / 17

Page 162: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Sx = 12(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is (Note that λ is really theeigenvalue divided by ~/2 for ease of notation)

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1)

= (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~,

12~,−

12~,−

32~

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 15 / 17

Page 163: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Sx = 12(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is (Note that λ is really theeigenvalue divided by ~/2 for ease of notation)

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~,

12~,−

12~,−

32~

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 15 / 17

Page 164: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.52 (cont.)

Sx = 12(S+ + S−) =

~2

0√

3 0 0√3 0 2 0

0 2 0√

3

0 0√

3 0

The characteristic equation for eigenvalues is (Note that λ is really theeigenvalue divided by ~/2 for ease of notation)

0 =

∣∣∣∣∣∣∣∣−λ

√3 0 0√

3 −λ 2 0

0 2 −λ√

3

0 0√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣−λ 2 0

2 −λ√

3

0√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣√

3 2 0

0 −λ√

3

0√

3 −λ

∣∣∣∣∣∣= −λ[−λ(λ2 − 3)− 2(−2λ)]−

√3[√

3(λ2 − 3)]

= −λ[−λ3 + 7λ]− [3λ2 − 9] = λ4 − 10λ2 + 9

0 = λ4 − 10λ2 + 9 = (λ2 − 9)(λ2 − 1) = (λ+ 3)(λ− 3)(λ+ 1)(λ− 1)

the eigenvalues of Sx are : 32~,

12~,−

12~,−

32~

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 15 / 17

Page 165: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.35

Quarks carry spin 1/2. Three quarks bind together to make abaryon (such as the proton or neutron); two quarks (or moreprecisely a quark and an antiquark) bind together to make ameson (such as the pion of the kaon). assume the quarks are inthe ground state (zero orbital angular momentum).

(a) What spins are possible for baryons?

(b) What spins are possible for mesons?

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 16 / 17

Page 166: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.35 (cont.)

(a) Add the first two spins together

Then add in the third spin to eachof the two combinations

There are three possible spin states

12

12

12 1 0 1

2

32

12

12

Note that there are 23 = 8 ways to combine the three spins and these 8states are present in the resulting total spin states

(b) For mesons, one needs to combine two spins only

This gives the usual 4 states divided into a spin 0 singlet and a spin 1triplet.

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 17 / 17

Page 167: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.35 (cont.)

(a) Add the first two spins together

Then add in the third spin to eachof the two combinations

There are three possible spin states

12

12

12 1 0 1

2

32

12

12

Note that there are 23 = 8 ways to combine the three spins and these 8states are present in the resulting total spin states

(b) For mesons, one needs to combine two spins only

This gives the usual 4 states divided into a spin 0 singlet and a spin 1triplet.

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 17 / 17

Page 168: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.35 (cont.)

(a) Add the first two spins together

Then add in the third spin to eachof the two combinations

There are three possible spin states

12

12

12

1 0

12

32

12

12

Note that there are 23 = 8 ways to combine the three spins and these 8states are present in the resulting total spin states

(b) For mesons, one needs to combine two spins only

This gives the usual 4 states divided into a spin 0 singlet and a spin 1triplet.

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 17 / 17

Page 169: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.35 (cont.)

(a) Add the first two spins together

Then add in the third spin to eachof the two combinations

There are three possible spin states

12

12

12 1 0 1

2

32

12

12

Note that there are 23 = 8 ways to combine the three spins and these 8states are present in the resulting total spin states

(b) For mesons, one needs to combine two spins only

This gives the usual 4 states divided into a spin 0 singlet and a spin 1triplet.

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 17 / 17

Page 170: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.35 (cont.)

(a) Add the first two spins together

Then add in the third spin to eachof the two combinations

There are three possible spin states

12

12

12 1 0 1

2

32

12

12

Note that there are 23 = 8 ways to combine the three spins and these 8states are present in the resulting total spin states

(b) For mesons, one needs to combine two spins only

This gives the usual 4 states divided into a spin 0 singlet and a spin 1triplet.

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 17 / 17

Page 171: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.35 (cont.)

(a) Add the first two spins together

Then add in the third spin to eachof the two combinations

There are three possible spin states

12

12

12 1 0 1

2

32

12

12

Note that there are 23 = 8 ways to combine the three spins and these 8states are present in the resulting total spin states

(b) For mesons, one needs to combine two spins only

This gives the usual 4 states divided into a spin 0 singlet and a spin 1triplet.

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 17 / 17

Page 172: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.35 (cont.)

(a) Add the first two spins together

Then add in the third spin to eachof the two combinations

There are three possible spin states

12

12

12 1 0 1

2

32

12

12

Note that there are 23 = 8 ways to combine the three spins and these 8states are present in the resulting total spin states

(b) For mesons, one needs to combine two spins only

This gives the usual 4 states divided into a spin 0 singlet and a spin 1triplet.

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 17 / 17

Page 173: Today’s Outline - November 02, 2015phys.iit.edu/~segre/phys405/15F/lecture_18.pdf · Today’s Outline - November 02, 2015 Generating the Clebsch-Gordan coe cients Chapter 4 problems

Problem 4.35 (cont.)

(a) Add the first two spins together

Then add in the third spin to eachof the two combinations

There are three possible spin states

12

12

12 1 0 1

2

32

12

12

Note that there are 23 = 8 ways to combine the three spins and these 8states are present in the resulting total spin states

(b) For mesons, one needs to combine two spins only

This gives the usual 4 states divided into a spin 0 singlet and a spin 1triplet.

C. Segre (IIT) PHYS 405 - Fall 2015 November 02, 2015 17 / 17