20
REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw 1, *, Wen Xi Cao 2 and Howard D. Lipshitz 2, * ABSTRACT The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT. KEY WORDS: MZT, Genome activation, Maternal mRNAs Introduction Early animal development is controlled by maternal mRNAs and proteins that are loaded into the egg during oogenesis. These implement fundamental molecular and cellular processes, as well as the specification of initial cell fates and pattern. As development proceeds, control is handed over from maternally provided gene products to those synthesized from the zygotic genome. This maternal-to-zygotic transition (MZT) is characterized by multiple events, the most striking among which are the elimination of a large subset of maternal gene products and the onset of transcription from the zygotes genome (Box 1). The MZT has been referred to previously as a play in two acts(Tadros and Lipshitz, 2009). Since then, technological advances have dramatically increased our understanding of the MZT. Although it remains a two-act play, many scenes and players have been added, and the plot has become more complex and better understood. Here, we describe how the gene expression program of embryos is shaped during the MZT. First, we describe the scale and dynamics of maternal control, as well as the processes that influence the maternal gene expression program. These include the regulation of maternal mRNA stability and translation, as well as the modulation of protein stability and functions by post-translational modifications. Then, we discuss how the zygotic gene expression program is activated. This includes roles for cell cycle length, transcriptional repressors and activators, and changes in chromatin organization. Finally, we describe how and why the maternal and zygotic gene expression programs are intertwined with each other to ensure successful handover of developmental control from one generation to the next. Regulation of maternal gene products Regulation of mRNA stability and clearance All animal oocytes are loaded with mRNA species representing a large fraction of the protein-coding capacity of their genome (summarized in Table 1). Estimates from global analyses suggest that the maternal transcripts represent a range of the protein-coding transcriptome, from about one-third in the mouse (Wang et al., 2004) and Caenorhabditis elegans (Baugh et al., 2003; Stoeckius et al., 2014), to three-quarters in Drosophila melanogaster (De Renzis et al., 2007; Lécuyer et al., 2007; Tadros et al., 2007; Thomsen et al., 2010), the echinoderm Strongylocentrotus purpuratus (Wei et al., 2006) and the zebrafish, Danio rerio (Aanes et al., 2011; Harvey et al., 2013). During the MZT, a subset of the maternal transcripts is cleared from the embryo (Boxes 2 and 3). Estimates range from about one-quarter of the maternal transcripts in zebrafish (Aanes et al., 2011; Bazzini et al., 2012; Harvey et al., 2013; Mishima and Tomari, 2016), one-third in C. elegans and mouse (Baugh et al., 2003; Hamatani et al., 2004), to about two-thirds in Drosophila (Thomsen et al., 2010). All animal embryos undergo phased maternal mRNA clearance; the initial phase is directed by maternally provided gene products whereas the later phases require zygotically synthesized products. The scale and dynamics of these phases varies across species, with respect to both time and developmental stage (Fig. 1; Table 1). Furthermore, technical differences among studies affect quantification (Boxes 2 and 3). Finally, in animals that set aside primordial germ cells in the early embryo, the MZT differs in soma versus germline (Box 4). In Drosophila, an early maternally directed wave of decay is triggered upon egg activation and does not require fertilization; this is followed by one or more waves that require transcription of the zygotic genome and are therefore zygotically directed (Bashirullah et al., 2001; Bashirullah et al., 1999; Tadros et al., 2007; Tadros et al., 2003). About 25% of the cleared transcripts are degraded strictly by the maternal machinery, 35% strictly through the zygotic machinery, while 40% show mixed decay effected by both maternal and zygotic mechanisms (Fig. 1A) (De Renzis et al., 2007; Tadros et al., 2007; Thomsen et al., 2010). In C. elegans, about 30% of the maternal mRNAs are targeted for degradation by the one-cell stage, whereas another 30% are degraded starting at the four-cell stage, coinciding with the activation of zygotic transcription (Fig. 1B) (Baugh et al., 2003; Stoeckius et al., 2014). In the echinoderm S. purpuratus, there appear to be three waves of maternal transcript degradation, but the role of maternal versus zygotic gene products in directing clearance is unknown (Fig. 1C) (Tu et al., 2014). In zebrafish, of the cleared maternal transcripts, about 60% degrade between the one-cell and 16-cell stages, while the remaining 40% degrade subsequently, coinciding with zygotic transcription (Aanes et al., 2011; Mathavan et al., 2005; Mishima and Tomari, 2016). Expression profiling in zebrafish lacking TATA- binding protein (Ferg et al., 2007) or treated with α-amanitin (Mishima and Tomari, 2016), and therefore unable to undergo zygotic genome activation, have shown that the latter wave of 1 Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany. 2 Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada. *Authors for correspondence ([email protected]; howard.lipshitz@ utoronto.ca) N.L.V., 0000-0001-8782-9775; H.D.L., 0000-0002-7372-4419 1 © 2019. Published by The Company of Biologists Ltd | Development (2019) 146, dev161471. doi:10.1242/dev.161471 DEVELOPMENT

The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

REVIEW

The maternal-to-zygotic transition revisitedNadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,*

ABSTRACTThe development of animal embryos is initially directed by maternalgene products. Then, during the maternal-to-zygotic transition (MZT),developmental control is handed to the zygotic genome. Extensiveresearch in both vertebrate and invertebrate model organisms hasrevealed that the MZT can be subdivided into two phases, during whichvery different modes of gene regulation are implemented: initially,regulation is exclusively post-transcriptional and post-translational,following which gradual activation of the zygotic genome leads topredominance of transcriptional regulation. These changes in thegene expression program of embryos are precisely controlled andhighly interconnected. Here, we review current understanding ofthe mechanisms that underlie handover of developmental controlduring the MZT.

KEY WORDS: MZT, Genome activation, Maternal mRNAs

IntroductionEarly animal development is controlled by maternal mRNAs andproteins that are loaded into the egg during oogenesis. Theseimplement fundamental molecular and cellular processes, as well asthe specification of initial cell fates and pattern. As developmentproceeds, control is handed over from maternally provided geneproducts to those synthesized from the zygotic genome. Thismaternal-to-zygotic transition (MZT) is characterized by multipleevents, the most striking among which are the elimination of a largesubset of maternal gene products and the onset of transcription fromthe zygote’s genome (Box 1).The MZT has been referred to previously as a ‘play in two acts’

(Tadros and Lipshitz, 2009). Since then, technological advances havedramatically increased our understanding of the MZT. Although itremains a two-act play, many scenes and players have been added,and the plot has become more complex and better understood. Here,we describe how the gene expression program of embryos is shapedduring the MZT. First, we describe the scale and dynamics ofmaternal control, as well as the processes that influence the maternalgene expression program. These include the regulation of maternalmRNA stability and translation, as well as the modulation of proteinstability and functions by post-translational modifications. Then, wediscuss how the zygotic gene expression program is activated. Thisincludes roles for cell cycle length, transcriptional repressors andactivators, and changes in chromatin organization. Finally, wedescribe how and why the maternal and zygotic gene expressionprograms are intertwined with each other to ensure successfulhandover of developmental control from one generation to the next.

Regulation of maternal gene productsRegulation of mRNA stability and clearanceAll animal oocytes are loaded with mRNA species representing alarge fraction of the protein-coding capacity of their genome(summarized in Table 1). Estimates from global analyses suggestthat the maternal transcripts represent a range of the protein-codingtranscriptome, from about one-third in the mouse (Wang et al.,2004) and Caenorhabditis elegans (Baugh et al., 2003; Stoeckiuset al., 2014), to three-quarters in Drosophila melanogaster (DeRenzis et al., 2007; Lécuyer et al., 2007; Tadros et al., 2007;Thomsen et al., 2010), the echinoderm Strongylocentrotuspurpuratus (Wei et al., 2006) and the zebrafish, Danio rerio(Aanes et al., 2011; Harvey et al., 2013). During the MZT, a subsetof the maternal transcripts is cleared from the embryo (Boxes 2 and3). Estimates range from about one-quarter of the maternaltranscripts in zebrafish (Aanes et al., 2011; Bazzini et al., 2012;Harvey et al., 2013; Mishima and Tomari, 2016), one-third inC. elegans and mouse (Baugh et al., 2003; Hamatani et al., 2004),to about two-thirds in Drosophila (Thomsen et al., 2010).

All animal embryos undergo phased maternal mRNA clearance;the initial phase is directed by maternally provided gene productswhereas the later phases require zygotically synthesized products.The scale and dynamics of these phases varies across species, withrespect to both time and developmental stage (Fig. 1; Table 1).Furthermore, technical differences among studies affectquantification (Boxes 2 and 3). Finally, in animals that set asideprimordial germ cells in the early embryo, the MZT differs in somaversus germline (Box 4).

In Drosophila, an early maternally directed wave of decay istriggered upon egg activation and does not require fertilization; thisis followed by one or more waves that require transcription of thezygotic genome and are therefore zygotically directed (Bashirullahet al., 2001; Bashirullah et al., 1999; Tadros et al., 2007; Tadroset al., 2003). About 25% of the cleared transcripts are degradedstrictly by the maternal machinery, 35% strictly through the zygoticmachinery, while 40% show mixed decay effected by both maternaland zygotic mechanisms (Fig. 1A) (De Renzis et al., 2007; Tadroset al., 2007; Thomsen et al., 2010). In C. elegans, about 30% of thematernal mRNAs are targeted for degradation by the one-cell stage,whereas another 30% are degraded starting at the four-cell stage,coinciding with the activation of zygotic transcription (Fig. 1B)(Baugh et al., 2003; Stoeckius et al., 2014).

In the echinoderm S. purpuratus, there appear to be three wavesof maternal transcript degradation, but the role of maternal versuszygotic gene products in directing clearance is unknown (Fig. 1C)(Tu et al., 2014). In zebrafish, of the cleared maternal transcripts,about 60% degrade between the one-cell and 16-cell stages, whilethe remaining 40% degrade subsequently, coinciding with zygotictranscription (Aanes et al., 2011; Mathavan et al., 2005; Mishimaand Tomari, 2016). Expression profiling in zebrafish lacking TATA-binding protein (Ferg et al., 2007) or treated with α-amanitin(Mishima and Tomari, 2016), and therefore unable to undergozygotic genome activation, have shown that the latter wave of

1Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße108, 01307 Dresden, Germany. 2Department of Molecular Genetics, University ofToronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada.

*Authors for correspondence ([email protected]; [email protected])

N.L.V., 0000-0001-8782-9775; H.D.L., 0000-0002-7372-4419

1

© 2019. Published by The Company of Biologists Ltd | Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 2: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

clearance requires zygotic transcription (Fig. 1D). In Xenopustropicalis, about one-third of the maternal transcripts are clearedbefore the major wave of zygotic genome activation (ZGA) (Tanet al., 2013), while 15% are cleared after ZGA (Fig. 1E) (Graindorgeet al., 2006).In the mouse, the onset of the earliest wave of maternal transcript

degradation is triggered by completion of meiosis (i.e. beforefertilization and thus not pictured in Fig. 1F); a second wave ofdegradation is triggered by fertilization; and a third, zygoticallydirected, wave follows the major activation of the zygotic genomeafter the two-cell stage (Hamatani et al., 2004; Svoboda et al.,2015). Gene expression profiling in human embryos suggests thatthey too undergo at least two waves of maternal transcript clearance(Fig. 1G) (Dobson et al., 2004; Zhang et al., 2009b).As maternal mRNAs can be stable for days, weeks, months or

years in oocytes but are then degraded rapidly in a matter of hoursor, at most, days, understanding this component of theMZT requireselucidation of the mechanisms underlying both long-term transcriptstabilization and rapid transcript destabilization. These processes areregulated by RNA-binding proteins, small non-coding RNAs, RNAmodifications and ‘codon optimality’ (Fig. 2).

RNA-binding proteinsRNA-binding proteins (RBPs) regulate either stabilization of storedmaternal mRNAs in oocytes or their destabilization during the MZT.The particular RBPs that mediate these processes appear to varyacross species (Table 1). However, in general, there have not been anysystematic studies aimed at assessing whether RBPs identified as keyregulators in one species exert similar effects in others.In X. laevis, the Y-box RBP FRGY2 binds without sequence

specificity to maternal mRNAs and functions to translationallyrepress and stabilize them (Bouvet and Wolffe, 1994; Matsumotoet al., 1996). Similarly, the zebrafish Y-box protein, Ybx1, globallyrepresses maternal mRNA translation in oocytes (Sun et al., 2018),and in mouse oocytes, the Y-box protein MSY2 stabilizes maternaltranscripts (Medvedev et al., 2011; Yu et al., 2001; Yu et al., 2002).Here, upon oocyte maturation, MSY2 is phosphorylated by theCDC2A (CDK1) kinase and MSY-bound mRNAs are released(Medvedev et al., 2008). In C. elegans and Drosophila, Y-boxproteins are expressed during oogenesis but a role in transcriptstabilization has not yet been identified (Arnold et al., 2014; Boaget al., 2005; Mansfield et al., 2002). Instead, homologs of the dead-

box helicase Dhh1 (CGH-1 in C. elegans, ME31B in Drosophila)have been implicated in stabilization and translational repression ofmaternal mRNAs (Arnold et al., 2014; Boag et al., 2005; Wanget al., 2017).

The role of RBPs as trans-acting factors that regulate andcoordinate maternal transcript degradation has been particularlywell studied inDrosophila embryos (Fig. 2A). Two RBPs, Smaug, aSAM-domain RBP (Chen et al., 2014; Tadros et al., 2007) andBrain tumor (BRAT), a TRIM-NHL RBP (Laver et al., 2015a),regulate the maternally directed wave of decay. Subsequent,zygotically directed decay can be separated into two phases. Thefirst is driven by miRNAs (Benoit et al., 2009; Bushati et al., 2008)(discussed below). The second is mediated by Brain tumor (BRAT)and possibly also Pumilio (PUM), a PUF-domain RBP (Gerberet al., 2006; Laver et al., 2015a,b; Thomsen et al., 2010). The smaugmRNA itself is translationally repressed during oogenesis by PUMand additional unknown factors; repression is relieved upon eggactivation by the Pan gu (PNG) serine/threonine kinase (Fig. 3A)(Tadros et al., 2007). Smaug binds to hairpin structures in its targetmRNAs (Aviv et al., 2003; Chen et al., 2014; Dahanukar et al.,1999; Semotok et al., 2008; Smibert et al., 1999) and can triggertheir degradation by recruiting the CCR4-NOT-deadenylasecomplex (Fig. 2A) (Semotok et al., 2005). Smaug also repressestarget mRNA translation via recruitment of Argonaute 1 and theeIF4E-binding protein Cup (Nelson et al., 2004; Pinder andSmibert, 2013). The majority of the targets of Smaug are bothrepressed and degraded, while smaller subsets are degraded but notrepressed, or vice versa (Chen et al., 2014; Nelson et al., 2007;Semotok et al., 2005; Semotok et al., 2008). PUM and BRAT bindto single-stranded motifs in their target transcripts (Laver et al.,2015a; Loedige et al., 2014). BRAT directs degradation of hundredsof maternal transcripts via both the maternal and the zygoticpathways (Laver et al., 2015a,b), whereas PUM appears toparticipate predominantly in zygotically directed clearance(Gerber et al., 2006; Laver et al., 2015a,b). In the maternal waveof decay, the targets of BRAT do not significantly overlap withthose of Smaug (Laver et al., 2015a), suggesting that these twoRBPs act independently of each other on distinct subsets of thematernal transcriptome. Interestingly, the smaug mRNA is itselftargeted for degradation at the end of the MZT by BRAT, andpossibly other factors, including PUM (Fig. 3A) (Laver et al.,2015a,b). Smaug, BRAT and PUM all promote transcriptdeadenylation (Newton et al., 2015; Semotok et al., 2005; Temmeet al., 2010; Weidmann et al., 2014). Thus, these RBPs act asspecificity factors that recruit a conserved degradation machinery toclear specific subsets of maternal mRNAs.

Another class of RBPs implicated in maternal mRNA clearancecomprises the AU-rich-element binding proteins (ARE-BPs).ARE-BPs have a role in transcript destabilization during the MZTin C. elegans (D’Agostino et al., 2006; Gallo et al., 2008; Schubertet al., 2000), zebrafish (Rabani et al., 2017) and X. laevis (Detivaudet al., 2003; Graindorge et al., 2006; Paillard et al., 1998; Voeltz andSteitz, 1998), and possibly also mouse (Fig. 2A) (Ramos et al.,2004). Although a motif resembling AREs is enriched inDrosophila mRNAs that are destabilized during the MZT (DeRenzis et al., 2007), a role for ARE-BPs has not yet been identifiedin Drosophila. In Xenopus, ARE-BPs appear to function togetherwith the embryonic deadenylation element binding protein (EDEN-BP, also known as CUGBP1) (Graindorge et al., 2008), whichdirectsmaternal transcript clearance via the recruitment of the poly(A)ribonuclease (PARN) (Moraes et al., 2006). In zebrafish, a recentstudy has implicated hnRNPA1, an RBP that binds to the 3′UTR of

Box 1. The maternal-to-zygotic transition versus themid-blastula transitionThe terms ‘maternal-to-zygotic transition’ (MZT) and ‘mid-blastulatransition’ (MBT) are often used interchangeably in the literature,leading to confusion. Here, we define the MZT and MBT as two distinctconcepts in early embryo development. The MZT describes acoordinated series of molecular events, starting with the degradation ofmaternally deposited transcripts and ending with global activation of thezygotic genome. The MZT can last from a few hours (as in Drosophilaand C. elegans) to days (as in mouse and human). In contrast, the MBTdescribes a specific stage during the development of the embryo, whichis marked by lengthening and desynchronization of the cell cycles. Forexample, following rapid and synchronous cleavage cycles, the MBToccurs at cycle 10 in zebrafish, at cycle 12 in Xenopus and at cycle 14 inDrosophila. There are several cases where the MBT does not coincidewith completion of the MZT. As examples, in Ascaris suum the MZT iscompleted long before its MBT (Wang et al., 2014), whereas, inDrosophila, the MBT is completed before the final wave of maternalmRNA decay (Laver et al., 2015a,b).

2

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 3: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

0 00 12 24

1362Cleavage cycle

Time (h)

F Mouse Mus musculus

0 30 2 4

6613Cleavage cycle

Time (h)

E Frog Xenopus tropicalis

Cleavage cycleTime (h)

00 1

8 213

314

A Insect Drosophila melanogaster

1.6 2.40.80Cleavage cycle

Time (h) 01 3 5

B Nematode Caenorhabditis elegans

D Fish Danio rerio

83.712

2.320

5.314

0 1Cleavage cycleTime (h)

0 00 16 32

1482Cleavage cycle

Time (h)

G Human Homo sapiens

16 2481Cleavage cycle

Time (h) 0~7 ~8 ~10

C Echinoderm Strongylocentrotus

purpuratus

Fig. 1. The maternal-to-zygotic transition (MZT). Red curves depict destabilized maternal transcripts; red gradients represent timing of the multiple phases oftranscript degradation. Blue curve depicts transcription from the zygotic genome; blue gradient represents a gradual increase ingene numbers transcribedduring ZGA.Schematics depicting embryo developmental stages for each organism are shown above the corresponding cleavage cycle and time, after fertilization. (A)Drosophilamelanogaster, (B)Caenorhabditis elegans, (C)Strongylocentrotus purpuratus, (D)Danio rerio, (E)Xenopus tropicalis, (F)Musmusculus and (G)Homo sapiens. Thefirst wave of decay in mammals occurs prior to fertilization and is, therefore, not depicted. Adapted, with permission, from Tadros and Lipshitz (2009).

3

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 4: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

Table1.

Sca

lean

dregu

latio

nof

materna

ltrans

cripts

Spe

cies

Materna

llyload

edmRNA

cove

rage

(%of

geno

me)

Stabilization

and/or

repres

sion

ofmRNAs

intheoo

cyte

mRNAclea

ranc

e(%

ofmaterna

l)

Mec

hanism

ofmaterna

lmRNAclea

ranc

e

RNA-binding

and/or

asso

ciated

proteins

SmallR

NAs

Cod

onus

eRNAmod

ifica

tions

C.e

lega

ns∼35

%(Bau

ghet

al.,20

03;

Stoec

kius

etal.,20

14)

CGH-1

(Arnoldet

al.,20

14;

Boa

get

al.,20

05)

∼30

%(Bau

ghet

al.,20

03;S

toec

kius

etal.,20

14)

MEX-5/6

(ARE-BP)

(D’Ago

stinoet

al.,20

06;G

alloet

al.,

2008

;Sch

uberte

tal.,

2000

)

End

o-siRNA*

(Stoec

kius

etal.,20

14)

Not

stud

ied

Not

stud

ied

D.m

elan

ogas

ter

∼75

%(Tad

roset

al.,20

07;

Tho

mse

net

al.,20

10)

ME31

B*

(Wan

get

al.,20

17)

∼60

%(Tho

mse

net

al.,20

10)

Smau

g(C

henet

al.,20

14;T

adroset

al.,

2007

)

Pum

ilio

(Gerbe

ret

al.,20

06;L

aver

etal.,

2015

a;La

veret

al.,20

15b)

Brain

Tum

or(Lav

eret

al.,20

15a)

ARE-BP*

(DeRen

ziset

al.,20

07)

miR-309

(Bus

hatiet

al.,20

08)

Other

miRs*

(Luo

etal.,20

16)

piRNAs*

(Rou

gete

tal.,

2010

;Barck

man

net

al.,

2015

)

Yes

(ME31

B?)*

(Baz

zini

etal.,

2016

)

Not

stud

ieddu

ring

theMZT

D.rerio

∼70

%(Aan

eset

al.,20

11;

Harveyet

al.,20

13)

YBX1

(Sun

etal.,20

18)

>25

%(Aan

eset

al.,20

11;H

arve

yet

al.,20

13;M

ishimaan

dTom

ari,20

16)

hnRNPA*

(Des

picet

al.,20

17)

PUM*

(Rab

anie

tal.,

2017

)

ARE-BP*

(Rab

anie

tal.,

2017

)

miR-430

(Baz

zini

etal.,20

12;

Gira

ldez

etal.,20

06)

Yes

(DDX6?

)(Baz

zini

etal.,

2016

;Mishima

andTom

ari,20

16)

N6-m

ethy

lade

nosine

(Zha

oet

al.,20

17)

Terminal

uridylation

(Cha

nget

al.,20

18)

Xen

opus

Not

stud

ied

FRGY2

(X.lae

vis)

(Bou

veta

ndWolffe

,199

4;Matsu

motoet

al.,19

96)

Not

stud

ied

ARE-BP

(X.lae

vis)

(Voe

ltzan

dSteitz,1

998;

Morae

set

al.,20

06)

miR-427

(X.lae

vis)

(Lun

det

al.,20

09)

Yes

(DDX6?

)*(X.lae

vis)

(Baz

zini

etal.,

2016

)

Terminal

uridylation

(X.lae

vis)

(Cha

nget

al.,20

18)

CUGBP1/EDEN-BP

(X.tropica

lis)(G

raindo

rgeet

al.,

2008

;Morae

set

al.,20

16)

M.m

uscu

lus

∼40

%(W

anget

al.,20

04)

MSY2

(Med

vede

vet

al.,20

11;

Yuet

al.,20

01;Y

uet

al.,20

02)

∼33

%(H

amatan

ieta

l.,20

04)

BTG4

(Yuet

al.,20

16)

ZFP36

L2(ARE-BP)

(Ram

oset

al.,20

04)

End

o-siRNA*

(Ohn

ishi

etal.,20

10;

Stein

etal.,20

15)

Yes

(DDX6?

)*(Baz

zini

etal.,

2016

)

N6-m

ethy

lade

nosine

(Iva

nova

etal.,20

17)

Terminal

uridylation

(Cha

nget

al.,20

18)

*Predicted

throug

hindirect

eviden

cebu

tadirect

mec

hanism

inmaterna

lmRNAregu

latio

nno

texp

erim

entally

show

n.

4

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 5: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

maternal transcripts through an AGGGA motif, in clearance of asubset of maternal mRNAs after ZGA (Despic et al., 2017).In the mouse, the oocyte-expressed protein BTG4, although not

itself anRBP, links eIF4E to theCCR4-NOT-deadenylase complex totrigger degradation of maternal mRNAs that are actively translated(Fig. 2A) (Yu et al., 2016). Embryos from female Btg4−/− miceproduce oocytes that complete meiosis but fail to clear maternaltranscripts. Reminiscent of the case for Drosophila smaug mutants,zygotically transcribed genes are downregulated and the embryos failto develop to the two-cell stage (Yu et al., 2016). Furthermore, also

reminiscent of smaug mRNA translation at egg activation beingdependent on the PNG kinase (Tadros et al., 2007), translation ofBTG4 protein is triggered by activation of the MAP kinases ERK1and ERK2 during meiotic maturation (Yu et al., 2016).

Small non-coding RNAsSmall non-coding RNAs that have been implicated in theMZT includemicroRNAs (miRNAs), which are processed from primary transcriptsproduced by miRNA-encoding genes (reviewed by Gebert andMacRae, 2019), PIWI-interacting RNAs (piRNAs; PIWI, P-element

A RNA-binding and/or RNA-associated proteins

B Small RNAs

C RNA modifications

D Codon use

D. melanogaster D. rerio M. musculus

N6-methyladenosine

m7G

AAAAAm6AYTHDF2

?

N6-methyladenosine

m7G

AAAAAm6AYTHDF2

?

?

Endo-siRNA

RISC

m7G

AAAAA

SMG

AAAAASRE

CCR4/NOT

m7G

PUMAAAAA

PUM motif

CCR4/NOT

m7G

AAAAA

BRAT

BRAT motif

CCR4/NOT

m7G

*hnRNPA1

AAAAAAGGGA

m7G eIF4G

BTG4

m7G

eIF4E

AAAAA

CCR4-NOT

*ARE-BP

AAAAAAU-rich element

m7G

Terminal uridylation

m7G

AAAAAUU

TUT4/7

Terminal uridylation

m7G

AAAAAUU

TUT4/7

Slow ribosomes

m7G

AAAAA

ME31b?

Slow ribosomes

m7G

AAAAA

DDX6?

Slow ribosomes

m7G

AAAAA

DDX6?

miR-309 Other miRs? piRNAs?

AGO1RISC

m7G

AAAAA

CCR4/NOT

miR-430

RISC

m7G

AAAAA

CCR4/NOT

*ARE-BP

AAAAAUUA/poly-U

m7G

*PUMAAAAA

PUM motif

m7G

*ARE-BP

AAAAAAU-rich element

m7G

D. melanogaster D. rerio M. musculus

D. melanogaster D. rerio M. musculus

D. rerio M. musculus

Fig. 2. Mechanisms of maternal transcriptdegradation in model organisms. Severalmechanisms directing maternal transcriptdegradation are compared acrossD. melanogaster, D. rerio and M. musculus.(A) The best-studied RNA-binding proteins(RBPs) for each organism are shown. Smaug(SMG), Pumilio (PUM), Brain tumor protein(BRAT), AU-rich binding element protein(ARE-BP) and Heterogeneous nuclearribonucleoprotein A1 (hnRNPA1). Theirhomologs across organisms have largely notbeen studied and are omitted from this figure.B-cell translocation gene 4 (BTG4) in mouse,though not an RBP, is shown because it triggerstranscript degradation by recruiting theCCNR4-NOT-deadenylase complex.(B) MicroRNAs direct maternal transcript decayvia the Argonaute (AGO1)/RNA-inducedsilencing complex (RISC) in Drosophila andzebrafish; they are present but may not play arole in the mouse (therefore, not shown) whereendo-siRNAs may instead function. (C) RNAmodifications, such as N6-methyladenosine(m6A) and terminal uridylation, promote decaythrough the action of YTH N6-MethyladenosineRNA Binding Protein 2 (YTHDF2) and TerminalUridylyl Transferase 4/7 (TUT4/7), respectively.Analogous modifications have been found inD. melanogaster, but their functions during theMZT have not been investigated. (D) Codonoptimality directs maternal transcript stability inD. melanogaster, D. rerio and M. musculus, butthe mechanism for this regulation has only beenstudied in yeast thus far; homologs of yeastDhh1p (ME31B, DDX6) are shown. Asterisksindicate enrichment of cis-elements, whereasthe RBPs have not yet been investigated.Question marks indicatewhere trans-factors areknown but mechanisms have not been studiedin detail (Table 1).

5

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 6: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

induced wimpy testis), which are derived from transposable elementsresident in the genome (reviewed by Czech et al., 2018), andendogenous small interferingRNAs (endo-siRNAs),which are derivedfrom double-stranded hybrids of mRNAs or transposable elements(reviewed by Piatek and Werner, 2014) (Table 1).The most well studied are miRNAs, which play a crucial role in

directing the zygotic wave of maternal transcript decay in multiplespecies (Fig. 2B). In zebrafish, the miR-430 family of miRNAs isexpressed during early ZGA and is required for translationalrepression, deadenylation and decay of about 40% of the maternaltranscripts that are cleared during the MZT (Fig. 2B) (Bazzini et al.,2012; Giraldez et al., 2006). An orthologous mechanism exists duringthe X. laevis MZT through its miR-430 ortholog, miR-427. As inzebrafish, miR-427 is expressed zygotically and mediates thedeadenylation and clearance of maternal transcripts (Lund et al.,2009). An analogous pathway exists in Drosophila, mediated byzygotic transcription of miRNAs from themiR-309 cluster, which arerequired for the degradation of 14% of transcripts undergoing the latewave of decay (Fig. 2B) (Bushati et al., 2008). Zygotic expression ofmore than 70 species of miRNAs, including the miR-309 family,depends on the Smaug RBP (Benoit et al., 2009; Luo et al., 2016). Insmaug mutants, failure to produce these miRNAs results instabilization of a large number of maternal transcripts that arenormally cleared in the zygoticwave of decay (Benoit et al., 2009; Luoet al., 2016). Thus, Smaug functions directly to clearmaternalmRNAsprior to ZGA and indirectly to clear maternal transcripts after ZGA(Fig. 3A). The Drosophila zygotic miRNAs do not bear sequencehomology to vertebratemiR-430/miR-427, suggesting that microRNAtargeting of the maternal transcriptome during the MZT may havearisen independently in the vertebrate and invertebrate lineages.piRNAs have also been implicated in maternal transcript decay in

Drosophila (Barckmann et al., 2015; Dufourt et al., 2017; Rougetet al., 2010) where hundreds of maternal mRNAs have beenreported to co-purify with PIWI, Argonaute 3 and Aubergine, and tobe targeted by the piRNA pathway for degradation (Barckmannet al., 2015).Endo-siRNAs (‘22G-RNAs’) have been shown to clear a subset of

maternal mRNAs from early C. elegans embryos (Stoeckius et al.,2014). Although miRNAs and endo-siRNAs are present, miRNAactivity appears to be suppressed in mouse oocytes and earlyembryos, and removal of DGCR8, which is essential formiRNA biogenesis, has no effect on preimplantation development(Ohnishi et al., 2010; Suh et al., 2010; Tang et al., 2007). It is possible

that endo-siRNAs serve as regulators of maternal mRNA clearance(Fig. 2B) (Lykke-Andersen et al., 2008); however, conditionalremoval of AGO2 from mouse oocytes results in failure to completemeiosis, preventing analyses in early embryos (Stein et al., 2015).

RNA modificationsOver the past few years, it has become clear that chemicalmodifications of mRNAs either during or after their synthesis canplay a role in determining their fate. N6-methylation of adenosine(m6A), for example, can cause a structural switch in RNA thatcontrols accessibility to protein-binding motifs (Liu et al., 2015).In zebrafish embryos, more than one-third of maternal mRNAspecies are methylated on adenosine (Zhao et al., 2017). The m6A-binding protein YTHDF2 is required for clearance of almost half ofthe maternal mRNAs that are degraded early in the MZT, as well asover one-quarter of those that are degraded later (Fig. 2C) (Zhaoet al., 2017). Maternal YTHDF2 is also required for clearance of asubset of the transcriptome of the mouse oocyte (Ivanova et al.,2017). However, at least in zebrafish, not all methylated RNAs aredestabilized, and not all transcripts that are degraded in aYTHDF2-dependent manner are methylated (Zhao et al., 2017).The exact mechanisms of regulation and the interplay betweenm6A-directed decay, and other pathways of transcript clearance,remain to be elucidated.

Another form of mRNA modification during the vertebrate MZTis terminal uridylation of the poly(A) tail of an mRNA (Chang et al.,2018). In zebrafish, Xenopus and mouse, terminal uridylation of thetranscriptome increases greatly during the MZT and promotes rapiddecay of a subset of transcripts with short poly(A) tails (Fig. 2C)(Chang et al., 2018).

Codon optimalityIn unicellular organisms, ‘optimal’ codons are defined as those withhigh cognate tRNA abundance, whereas non-optimal codons for thesame amino acid have low cognate tRNA levels (Hanson and Coller,2018). In yeast, the DEAD-box protein Dhh1p preferentially targetstranscripts enriched for non-optimal codons by associating with

Box 2. Gene expression analysisTo precisely measure changes in RNA levels during the MZT, severalgene expression analysis methods can be used, each of which has itstheir own benefits and caveats. RNA sequencing provides genome-widequantitative information. However, as regulation of poly(A) tail length isan important component of the MZT, the most accurate quantification ofRNA levels requires total RNA-sequencing after depletion of rRNAsrather than poly(A) RNA-sequencing, which biases reads towardstranscripts with long poly(A) tails and, therefore, underestimates thenumber of transcript species present (Collart et al., 2014). An alternativeto RNA sequencing is the Nanostring approach, which providesinformation on fewer transcripts but allows for precise quantificationwithout the need to fragment, amplify or reverse transcribe the RNA(Geiss et al., 2008). Nanostring analysis has proven especially useful indetecting low-abundance zygotic transcripts against a background ofenormous amounts of maternal RNA (Joseph et al., 2017; Sandler andStathopoulos, 2016), which is often hard to achieve using (non-targeted)RNA-sequencing methods.

Box 3. Temporal and spatial analysis of the MZTTo distinguish between maternal and zygotic transcripts that are oftenpresent at the same time, zygotic contributions have been removed bytranscription inhibition (Lee et al., 2013), the use of chromosomaldeficiencies (De Renzis et al., 2007) or the analysis of activatedunfertilized eggs (Bashirullah et al., 2001; Bashirullah et al., 1999;Tadros et al., 2007; Tadros et al., 2003). Conversely, to analyzezygotically transcribed RNA, newly synthesized RNAs have beenspecifically labeled, isolated and sequenced (Chan et al., 2018preprint; Heyn et al., 2014), single nucleotide variations betweenstrains have been used to identify transcription from the paternalgenome (Harvey et al., 2013; Lott et al., 2011) or intron signal has beenused as amarker of de novo transcription (Lee et al., 2013). The analysisof transcript levels in (pools of) whole embryos provides transcriptinformation averaged over all cells of the embryo. Spatial information canbe obtained by sequencing embryo sections (Combs and Eisen, 2013;Junker et al., 2014) or single-cell sequencing of dissociated cells (Briggset al., 2018; Farrell et al., 2018), which can be mapped back onto theembryo based on markers with a known expression pattern.Alternatively, transcripts can be visualized either in fixed or liveembryos (Campbell et al., 2015; Perez-Romero et al., 2018; Stapelet al., 2018; Stapel et al., 2016). Although low throughput, this providesthe best spatial information and can be quantitative when singletranscripts can be detected (Stapel et al., 2016).

6

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 7: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

slow-moving ribosomes and directing these transcripts for degradation(Presnyak et al., 2015; Radhakrishnan et al., 2016). Studies inzebrafish have found preferential degradation during the MZT oftranscripts enriched for non-optimal codons (Bazzini et al., 2016;Mishima and Tomari, 2016), a process that may also occur in mouse,Xenopus andD.melanogaster (Bazzini et al., 2016) (Fig. 2D). It is notyet known whether proteins homologous to Dhh1p (DDX6 in mouseand fish, and ME31B in Drosophila) function in this process.

Regulation of maternal mRNA translationDuring Drosophila egg activation (i.e. at the beginning of its MZT),translational efficiency increases for up to 50% of maternal mRNAsand decreases for up to 20%, as measured by ribosome footprinting(Kronja et al., 2014b). The translation of maternal transcripts has alsobeen profiled in mouse, where 20% of the maternal transcriptome issignificantly depleted from polysomes during oocyte maturation,whereas 17% of the maternal transcriptome is significantly enriched(Chen et al., 2011). There is a direct correlation between poly(A) taillength and translational efficiency in early embryos of zebrafish, X.laevis and Drosophila (Eichhorn et al., 2016; Subtelny et al., 2014).These correlations diminish upon ZGA and are not found in non-embryonic tissue types across several species (Subtelny et al., 2014).Thus, the poly(A) tail may play a role in the regulation of translationprimarily in transcriptionally silent stages.Themechanisms of cytoplasmic polyadenylation and activation of

maternal mRNA translation were first shown in X. laevis oocytes.Upon maturation, the Aurora kinase triggers binding of cytoplasmicpolyadenylation element binding protein (CPEB) to cytoplasmicpolyadenylation specificity factor (CPSF) and the mRNA. Together,they displace the PARN deadenylase and recruit the GLD2 poly(A)polymerase (Barnard et al., 1993; Cao and Richter, 2002; Groismanet al., 2002; Hake and Richter, 1994; Kim and Richter, 2006;Stebbins-Boaz et al., 1999). This results in poly(A) tail lengtheningand translational activation. After fertilization, a subset of maternaltranscripts undergoes CPEB-mediated polyadenylation in theembryo prior to zygotic transcription, likely regulating the firstwave of translational activation (Collart et al., 2014). However, themechanisms regulating polyadenylation in the X. tropicalis embryo

have yet to be determined. The CPEB protein family also coordinatescytoplasmic polyadenylation and translation in zebrafish, wheremore than 40% of maternal mRNAs undergo cytoplasmicpolyadenylation in early embryos (Winata et al., 2018). Thetranslation of these transcripts increases during the MZT, whereasthere is a decrease in translation of transcripts lacking elongatedpoly(A) tails (Winata et al., 2018). CPEB1 also functions duringmouse oocyte maturation; ERK1/2 phosphorylation of CPEB1causes polyadenylation-mediated translation of BTG4 and otheressential maternal proteins, such as the cell cycle regulator, Cyclin Band the DAZL RBP (Sha et al., 2017). DAZL, in turn, directstranslational activation during oocyte maturation (Chen et al., 2011;Fukuda et al., 2018). Autoregulation of its own mRNA by DAZLestablishes a positive feedback loop together with CPEB1, whichensures the progression ofmeiosis and proper translational activation(Sousa Martins et al., 2016).

In early Drosophila embryos, the Wispy (GLD2) cytoplasmicpoly(A) polymerase directs polyadenylation of maternal mRNAsand is essential for the MZT (Benoit et al., 2008; Cui et al., 2008;Cui et al., 2013; Salles et al., 1994). However, relative changes inpoly(A) tail length and translational efficiency are retained even inthe absence of Wispy. Thus, the current hypothesis is that selectiveshortening, rather than lengthening of poly(A) tails serves as themajor determinant of maternal mRNA translation at this stage(Eichhorn et al., 2016). Furthermore, in Drosophila, PNG triggerspolyadenylation and translation at the beginning of the MZT(Fig. 3A) (Tadros et al., 2007; Vardy and Orr-Weaver, 2007). Morethan 60% of the maternal mRNAs that undergo either increases ordecreases in translation depend on the PNG kinase for theseprocesses (Kronja et al., 2014b). The Smaug RBP serves as a majormediator of PNG-dependent repression, with most of this repressionattributable to poly(A) tail shortening (Eichhorn et al., 2016).However, cytoplasmic polyadenylation is not sufficient to rescuetranslation in png mutants, presumably because PNG must alsorelieve repression by specific RBPs such as PUM (Tadros et al.,2007; Vardy and Orr-Weaver, 2007).

Cytoplasmic polyadenylation and deadenylation also play keyroles in regulation of mRNA stability and translation in C. elegans(Fig. 3B) (Millonigg et al., 2014; Nousch et al., 2017; Nousch et al.,2013; Nousch et al., 2014). During oocyte maturation and the MZT,the translational status of hundreds of transcripts is coordinated byLIN-41, a TRIM-NHL RBP related to Drosophila BRAT. Actingantagonistically to LIN-41 are the RBPs, OMA-1 and OMA-2,which are related to the Tristetraprolin/TIS-11 ARE-BP (Tsukamotoet al., 2017). LIN-41 and the OMAs also interact with both theGLD-2 poly(A) polymerase and the CCR4-NOT-deadenylase(Tsukamoto et al., 2017). Combinatorial action of LIN-41, OMAsand GLD-2 in distinct RNP complexes may direct a repression-to-activation switch for specific target transcripts, which in turnencode RBPs that function in early embryogenesis (Tsukamotoet al., 2017).

In summary, during the MZT, cytoplasmic polyadenylation anddeadenylation affect both the stability and translation of mRNAs.While the machinery for these processes is conserved, the particularRBPs that confer specificity on subsets of transcripts vary acrossspecies. Likewise, whereas protein kinases play a key role intriggering translational derepression of maternal mRNAs, theidentity of these kinases varies across species.

Post-translational regulation of maternal proteinsDespite the documented importance of post-transcriptional regulationof maternal transcripts at the level of mRNA translation and stability,

Box 4. The MZT in primordial germ cellsIn animals that set aside primordial germ cells (PGCs) in their earlyembryos, there is additional spatial and temporal control of the MZT inthe PGCs relative to the soma. In C. elegans the smaller, posterior (P)product of the first cell division gives rise to the PGCs. ZGA is initiated bythe four-cell stage in the soma, while transcription remains silenced in theP-cell lineage due to the presence of a global transcriptional repressor,PIE-1 (Seydoux et al., 1996). The germ plasm at the posterior of theDrosophila embryo buds off to give rise to PGCs within which bothmaternal transcript degradation and ZGA are delayed relative to thesoma (Siddiqui et al., 2012). In the PGCs, as in the soma, both maternalmRNA clearance and ZGA are abrogated in smaug mutants (Siddiquiet al., 2012). Transcriptional repression in theDrosophilaPGCs dependson the Polar Granule Component protein, PGC, which blockstranscription elongation (Hanyu-Nakamura et al., 2019; Hanyu-Nakamura et al., 2008). In echinoderms, the PGCs (small micromeres)are formed from asymmetric divisions by the 32-cell stage. Clearedmaternal transcripts in the somatic cells are ‘protected’ in the smallmicromeres due to degradation of the Cnot6 transcript, which encodesan essential component of the CCR4-NOT-deadenylase complex(Oulhen and Wessel, 2016; Wessel et al., 2014). In zebrafish, PGC-expressed nanos1 and tdrd7 are protected from miR-430-mediatedtranscript degradation by the germline-expressed RBP Dead end 1(Dnd1) (Kedde et al., 2007; Mishima et al., 2006).

7

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 8: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

global transcriptome and proteome analyses prior to and during theMZT have revealed that post-translational regulation of proteinstability and function also play a major role in Drosophila (Beckeret al., 2018; Casas-Vila et al., 2017; Kronja et al., 2014a) and C.elegans (Stoeckius et al., 2014). For example, inC. elegansmore thanone-quarter of the transcriptome is downregulated at least twofold inearly embryos, whereas only 5% of the proteome shows a similardecrease (Stoeckius et al., 2014). These results highlightthe importance of an additional level of regulation at the post-translational level, through modifications that affect maternal proteinstability and function, which is essential for the progression of oocytematuration and the MZT (Liu et al., 2018a).One highly conserved mechanism of post-translational regulation

that combines phosphorylation and ubiquitin-dependent proteolysisoccurs at the beginning of the MZT (reviewed by Pesin andOrr-Weaver, 2008). Most animals are arrested during meiosis by thepresence of Cyclin B. Release from meiotic arrest is achieved bythe anaphase-promoting complex (APC), a cyclin-dependent E3ubiquitin ligase complex that is phosphorylated and activated uponfertilization to target Cyclin B for degradation.About 30% of the oocyte proteome is estimated to change in

phosphorylation state during Drosophila egg activation (Krauchunaset al., 2012). The PNG kinase complex, which plays a key role inpost-transcriptional regulation of maternal mRNAs, undergoessuch a change (Fig. 3A) (Hara et al., 2017). In Drosophila oocytes,the regulatory subunit, GNU, is phosphorylated by CYCB/CDK1,which blocks the binding of GNU to the kinase subunit. Degradationof CYCB by the APC during meiotic completion triggersdephosphorylation of GNU, which then binds to and activatesthe PNG kinase subunit. Subsequently, PNG phosphorylatesGNU, leading to GNU degradation and the inactivation of thecomplex (Hara et al., 2017). This temporally coordinatedactivation and self-inactivation tightly restricts the activity ofthis kinase to a short window during the early MZT, ensuringprecise post-translational control of its phosphorylation targets.The PNG kinase is essential for translation of the Smaug RBP inthe early embryo (discussed above). However, Smaug is rapidlycleared a couple of hours later, at the end of the MZT (Benoit et al.,2009). Indeed, towards the end of the MZT, not only Smaug butalso additional global post-transcriptional regulators, such asME31B, Cup and TRAL, undergo among the largest decreases inabundance in the entire proteome (Sysoev et al., 2016; Wang et al.,2017). Although the mechanisms that direct clearance of theseproteins are not yet known, they represent a striking example ofhow post-translational regulation has a major impact on post-transcriptional regulation during the MZT.Another example of post-translational regulation comes from

C. elegans (Fig. 3B). In early embryos, maternally supplied OMA-1and OMA-2 are phosphorylated by the DYRK kinaseMBK-2, whichallows binding to the transcription factor TAF-4, thus sequestering itin the cytoplasm and preventing premature ZGA (Guven-Ozkanet al., 2008). By the four-cell stage, phosphorylated OMA-1 andOMA-2 are ubiquitylated by accumulating levels of the Cullin-RINGE3 ubiquitin ligase (CRL), leading to degradation of the OMAsand release of TAF-4, which is then imported into the nucleuswhere it directs zygotic transcription (Guven-Ozkan et al., 2008).Post-translational regulation is important for inactivation andclearance of additional post-transcriptional regulators during theC. elegans MZT. The LIN-41, GLD-1 and CPB-3 RBPs are allcleared by the SCFSEL-10 E3 ubiquitin ligase (Kisielnicka et al., 2018;Spike et al., 2018). However, the signaling pathways that triggerinactivation and clearance of these RBPs differ: the CDK1 kinase

pathway clears LIN-41, while the MAP kinase pathway clearsGLD-1 (Spike et al., 2018).

In the mouse pre-implantation embryo, massive degradation ofmaternal proteins by autophagy is triggered by fertilization and isrequired for progression of early embryogenesis (Tsukamoto et al.,2008). While proteomic studies have identified the ubiquitin-proteasome pathway to be important during pre-implantationdevelopment as a whole (Zhang et al., 2009a), the first specificrole for this pathway during the MZT has only recently beencharacterized. The TAB1 kinase inhibits the action of the NFκBtranscription factor by retaining it in the cytoplasm. In earlyembryos, the E3 ubiquitin ligase RnF114 directs degradation ofTAB1, permitting translocation of NFκB into the nucleus and, thus,activation the NFκB pathway, which is essential for development(Yang et al., 2017). Indeed, either knockdown of RnF114 orpersistence of TAB1 protein prevents development beyond thetwo-cell stage (Yang et al., 2017).

Regulation of zygotic transcriptionScale and dynamics of zygotic transcriptionThe second act of the MZT is the onset of zygotic transcription.Historically, two transcriptional waves have been distinguished: aminor wave that occurs during the cleavage divisions; and a majorwave that, in many species, coincides with the lengthening of thecell cycle. Genome-wide gene expression analysis, however, hasrevealed that ZGA does not consist of two distinct waves, butinstead reflects a period over which transcription is graduallyactivated (Fig. 1) (Aanes et al., 2011; Collart et al., 2014; Harveyet al., 2013; Heyn et al., 2014; Lott et al., 2011; Owens et al., 2016;Pauli et al., 2012; Sandler and Stathopoulos, 2016; Tan et al., 2013;White et al., 2017).

In terms of the embryonic mitotic cell cycles, human, mouse andsea urchin start transcription the earliest, with the first zygotictranscripts being detected at the one-cell stage (Abe et al., 2015;Aoki et al., 1997; Gildor and Ben-Tabou de-Leon, 2015; Hamataniet al., 2004; Materna et al., 2010; Yan et al., 2013) (Table 2).In C. elegans, Xenopus, zebrafish and Drosophila, the first zygotictranscripts are detected in cell cycles 2, 3, 6 and 8, respectively(Chan et al., 2018 preprint; Collart et al., 2014; De Renzis et al.,2007; Edgar et al., 1994; Hadzhiev et al., 2019; Heyn et al., 2014;Hilbert et al., 2018 preprint; Kimelman et al., 1987; Kwasnieskiet al., 2019 preprint; Lécuyer et al., 2007; Lott et al., 2011; Mathavanet al., 2005; Owens et al., 2016; Paranjpe et al., 2013; Seydoux andFire, 1994; Skirkanich et al., 2011; Tan et al., 2013; Yanai et al., 2011;Yang et al., 2002), although there is some genetic evidence thattranscription may begin earlier in Drosophila (Ali-Murthy et al.,2013). In terms of absolute time, the very rapid cleavage cycles ofthe early Drosophila, Xenopus and zebrafish embryos mean that,in these species, ZGA begins several hours earlier than in themouse (Fig. 1).

During genome activation, a significant fraction of all genes inthe genome is transcribed: 5% in X. tropicalis (Collart et al., 2014;Tan et al., 2013),∼10% in C. elegans (Baugh et al., 2003),∼20% inmouse (Hamatani et al., 2004), ∼25% in zebrafish (Aanes et al.,2011; Harvey et al., 2013; Lee et al., 2013) and∼35% inDrosophila(De Renzis et al., 2007; Kwasnieski et al., 2019 preprint; Lécuyeret al., 2007; Lott et al., 2011) (Table 2). Although different sets ofgenes are activated in different species (Heyn et al., 2014), theproteins these genes encode are often enriched for transcriptionfactors and other developmental regulators, such as microRNAs(Collart et al., 2014; De Renzis et al., 2007; Lee et al., 2013). Someof these are important for the degradation of maternally loaded

8

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 9: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

RNAs (Bushati et al., 2008; Giraldez et al., 2006; Lund et al., 2009),and others for the transcription of subsequently activated genes(Collart et al., 2014). For most genes, the onset of transcriptionduring ZGA is stochastic, which means that not all cells start toactivate that gene at the same time (Boettiger and Levine, 2009;Stapel et al., 2017). This initially results in large cell-to-celldifferences in gene expression levels, which could – in principle –

hamper development (Lagha et al., 2013). Uniform patterns of geneexpression, however, are reached by spatial averaging, such as in theDrosophila syncytium (Little et al., 2013), or temporal averaging, asin zebrafish (Stapel et al., 2017), thus overcoming this problem.

Although some of the genes that are activated during ZGA arestrictly zygotic (i.e. not maternally provided), many othersare loaded maternally and then re-expressed in the embryo.

Developmental time

B Caenorhabditis elegans

A Drosophila melanogaster

Degradationby SCFSel-10

Phosphorylationby MBK

OMA1/2

TAF-4

TFIID

OMA1/2P Degradation

by CRL E3

TAF-4

TFIID

ZGA

LIN-41

OMA1/2

LIN-41

Cytoplasm

Nucleus

Oocyte transcripts

Maternal smg mRNA

PUMX

ZGA

Cytoplasm

NucleusZygotic miRNAs

PNG

PLUGNU

PNG

PLU GNUP

Activation by dephosphorylation

SMG

Inactivation by self-phosphorylation

PNG

PLU GNUPP

PLU

GNU

PNG

Maternal mRNAs

mRNA degradation

Translation of transcriptional

repressors

Repressor

Maternal smg mRNA

Indirect SMG target mRNAsDirect SMG target mRNAs

mRNA degradation

Maternal smg mRNA

PUM?BRAT

Translationalrepression

mRNA degradation

BRAT?PUMX BRAT? Y

Fig. 3. Interplay of post-transcriptional and post-translational regulation during the maternal-to-zygotic transition (MZT). (A) In D. melanogaster,the RNA-binding protein (RBP), Pumilio (PUM) and additional factors, possibly including Brain tumor protein (BRAT) and an unknown factor, X, represstranslation of the smaug mRNA in the oocyte. The PNG-PLU kinase complex is inactive due to phosphorylation-mediated dissociation of its regulatory subunit,GNU. Upon egg activation, dephosphorylation of GNU activates PNG, directing derepression of smaug translation. The PNG kinase phosphorylates GNU,inactivating the complex and targeting it for degradation. Accumulating Smaug (SMG) protein directs the degradation and translational repression of a largenumber of maternal transcripts, allowing zygotic genome activation (ZGA). Early ZGA includes transcription of zygotic miRNAs, which direct the degradationof additional maternal transcripts. The smaug transcript itself is targeted for degradation near the end of the MZT by BRAT and possibly additional factors, such asPUM and unknown factor Y. (B) In C. elegans, LIN-41, OMA-1 and OMA-2 act antagonistically to regulate transcripts in the oocyte. LIN-41 is degradedduring oocyte maturation by the E3 ubiquitin ligase complex SCFSel-10. Additionally, phosphorylation of OMA-1 and OMA-2 by the MBK-2 kinase duringoocyte maturation results in binding and sequestering of the TAF-4 transcription factor in the cytoplasm, inhibiting ZGA in the early embryo. By the four-cell stage,degradation of phosphorylated OMA-1 and OMA-2, by accumulating levels of the CRL E3-ubiquitin ligase, releases TAF-4, which is then imported into thenucleus where it binds the transcriptional factor TFIID to mediate ZGA. Adapted, with permission, from Tadros and Lipshitz, 2009.

9

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 10: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

Table2.

Sca

lean

dregu

latio

nof

zygo

tictran

scripts

Spe

cies

Firs

tzyg

otic

tran

scrip

tsde

tected

(cell/n

uclear

cyclenu

mbe

r)

Zyg

oticallyex

pres

sed

mRNAco

verage

(%of

gene

s)*

Strictly

zygo

tically

expres

sed

mRNAco

verage

(%of

zygo

tic)

Fac

tors

invo

lved

inZGA

Cellc

ycle

leng

th

Gen

eral

tran

scrip

tiona

lrepres

sors

Spe

cific

tran

scrip

tiona

lrepres

sors

Trans

criptio

nal

activators

Chrom

atin

structure‡

C.e

lega

nsCellcycle

2(Edg

aret

al.,19

94;

Sey

doux

andFire

,199

4)

∼10

%(Bau

ghet

al.,20

03)

Not

stud

ied

Not

stud

ied

Not

stud

ied

Not

stud

ied

TAF-4

(Guv

en-O

zkan

etal.,

2008

)

Not

stud

ied

D.m

elan

ogas

terNuc

lear

cycle8§

(DeRen

ziset

al.,20

07;

Lécu

yere

tal.,

2007

;Lotte

tal.,20

11)

∼35

%(D

eRen

ziset

al.,20

07;

Lécu

yeret

al.,20

07;

Lottet

al.,20

11;

Kaw

sniesk

ieta

l.,20

19prep

rint)

∼33

%(D

eRen

ziset

al.,

2007

)

No (F

arrellan

dO’Farrell20

13;

McC

leland

andO’Farell,20

08;

Blythean

dWiesc

haus

,201

5;Pritch

ardan

dSch

ubiger,1

996)

Not

stud

ied

TTK (Brownan

dWu,

1993

;Pritch

ard

andSch

ubiger,

1996

)

Zelda (Harris

onet

al.,20

11;

Lian

get

al.,20

08;

Nienet

al.,20

11)

Not

stud

ied

D.rerio

Cellcycle

6(C

hanet

al.,20

18prep

rint;

Had

zhievet

al.,20

19;H

eyn

etal.,20

14;H

ilberte

tal.,

2018

prep

rint;Matha

vanet

al.,20

05)

∼25

%(Aan

eset

al.,20

11;

Harve

yet

al.,20

13;

Leeet

al.,20

13)

∼25

%(Lee

etal.,20

13)No (D

alle

Nog

areet

al.,20

09;

Zha

nget

al.,20

14a)

Histone

s(Jos

ephet

al.,

2017

)

Not

stud

ied

POU5F

3,SOX19

Ban

dNANOG

(Lee

etal.,20

13;

Leichs

enrin

get

al.,20

13;

Jose

phet

al.,20

17)

H3K

27Ac

(Cha

net

al.,20

18prep

rint;Zha

nget

al.,20

18;S

atoet

al.,

2019

prep

rint)

Xen

opus

Cellcycle

3(X.lae

vis)

(Yan

aiet

al.,20

11;

Kim

elman

etal.,19

87;

Skirkan

ichet

al.,20

11;

Yan

get

al.,20

02)

Cellcycle

3(X.tropica

lis)

(Yan

aiet

al.,20

11;

Paran

jpeet

al.,20

13;

Owen

set

al.,20

16;C

ollart

etal.,20

14;T

anet

al.,

2013

)

∼5% (X

.tropica

lis)

(Collartet

al.,20

14;

Tan

etal.,20

13)

Not

stud

ied

Yes (X

.lae

vis)

(Collartet

al.,20

13;K

imelman

etal.,19

87)

Histone

s(X.lae

vis)

(Alm

ouzn

iand

Wolffe

,199

5;Amod

eoet

al.,

2015

)

Kaiso (X.lae

vis)

(Ruz

ovet

al.,20

04;

Ruz

ovet

al.,20

09)

xDnm

t1(X.lae

vis)

(Dun

ican

etal.,

2008

)

TBP (X.lae

vis)

(Vee

nstraet

al.,19

99)

H3R

8me

(X.lae

vis)

(Blytheet

al.,20

10)

M.m

uscu

lus

Cellcycle

1(Abe

etal.,20

15;A

okieta

l.,19

97;H

amatan

ieta

l.,20

04)

∼20

%(H

amatan

ieta

l.,20

04)Not

stud

ied

Not

stud

ied

Not

stud

ied

Not

stud

ied

Nfy,D

ux,D

ppa2

andDpp

a4(D

eIaco

etal.,20

17;

Hen

drickson

etal.,20

17;

Luet

al.,20

16;D

eIaco

etal.,20

19;E

ckersley-

Mas

linet

al.,20

19)

H3K

4me3

(Aoshimaet

al.,20

15;

Dah

leta

l.,20

16;

Liuetal.,20

16;Z

hang

etal.,20

16;B

ultm

anet

al.,20

06)

*Num

bers

arehigh

lyaffected

bymetho

dsan

dcu

t-offs

used

indiffe

rent

stud

ies(see

also

Box

es2an

d3).

‡Weha

veon

lyindica

tedch

ange

sin

chromatin

acce

ssibility

that

have

been

show

nto

affect

theon

seto

ftrans

criptio

n.Pleas

ereferto

thetext

formorech

ange

s.§The

reis

somege

netic

eviden

cethat

tran

scrip

tionmay

beginea

rlier

inDroso

phila

(Ali-Murthyet

al.,20

13).

10

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 11: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

In Drosophila, for example, only about one-third of the zygotictranscripts are purely zygotic (De Renzis et al., 2007) and inzebrafish 25% (Lee et al., 2013) (Table 2). In its simplest form,zygotic transcription of genes that are also maternally loadedprovides an opportunity to reinforce the expression of specificgenes. In Drosophila and zebrafish, however, many genesencode distinct maternal and zygotic mRNA isoforms throughdifferential promoter usage, splicing and/or polyadenylation siteusage (Aanes et al., 2013; Atallah and Lott, 2018; Haberle et al.,2014). In these cases, transcription does not just reinforce geneexpression, it also changes the characteristics of transcripts andtherefore their regulation. Functionally, maternal mRNAdegradation and zygotic transcription are used to generate

localized patterns of expression (Combs and Eisen, 2013; DeRenzis et al., 2007; Lécuyer et al., 2007; Vopalensky et al., 2018).

Mechanisms of zygotic genome activationNext, we explore the effect of cell cycle length, transcriptionalrepressors, transcriptional activators, and chromatin accessibility onthe change from transcriptional repression to transcriptional activation(Table 2). We end by proposing a mechanism for the onset oftranscription that takes all of these aspects into account (Fig. 4).

Cell cycle lengthThe early stages of development in insects, amphibians and fishare characterized by rapid cleavage divisions. Because DNAreplication generally interferes with transcription (Rothe et al.,1992; Shermoen and O’Farrell, 1991), rapid cell cycles may reducetranscriptional output during the early stages of development.Indeed, lengthening the cell cycle causes a premature onset oftranscription in X. laevis (Collart et al., 2013; Kimelman et al.,1987), suggesting that genome activation may be a consequenceof cell cycle lengthening. However, similar experiments inzebrafish and Drosophila have not caused premature transcription(Farrell and O’Farrell, 2013; McCleland and O’Farrell, 2008;Zhang et al., 2014a). In fact, in Drosophila embryos, cell cyclelengthening depends on the onset of zygotic transcription (Blytheand Wieschaus, 2015; Pritchard and Schubiger, 1996) arguingagainst a dependence of transcription on cell cycle lengthening inthese species. Thus, it remains unclear to what extent thelengthening of the cell cycle influences the onset of transcriptionduring embryogenesis. What is clear, is that cell cycle lengthaffects the length and number of transcripts that are produced inDrosophila and zebrafish embryos (Edgar and Schubiger, 1986;Hadzhiev et al., 2019; Rothe et al., 1992; Dalle Nogare et al., 2009).Indeed, in these species, the first genes that are expressed duringZGA are often short and lack introns (Heyn et al., 2014; Kwasnieskiet al., 2019; Rothe et al., 1992). Thus, cell cycle length has an effecton the length and number of transcripts that are produced, but itremains enigmatic whether it has a direct effect on the onsetof transcription.

It should be noted that a recent study in Drosophila has shownthat the presence of ‘aborted’ truncated transcripts with intronicsequences from long genes is extensive during ZGA (Kwasnieskiet al., 2019 preprint). Moreover, truncation of long transcripts can beprecisely regulated and, if translated, their gene products could havedevelopmental functions (Sandler et al., 2018). For example, theSex lethal (SXL) RNA-binding protein directs formation of ashortened mRNA isoform of short gastrulation (sog), whichencodes a dominant-negative SOG protein that may prevent TGF-β signaling during this stage of the MZT (Sandler et al., 2018). Thegenerality of regulated and functional truncation of transcriptsencoded by long genes remains to be determined.

Transcriptional repressorsMany proteins are maternally loaded to support embryonicdevelopment during the early cleavage stages. Among these areproteins that repress transcription (Table 2). In X. laevis andDrosophila, for example, sequence-specific repressors have beenidentified that inhibit the expression of subsets of genes (Brown andWu, 1993; Dunican et al., 2008; Pritchard and Schubiger, 1996;Ruzov, 2004; Ruzov et al., 2009). In Drosophila, the transcriptionfactor Tramtrack (TTK) is maternally loaded and represses thetranscription of the segmentation gene fushi tarazu ( ftz) (Brown andWu, 1993; Pritchard and Schubiger, 1996). Reducing the amount of

Tran

scri

ptio

n ac

tivi

ty

Developmental time

Chro

mat

in a

cces

sibi

lity

Local

Global

Histone Specific repressor Specific transcription factor

General transcription factorH3K27acH3K4me3H3R8me

Bala

nce

of r

epre

ssor

s an

dac

tiva

tors

Key

Fig. 4. Mechanisms of transcriptional activation during the second act.Chromatin structure is relatively open during the early stages of development,which likely supports the large-scale transcriptional reprogramming thattakes place during ZGA. This suggests that the absence of transcriptionalactivity is not due to a repressive chromatin structure. Approaching ZGA,the genome becomes more compacted overall, while local accessibilityincreases. At the same time, at least in zebrafish andX. laevis, the concentrationof non-DNA-bound histones drops, which allows increasing levels of (generaland gene-specific) transcription factors to successfully compete for DNAbinding. Similarly, the loss of specific repressors allows for transcription ofspecific genes. While the increase in local accessibility facilitates the bindingof transcription factors, accessibility, in turn, often depends on the binding ofspecific transcription factors. Thus, the loss of repressors, the accumulationof activators and local changes in chromatin accessibility together primethe genome for activation. The chromatin accessibility and the balance ofrepressors and activators both influence transcription activity.

11

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 12: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

TTK or the number of TTK-binding sites results in premature ftztranscription, while increasing the amount of TTK has the oppositeeffect. Interestingly, the Smaug RBP is required for destruction ofmaternal ttk mRNA, thus providing a link between clearance ofmaternal mRNAs and ZGA (Benoit et al., 2009).In addition to specific repressors, histones have been identified as

more general repressors of transcription in X. laevis and zebrafish(Almouzni and Wolffe, 1995; Amodeo et al., 2015; Joseph et al.,2017). Histones are present in large excess in early embryos(Adamson andWoodland, 1974; Anderson and Lengyel, 1980); theybind with high affinity and little sequence specificity to DNA(Campos and Reinberg, 2009), and, when bound in the form ofnucleosomes, they block access of the transcriptional machinery toDNA (Lorch et al., 1987; Workman and Kingston, 1998). Inzebrafish and Drosophila embryos, the concentration of solublehistones in the nucleus drops in the approach to genome activation(Joseph et al., 2017; Shindo and Amodeo, 2019). Moreover,experiments in zebrafish have revealed that the drop in theconcentration of soluble histones in the nucleus provides anopportunity for the transcriptional machinery to successfullycompete for DNA access and activate transcription (Joseph et al.,2017; Pálfy et al., 2017). Developmental changes in the early embryoprovide at least two mechanisms by which the concentration ofhistones may be reduced during embryogenesis. First, theexponential increase in DNA during the rapid cleavage divisionsmight titrate out histones. A role for DNA content in regulatingthe onset of transcription is supported by experiments in whichincreasing DNA content results in premature onset of transcription inX. laevis, zebrafish and Drosophila (Dekens et al., 2003; Jevtic andLevy, 2017; Lu et al., 2009; Newport and Kirschner, 1982; Prioleauet al., 1994). However, the quantification of both histones and DNAcontent has shown that, at least in zebrafish, the increase in DNAcontent is not sufficient to titrate the levels of soluble histonessignificantly (Joseph et al., 2017). Another possible explanation forthe decrease in nuclear histone concentration involves a change in thenuclear import dynamics of histones. This could be a consequence ofthe dilution of import machinery caused by the increasing number ofnuclei (Shindo and Amodeo, 2019) or of the marked increase in theratio of nuclear over cytoplasmic volume during the cleavage stages(Joseph et al., 2017). The latter has been suggested to limit thecapacity of the nucleus to concentrate proteins (Kim and Elbaum,2013a,b; Kopito and Elbaum, 2007; Kopito and Elbaum, 2009),changing the distribution of histones between nucleus and cytoplasm.A role for import dynamics is supported by the observation that anexperimentally induced increase in nuclear volume results in earliergenome activation in X. laevis (Jevtic and Levy, 2015; Jevtic andLevy, 2017). We conclude that both specific and general repressorsplay a role in changing the balance from transcriptional repression totranscriptional activation during ZGA.

Transcriptional activatorsThe general absence of transcription during early embryogenesis, aswell as the gene-specific onset of transcription that follows, areaffected by the availability of the transcriptional machinery. Asdescribed above, in C. elegans, the general TAF-4 transcriptionfactor is unavailable for transcription during the early stages ofdevelopment (Guven-Ozkan et al., 2008), because the protein issequestered by the binding of OMA-1 and OMA-2. Not until theirphosphorylation at the four-cell stage, is TAF-4 released and able totranslocate into the nucleus, permitting the onset of transcription(Guven-Ozkan et al., 2008). Similarly, in X. laevis, theconcentration of the general TBP transcription factor is limiting

before ZGA (Veenstra et al., 1999). Protein expression profiling hasrevealed that TBP levels increase and reach sufficiently high levelsfor genome activation as a result of translation of maternally storedTBP transcripts (Veenstra et al., 1999). Thus, the lack of generaltranscription factors in the early stages of development contributesto the general absence of transcriptional activity.

Following this period, the gene-specific onset of transcriptionrequires gene-specific transcription factors. The transcription factorsthat activate zygotically expressed genes have been identified inseveral species, including Drosophila (Zelda), zebrafish (Pou5f3,Sox19b, Nanog), human (OCT4, DUX4) andmouse (Dppa2, Dppa4,Nfy, Dux) (De Iaco et al., 2019; De Iaco et al., 2017; Eckersley-Maslin et al., 2019; Gao et al., 2018; Harrison et al., 2011;Hendrickson et al., 2017; Lee et al., 2013; Leichsenring et al., 2013;Liang et al., 2008; Lu et al., 2016; Nien et al., 2011). A recent reviewprovides details of their mechanisms of action (Schulz and Harrison,2018). In Drosophila and zebrafish, RNA encoding these factors ismaternally loaded and their protein levels increase during the earlycell cycles due to translation (Harrison et al., 2010; Harrison et al.,2011; Lee et al., 2013; Nien et al., 2011). In zebrafish, it has beenshown that the levels of such gene-specific transcription factors affectthe time at which transcription starts (Joseph et al., 2017). In thiscontext, it is interesting to note that, in Drosophila and zebrafish,zygotic transcription begins in two distinct areas in the nucleus(Blythe and Wieschaus, 2016; Chan et al., 2018 preprint; Chen et al.,2013; Hadzhiev et al., 2019; Hilbert et al., 2018 preprint; Hug et al.,2017), which may cause a local increase in the concentration oftranscription factors, thereby facilitating transcription.

Chromatin accessibilityChromatin regulates the accessibility of the genome for DNA-binding proteins. Thus, chromatin accessibility is key totranscriptional regulation. In its simplest form, chromatin consistsof DNA wrapped around octamers of the core histone proteinsjoined by a histone linker protein. DNA accessibility is regulatedthrough DNAmethylation, nucleosome positioning and the stabilityof nucleosomes, which in turn is regulated by histone modificationsand the presence of histone variants. Here, we discuss changes inglobal and local chromatin accessibility that accompany genomeactivation, and their role in activating transcription.

Overall, chromatin structure is relatively open during thetranscriptionally inactive period of the MZT. Human and mousegenomes, for example, undergo global DNA demethylation uponfertilization (Guo et al., 2014; Li et al., 2018; Peat et al., 2014; Santoset al., 2002; Shen et al., 2014), but this has not been observed in otherspecies.More generally, the open chromatin structure of early embryosis characterized by highly dispersed chromatin (Ahmed et al., 2010;Popken et al., 2014), the absence of heterochromatin domains (Ancelinet al., 2016; Laue et al., 2019; Mutlu et al., 2018), the absence oftopologically associated domains (‘TADs’) (Du et al., 2017; Hug et al.,2017; Kaaij et al., 2018; Ke et al., 2017; Ogiyama et al., 2018), highlevels of histone acetylation (Adenot et al., 1997; Li et al., 2014) andhigh chromatin mobility (Boškovic et al., 2014). During ZGA, thegenome becomes more compact, which may be related to thereplacement of embryonic linker histone variants with somatic variantsaround this time (Pérez-Montero et al., 2013; Saeki et al., 2005).

In contrast, local genome accessibility increases during genomeactivation in Drosophila, zebrafish, mouse and human (Blythe andWieschaus, 2016; Gao et al., 2018; Li et al., 2018; Liu et al., 2018b;Lu et al., 2016; Wu et al., 2016; Wu et al., 2018). This isaccompanied by the appearance of specific histone modifications.In X. laevis embryos, for example, Histone 3 Arginine 8 (H3R8)

12

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 13: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

methylation poises genes for expression (Blythe et al., 2010).Similarly, Histone 3 Lysine 4 trimethylation (H3K4me3), a markthat is generally associated with active transcription, appears onpromoters during genome activation in Drosophila (Chen et al.,2013; Li et al., 2014), X. tropicalis (Hontelez et al., 2015; Lindemanet al., 2011), zebrafish (Vastenhouw et al., 2010; Zhang et al.,2014b) and mouse (Dahl et al., 2016; Zhang et al., 2016) embryos,often prior to transcription. Although in most cases the relevance ofH3K4me3 has not yet been investigated directly, studies in mousehave revealed that it is required for the onset of transcription(Aoshima et al., 2015; Dahl et al., 2016; Liu et al., 2016; Zhanget al., 2016), which supports the observation that Brg1, which isrequired for H3K4 methylation, is necessary for ZGA (Bultmanet al., 2006). Finally, acetylation of Histone 3 Lysine 27 (H3K27Ac)precedes ZGA in zebrafish (Chan et al., 2018 preprint; Sato et al.,2019 preprint; Zhang et al., 2018), and is required for thetranscription of – at least – miR-430, which is one of the first genesto be transcribed. Although there is clearly a role for local histonemodifications in ZGA, no local DNAmethylation changes have beenobserved that coincide with the onset of transcription (Jiang et al.,2013; Kaaij et al., 2016; Potok et al., 2013), arguing against a role forDNA methylation in regulating ZGA. DNA methylation patterns,however, do play a role in the regulation of transcription duringembryogenesis. In zebrafish, for example, hypermethylation atenhancers predicts transcription factor binding and enhancer activity(Kaaij et al., 2016; Liu et al., 2018b), whereas low levels of DNAmethylation at promoters predict H3K4me3 and promoter activity(Andersen et al., 2012; Liu et al., 2018b). Finally, ZGA coincides witha significant increase in both the repressive histone modificationH3K27me3 (Akkers et al., 2009; Hontelez et al., 2015; Li et al., 2014;Lindeman et al., 2011; Liu et al., 2016; van Heeringen et al., 2014;Vastenhouw et al., 2010) and DNA methylation (Potok et al., 2013),which may help to ensure the onset of gene-specific transcription(Potok et al., 2013; Zenk et al., 2017).Taken together, chromatin structure is relatively open during the

early stages of embryogenesis, which likely supports the large-scaletranscriptional reprogramming that takes place during ZGA (Fig. 4).Indeed, the removal of mouse LSD1, which results in prematureheterochromatin formation, interferes with developmentalprogression (Ancelin et al., 2016). Thus, the absence oftranscriptional activity is likely not due to a repressive chromatinstructure. Approaching ZGA, the genome becomes more compactedoverall, while local accessibility increases. At the same time, at leastin zebrafish and X. laevis, the concentration of non-DNA-boundhistones drops (Amodeo et al., 2015; Joseph et al., 2017), whichallows increasing levels of transcription factors to successfullycompete for DNA binding (Joseph et al., 2017; Pálfy et al., 2017).Similarly, the loss of specific repressors allows for transcription ofspecific genes. Although the increase in local accessibilityfacilitates the binding of transcription factors, accessibility, inturn, often depends on the binding of specific transcription factors(Gao et al., 2018; Liu et al., 2018b; Lu et al., 2016; Schulz et al.,2015; Sun et al., 2015; Veil et al., 2019). Thus, the loss ofrepressors, the accumulation of activators and local changes inchromatin accessibility together prime the genome for activation.

Concluding remarksWe now have a reasonably thorough descriptive and mechanisticunderstanding of the two ‘acts’ of the MZT. Maternally loaded geneproducts are required to control early development, while theregulated onset of transcription is required for developmentalprogression: if transcription is inhibited, embryos arrest prior to

gastrulation (Kane et al., 1996; Lee et al., 2013; Zamir et al., 1997).It remains mysterious, however, why such a large fraction of thegene products encoded by the maternal genome is loaded into theegg and then largely eliminated. One clue as to why maternalmRNAs and proteins are cleared may come from the fact thatmaternal and zygotic transcripts from the same gene often representdifferent mRNA isoforms (Aanes et al., 2013; Atallah and Lott,2018; Haberle et al., 2014). Where the isoforms differ inuntranslated regions, these would impose differential regulation oftranscript stability, translation and localization. Where they differ inthe open reading frame, there may also be differences in maternalversus zygotic protein structure and function. Another clue derivesfrom the observation that zygotically re-expressed genes inDrosophila are enriched for ones whose zygotic expression ispatterned (De Renzis et al., 2007). This implies that degradation ofubiquitous maternal transcripts followed by patterned zygotic re-expression is a mechanism that imposes spatial regulation ofprocesses that underlie differential cell behavior and fate in thedeveloping embryo.

Another possible function of degradation of maternal mRNAs andproteins is to supply nutrients to the developing embryo. Evidence forthis comes from studies in the Drosophila embryo, where maternallysupplied dNTPs are insufficient for completion of the DNAreplication and nuclear divisions that occur prior to large-scaleZGA, thus requiring de novo dNTP synthesis fromNTPs (Song et al.,2017). Calculations using previous measurements in oocytes ofXenopus and S. purpuratus have revealed similar dNTP shortages forthe cleavage divisions (Song et al., 2017). Thus, degradation ofmaternally loaded mRNAs may provide a source of nucleotides tosupport DNA replication. Consistent with a requirement for NTPs,rather than a specific set of mRNAs, the maternally loadedtranscriptome shows more variability across species than that ofmost other developmental stages in Drosophila and zebrafish(Atallah and Lott, 2018; Domazet-Lošo and Tautz, 2010; Kalinkaet al., 2010). Furthermore, inDrosophila, the maternal transcripts thatare degraded during theMZT are much less conserved than those thatremain after the onset of ZGA (Atallah and Lott, 2018).

Mechanistically, the regulation of maternal gene productsand the activation of zygotic transcription are highly interrelated.For example, in zebrafish, transcription factors that increase inabundance during the early stages of the MZT, because of translationof maternal mRNAs, are required for ZGA (Lee et al., 2013).Similarly, in Drosophila, the Zelda transcription factor, which isessential for early ZGA, increases in abundance early in the MZTthrough translation of its cognate maternal mRNA (Nien et al., 2011).Additional proteins that increase in abundance show enrichment forfunctions in chromatin organization (Kronja et al., 2014b) andtherefore might play a role in ZGA. Clearance and/or repression ofmaternal gene products appears also to be a prerequisite for ZGA. InC. elegans, for example, degradation of OMA-1 and OMA-2 arerequired to permit nuclear translocation of TAF-4 and, thus, ZGA(Guven-Ozkan et al., 2008). Likewise, mutants that fail to clear and/orrepress a significant fraction of the maternal transcriptome either failto undergo, or suffer a severe delay in, ZGA (e.g.Drosophila smaug,mouse Btg4) (Benoit et al., 2009; Luo et al., 2016; Yu et al., 2016).Finally, genome activation is itself required for the clearance of a largesubset of maternal RNAs. For example, in zebrafish, X. laevis andDrosophila, ZGA produces sets of miRNAs that feed back todestabilize subsets ofmaternal mRNAs (Bushati et al., 2008; Giraldezet al., 2006; Lund et al., 2009). If ZGA does not occur (e.g. inDrosophila smaug mutants or in zebrafish if transcription ischemically inhibited) then the miRNAs are not synthesized and

13

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 14: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

their target transcripts persist (Benoit et al., 2009; De Renzis et al.,2007; Lee et al., 2013).

AcknowledgementsWe thank members of the Vastenhouw lab, as well as Jan Brugues, for criticallyreading the manuscript; Edlyn Wu for help with Fig. 4; and the reviewers forhelpful feedback.

Competing interestsThe authors declare no competing or financial interests.

FundingOur research on the MZT is supported by grants from the Max-Planck-Gesellschaft(N.L.V.), the Human Frontiers Science Program (N.L.V.), the VolkswagenFoundation (N.L.V.), the Canadian Institutes of Health Research (H.D.L.), and theNatural Sciences and Engineering Council of Canada (H.D.L.). W.X.C. has beensupported, in part, by an Ontario Graduate Scholarship and by University of TorontoOpen Graduate Scholarships.

ReferencesAanes, H., Winata, C. L., Lin, C. H., Chen, J. P., Srinivasan, K. G., Lee, S. G. P.,Lim, A. Y. M., Hajan, H. S., Collas, P., Bourque, G. et al. (2011). Zebrafish mRNAsequencing deciphers novelties in transcriptome dynamics during maternal tozygotic transition. Genome Res. 21, 1328-1338. doi:10.1101/gr.116012.110

Aanes, H., Ostrup, O., Andersen, I. S., Moen, L. F., Mathavan, S., Collas, P. andAlestrom, P. (2013). Differential transcript isoform usage pre- and post-zygoticgenome activation in zebrafish. BMCGenomics 14, 331. doi:10.1186/1471-2164-14-331

Abe, K.-i., Yamamoto, R., Franke, V., Cao, M., Suzuki, Y., Suzuki, M. G.,Vlahovicek, K., Svoboda, P., Schultz, R. M. andAoki, F. (2015). The first murinezygotic transcription is promiscuous and uncoupled from splicing and 3’processing. EMBO J. 34, 1523-1537. doi:10.15252/embj.201490648

Adamson, E. D. andWoodland, H. R. (1974). Histone synthesis in early amphibiandevelopment: histone and DNA syntheses are not co-ordinated. J. Mol. Biol. 88,263-285. doi:10.1016/0022-2836(74)90481-1

Adenot, P. G., Mercier, Y., Renard, J. P. and Thompson, E. M. (1997). DifferentialH4 acetylation of paternal and maternal chromatin precedes DNA replication anddifferential transcriptional activity in pronuclei of 1-cell mouse embryos.Development 124, 4615-4625.

Ahmed, K., Dehghani, H., Rugg-Gunn, P., Fussner, E., Rossant, J. and Bazett-Jones, D. P. (2010). Global chromatin architecture reflects pluripotency andlineage commitment in the early mouse embryo. PLoS ONE 5, e10531. doi:10.1371/journal.pone.0010531

Akkers, R. C., van Heeringen, S. J., Jacobi, U. G., Janssen-Megens, E. M.,Francoijs, K.-J., Stunnenberg, H. G. and Veenstra, G. J. C. (2009). A hierarchyof H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopusembryos. Dev. Cell 17, 425-434. doi:10.1016/j.devcel.2009.08.005

Ali-Murthy, Z., Lott, S. E., Eisen, M. B. and Kornberg, T. B. (2013). An essentialrole for zygotic expression in the pre-cellular Drosophila embryo. PLoS Genet. 9,e1003428. doi:10.1371/journal.pgen.1003428

Almouzni, G. and Wolffe, A. P. (1995). Constraints on transcriptional activatorfunction contribute to transcriptional quiescence during early Xenopusembryogenesis. EMBO J. 14, 1752-1765. doi:10.1002/j.1460-2075.1995.tb07164.x

Amodeo, A. A., Jukam, D., Straight, A. F. and Skotheim, J. M. (2015). Histonetitration against the genome sets the DNA-to-cytoplasm threshold for the Xenopusmidblastula transition.Proc. Natl Acad. Sci. USA 112, E1086-E1095. doi:10.1073/pnas.1413990112

Ancelin, K., Syx, L., Borensztein, M., Ranisavljevic, N., Vassilev, I., Brisen o-Roa, L., Liu, T., Metzger, E., Servant, N., Barillot, E. et al. (2016). MaternalLSD1/KDM1A is an essential regulator of chromatin and transcription landscapesduring zygotic genome activation. Elife 5, 4615. doi:10.7554/eLife.08851

Andersen, I. S., Reiner, A. H., Aanes, H., Alestrom, P. and Collas, P. (2012).Developmental features of DNA methylation during activation of the embryoniczebrafish genome. Genome Biol. 13, R65. doi:10.1186/gb-2012-13-7-r65

Anderson, K. V. and Lengyel, J. A. (1980). Changing rates of histone mRNAsynthesis and turnover in Drosophila embryos. Cell 21, 717-727. doi:10.1016/0092-8674(80)90435-3

Aoki, F., Worrad, D. M. and Schultz, R. M. (1997). Regulation of transcriptionalactivity during the first and second cell cycles in the preimplantation mouseembryo. Dev. Biol. 181, 296-307. doi:10.1006/dbio.1996.8466

Aoshima, K., Inoue, E., Sawa, H. andOkada, Y. (2015). Paternal H3K4 methylationis required for minor zygotic gene activation and early mouse embryonicdevelopment. EMBO Rep. 16, 803-812. doi:10.15252/embr.201439700

Arnold, A., Rahman, M. M., Lee, M. C., Muehlhaeusser, S., Katic, I., Gaidatzis,D., Hess, D., Scheckel, C., Wright, J. E., Stetak, A. et al. (2014). Functionalcharacterization of C. elegans Y-box-binding proteins reveals tissue-specific

functions and a critical role in the formation of polysomes. Nucleic Acids Res. 42,13353-13369. doi:10.1093/nar/gku1077

Atallah, J. and Lott, S. E. (2018). Evolution of maternal and zygotic mRNAcomplements in the early Drosophila embryo. PLoSGenet. 14, e1007838. doi:10.1371/journal.pgen.1007838

Aviv, T., Lin, Z., Lau, S., Rendl, L. M., Sicheri, F. and Smibert, C. A. (2003). TheRNA-binding SAM domain of Smaug defines a new family of post-transcriptionalregulators. Nat. Struct. Biol. 10, 614-621. doi:10.1038/nsb956

Barckmann, B., Pierson, S., Dufourt, J., Papin, C., Armenise, C., Port, F.,Grentzinger, T., Chambeyron, S., Baronian, G., Desvignes, J.-P. et al. (2015).Aubergine iCLIP reveals piRNA-dependent decay of mRNAs involved in germ celldevelopment in the early embryo. Cell Rep. 12, 1205-1216. doi:10.1016/j.celrep.2015.07.030

Barnard, R. C., Pascall, J. C., Brown, K. D., McKay, I. A., Williams, N. S. andBustin, S. A. (1993). Coding sequence of ERF-1, the human homologue ofTis11b/cMG1, members of the Tis11 family of early response genes. NucleicAcids Res. 21, 3580. doi:10.1093/nar/21.15.3580

Bashirullah, A., Halsell, S. R., Cooperstock, R. L., Kloc, M., Karaiskakis, A.,Fisher, W. W., Fu, W., Hamilton, J. K., Etkin, L. D. and Lipshitz, H. D. (1999).Joint action of two RNA degradation pathways controls the timing of maternaltranscript elimination at the midblastula transition in Drosophila melanogaster.EMBO J. 18, 2610-2620. doi:10.1093/emboj/18.9.2610

Bashirullah, A., Cooperstock, R. L. and Lipshitz, H. D. (2001). Spatial andtemporal control of RNA stability. Proc. Natl. Acad. Sci. USA 98, 7025-7028.doi:10.1073/pnas.111145698

Baugh, L. R., Hill, A. A., Slonim, D. K., Brown, E. L. and Hunter, C. P. (2003).Composition and dynamics of the Caenorhabditis elegans early embryonictranscriptome. Development 130, 889-900. doi:10.1242/dev.00302

Bazzini, A. A., Lee, M. T. and Giraldez, A. J. (2012). Ribosome profiling shows thatmiR-430 reduces translation before causing mRNA decay in zebrafish. Science336, 233-237. doi:10.1126/science.1215704

Bazzini, A. A., del Viso, F., Moreno-Mateos, M. A., Johnstone, T. G., Vejnar,C. E., Qin, Y., Yao, J., Khokha, M. K. and Giraldez, A. J. (2016). Codon identityregulates mRNA stability and translation efficiency during the maternal-to-zygotictransition. EMBO J. 35, 2087-2103. doi:10.15252/embj.201694699

Becker, K., Bluhm, A., Casas-Vila, N., Dinges, N., Dejung,M., Sayols, S., Kreutz,C., Roignant, J.-Y., Butter, F. and Legewie, S. (2018). Quantifying post-transcriptional regulation in the development of Drosophila melanogaster. Nat.Commun. 9, 4970. doi:10.1038/s41467-018-07455-9

Benoit, P., Papin, C., Kwak, J. E., Wickens, M. and Simonelig, M. (2008). PAP-and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmicpolyadenylation and oogenesis in Drosophila. Development 135, 1969-1979.doi:10.1242/dev.021444

Benoit, B., He, C. H., Zhang, F., Votruba, S. M., Tadros, W., Westwood, J. T.,Smibert, C. A., Lipshitz, H. D. and Theurkauf, W. E. (2009). An essential role forthe RNA-binding protein Smaug during the Drosophila maternal-to-zygotictransition. Development 136, 923-932. doi:10.1242/dev.031815

Blythe, S. A. and Wieschaus, E. F. (2015). Zygotic genome activation triggers theDNA replication checkpoint at the midblastula transition. Cell 160, 1169-1181.doi:10.1016/j.cell.2015.01.050

Blythe, S. A. and Wieschaus, E. F. (2016). Establishment and maintenance ofheritable chromatin structure during early Drosophila embryogenesis. Elife 5,e1003428. doi:10.7554/eLife.20148

Blythe, S. A., Cha, S.-W., Tadjuidje, E., Heasman, J. andKlein, P. S. (2010). beta-catenin primes organizer gene expression by recruiting a histone H3 Arginine 8methyltransferase, Prmt2. Dev. Cell 19, 220-231. doi:10.1016/j.devcel.2010.07.007

Boag, P. R., Nakamura, A. and Blackwell, T. K. (2005). A conserved RNA-proteincomplex component involved in physiological germline apoptosis regulation inC. elegans. Development 132, 4975-4986. doi:10.1242/dev.02060

Boettiger, A. N. and Levine, M. (2009). Synchronous and stochastic patterns ofgene activation in the Drosophila embryo. Science 325, 471-473. doi:10.1126/science.1173976

Boskovic, A., Eid, A., Pontabry, J., Ishiuchi, T., Spiegelhalter, C., Raghu Ram,E. V. S., Meshorer, E. and Torres-Padilla, M. E. (2014). Higher chromatinmobility supports totipotency and precedes pluripotency in vivo. Genes Dev. 28,1042-1047. doi:10.1101/gad.238881.114

Bouvet, P. and Wolffe, A. P. (1994). A role for transcription and FRGY2 in maskingmaternal mRNA within Xenopus oocytes. Cell 77, 931-941. doi:10.1016/0092-8674(94)90141-4

Briggs, J. A., Weinreb, C., Wagner, D. E., Megason, S., Peshkin, L., Kirschner,M. W. and Klein, A. M. (2018). The dynamics of gene expression in vertebrateembryogenesis at single-cell resolution. Science 360, eaar5780. doi:10.1126/science.aar5780

Brown, J. L. and Wu, C. (1993). Repression of Drosophila pair-rule segmentationgenes by ectopic expression of tramtrack. Development 117, 45-58. doi:10.1016/0168-9525(93)90116-y

Bultman, S. J., Gebuhr, T. C., Pan, H., Svoboda, P., Schultz, R. M. andMagnuson, T. (2006). Maternal BRG1 regulates zygotic genome activation in themouse. Genes Dev. 20, 1744-1754. doi:10.1101/gad.1435106

14

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 15: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

Bushati, N., Stark, A., Brennecke, J. and Cohen, S. M. (2008). Temporalreciprocity of miRNAs and their targets during the maternal-to-zygotic transition inDrosophila. Curr. Biol. 18, 501-506. doi:10.1016/j.cub.2008.02.081

Campbell, P. D., Chao, J. A., Singer, R. H. and Marlow, F. L. (2015). Dynamicvisualization of transcription and RNA subcellular localization in zebrafish.Development 142, 1368-1374. doi:10.1242/dev.118968

Campos, E. I. and Reinberg, D. (2009). Histones: annotating chromatin. Annu.Rev. Genet. 43, 559-599. doi:10.1146/annurev.genet.032608.103928

Cao, Q. and Richter, J. D. (2002). Dissolution of the maskin-eIF4E complex bycytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1mRNAtranslation and oocyte maturation. EMBO J. 21, 3852-3862. doi:10.1093/emboj/cdf353

Casas-Vila, N., Bluhm, A., Sayols, S., Dinges, N., Dejung, M., Altenhein, T.,Kappei, D., Altenhein, B., Roignant, J.-Y. and Butter, F. (2017). Thedevelopmental proteome of Drosophila melanogaster. Genome Res. 27,1273-1285. doi:10.1101/gr.213694.116

Chan, S. H., Tang, Y., Miao, L., Darwich-Codore, H., Vejnar, C. E., Beaudoin,J.-D., Musaev, D., Fernandez, J. P., Moreno-Mateos, M. A. and Giraldez, A. J.(2018). Brd4 and P300 regulate zygotic genome activation through histoneacetylation. bioRxiv, 1-26.

Chang, H., Yeo, J., Kim, J. G., Kim, H., Lim, J., Lee, M., Kim, H. H., Ohk, J., Jeon,H. Y., Lee, H. et al. (2018). Terminal uridylyltransferases execute programmedclearance of maternal transcriptome in vertebrate embryos. Mol. Cell 70,72-82.e7. doi:10.1016/j.molcel.2018.03.004

Chen, J., Melton, C., Suh, N., Oh, J. S., Horner, K., Xie, F., Sette, C., Blelloch, R.and Conti, M. (2011). Genome-wide analysis of translation reveals a critical rolefor deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. GenesDev. 25, 755-766. doi:10.1101/gad.2028911

Chen, K., Johnston, J., Shao,W., Meier, S., Staber, C. and Zeitlinger, J. (2013). Aglobal change in RNA polymerase II pausing during the Drosophila midblastulatransition. Elife 2, e00861. doi:10.7554/eLife.00861

Chen, L., Dumelie, J. G., Li, X., Cheng, M. H. K., Yang, Z., Laver, J. D., Siddiqui,N. U., Westwood, J. T., Morris, Q., Lipshitz, H. D. et al. (2014). Global regulationof mRNA translation and stability in the early Drosophila embryo by the SmaugRNA-binding protein. Genome Biol. 15, R4. doi:10.1186/gb-2014-15-1-r4

Collart, C., Allen, G. E., Bradshaw, C. R., Smith, J. C. and Zegerman, P. (2013).Titration of four replication factors is essential for the Xenopus laevis midblastulatransition. Science 341, 893-896. doi:10.1126/science.1241530

Collart, C., Owens, N. D. L., Bhaw-Rosun, L., Cooper, B., De Domenico, E.,Patrushev, I., Sesay, A. K., Smith, J. N., Smith, J. C. andGilchrist, M. J. (2014).High-resolution analysis of gene activity during the Xenopus mid-blastulatransition. Development 141, 1927-1939. doi:10.1242/dev.102012

Combs, P. A. and Eisen, M. B. (2013). Sequencing mRNA from cryo-slicedDrosophila embryos to determine genome-wide spatial patterns of geneexpression. PLoS ONE 8, e71820-e71827. doi:10.1371/journal.pone.0071820

Cui, J., Sackton, K. L., Horner, V. L., Kumar, K. E. and Wolfner, M. F. (2008).Wispy, the Drosophila homolog of GLD-2, is required during oogenesis and eggactivation. Genetics 178, 2017-2029. doi:10.1534/genetics.107.084558

Cui, J., Sartain, C. V., Pleiss, J. A. and Wolfner, M. F. (2013). Cytoplasmicpolyadenylation is amajor mRNA regulator during oogenesis and egg activation inDrosophila. Dev. Biol. 383, 121-131. doi:10.1016/j.ydbio.2013.08.013

Czech, B., Munafo, M., Ciabrelli, F., Eastwood, E. L., Fabry, M. H., Kneuss, E.and Hannon, G. J. (2018). piRNA-guided genome defense: from biogenesis tosilencing. Annu. Rev. Genet. 52, 131-157. doi:10.1146/annurev-genet-120417-031441

D’Agostino, I., Merritt, C., Chen, P. L., Seydoux, G. and Subramaniam, K.(2006). Translational repression restricts expression of the C. elegans Nanoshomolog NOS-2 to the embryonic germline.Dev. Biol. 292, 244-252. doi:10.1016/j.ydbio.2005.11.046

Dahanukar, A., Walker, J. A. and Wharton, R. P. (1999). Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol. Cell 4,209-218. doi:10.1016/S1097-2765(00)80368-8

Dahl, J. A., Jung, I., Aanes, H., Greggains, G. D., Manaf, A., Lerdrup, M., Li, G.,Kuan, S., Li, B., Lee, A. Y. et al. (2016). Broad histone H3K4me3 domains inmouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548-552.doi:10.1038/nature19360

Dalle Nogare, D. E., Pauerstein, P. T. and Lane, M. E. (2009). G2 acquisition bytranscription-independent mechanism at the zebrafishmidblastula transition.Dev.Biol. 326, 131-142. doi:10.1016/j.ydbio.2008.11.002

De Iaco, A., Planet, E., Coluccio, A., Verp, S., Duc, J. and Trono, D. (2017). DUX-family transcription factors regulate zygotic genome activation in placentalmammals. Nat. Genet. 49, 941-945. doi:10.1038/ng.3858

De Iaco, A., Coudray, A., Duc, J. and Trono, D. (2019). DPPA2 and DPPA4 arenecessary to establish a 2C-like state in mouse embryonic stem cells.EMBORep.20, e47382. doi:10.15252/embr.201847382

De Renzis, S., Elemento, O., Tavazoie, S. and Wieschaus, E. F. (2007).Unmasking activation of the zygotic genome using chromosomal deletions in theDrosophila embryo. PLoS Biol. 5, e117. doi:10.1371/journal.pbio.0050117

Dekens, M. P. S., Pelegri, F. J., Maischein, H. M. and Nusslein-Volhard, C.(2003). The maternal-effect gene futile cycle is essential for pronuclear

congression and mitotic spindle assembly in the zebrafish zygote. Development130, 3907-3916. doi:10.1242/dev.00606

Despic, V., Dejung, M., Gu, M., Krishnan, J., Zhang, J., Herzel, L., Straube, K.,Gerstein, M. B., Butter, F. andNeugebauer, K. M. (2017). Dynamic RNA-proteininteractions underlie the zebrafish maternal-to-zygotic transition. Genome Res.27, 1184-1194. doi:10.1101/gr.215954.116

Detivaud, L., Pascreau, G., Karaiskou, A., Osborne, H. B. and Kubiak, J. Z.(2003). Regulation of EDEN-dependent deadenylation of Aurora A/Eg2-derivedmRNA via phosphorylation and dephosphorylation in Xenopus laevis eggextracts. J. Cell Sci. 116, 2697-2705. doi:10.1242/jcs.00477

Dobson, A. T., Raja, R., Abeyta, M. J., Taylor, T., Shen, S., Haqq, C. and Pera,R. A. (2004). The unique transcriptome through day 3 of human preimplantationdevelopment. Hum. Mol. Genet. 13, 1461-1470. doi:10.1093/hmg/ddh157

Domazet-Loso, T. and Tautz, D. (2010). A phylogenetically based transcriptomeage index mirrors ontogenetic divergence patterns. Nature 468, 815-818. doi:10.1038/nature09632

Du, Z., Zheng, H., Huang, B., Ma, R., Wu, J., Zhang, X., He, J., Xiang, Y., Wang,Q., Li, Y. et al. (2017). Allelic reprogramming of 3D chromatin architecture duringearly mammalian development. Nature 547, 232-235. doi:10.1038/nature23263

Dufourt, J., Bontonou, G., Chartier, A., Jahan, C., Meunier, A. C., Pierson, S.,Harrison, P. F., Papin, C., Beilharz, T. H. and Simonelig, M. (2017). piRNAs andAubergine cooperate with Wispy poly(A) polymerase to stabilize mRNAs in thegerm plasm. Nat. Commun. 8, 1305. doi:10.1038/s41467-017-01431-5

Dunican, D. S., Ruzov, A., Hackett, J. A. and Meehan, R. R. (2008). xDnmt1regulates transcriptional silencing in pre-MBT Xenopus embryos independently ofits catalytic function. Development 135, 1295-1302. doi:10.1242/dev.016402

Eckersley-Maslin, M. A., Alda-Catalinas, C., Blotenburg, M., Kreibich, E.,Krueger, C. and Reik, W. (2019). Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program.GenesDev. 33, 194-208. doi:10.1101/gad.321174

Edgar, B. A. and Schubiger, G. (1986). Parameters controlling transcriptionalactivation during early Drosophila development. Cell 44, 871-877. doi:10.1016/0092-8674(86)90009-7

Edgar, L. G., Wolf, N. and Wood, W. B. (1994). Early transcription inCaenorhabditis elegans embryos. Development 120, 443-451.

Eichhorn, S. W., Subtelny, A. O., Kronja, I., Kwasnieski, J. C., Orr-Weaver, T. L.and Bartel, D. P. (2016). mRNA poly(A)-tail changes specified by deadenylationbroadly reshape translation in Drosophila oocytes and early embryos. Elife 5,e16955. doi:10.7554/eLife.16955

Farrell, J. A. and O’Farrell, P. H. (2013). Mechanism and regulation of Cdc25/twineprotein destruction in embryonic cell-cycle remodeling. Curr. Biol. 23, 118-126.doi:10.1016/j.cub.2012.11.036

Farrell, J. A., Wang, Y., Riesenfeld, S. J., Shekhar, K., Regev, A. and Schier,A. F. (2018). Single-cell reconstruction of developmental trajectories duringzebrafish embryogenesis. Science 360, eaar3131. doi:10.1126/science.aar3131

Ferg, M., Sanges, R., Gehrig, J., Kiss, J., Bauer, M., Lovas, A., Szabo, M., Yang,L., Straehle, U., Pankratz, M. J. et al. (2007). The TATA-binding protein regulatesmaternal mRNA degradation and differential zygotic transcription in zebrafish.EMBO J. 26, 3945-3956. doi:10.1038/sj.emboj.7601821

Fukuda, K., Masuda, A., Naka, T., Suzuki, A., Kato, Y. and Saga, Y. (2018).Requirement of the 3′-UTR-dependent suppression of DAZL in oocytes for pre-implantation mouse development. PLoS Genet. 14, e1007436. doi:10.1371/journal.pgen.1007436

Gallo, C. M., Munro, E., Rasoloson, D., Merritt, C. and Seydoux, G. (2008).Processing bodies and germ granules are distinct RNA granules that interact inC. elegans embryos. Dev. Biol. 323, 76-87. doi:10.1016/j.ydbio.2008.07.008

Gao, L., Wu, K., Liu, Z., Yao, X., Yuan, S., Tao, W., Yi, L., Yu, G., Hou, Z., Fan, D.et al. (2018). Chromatin accessibility landscape in human early embryos and itsassociation with evolution. Cell 173, 248-259.e15. doi:10.1016/j.cell.2018.02.028

Gebert, L. F. R. and MacRae, I. J. (2019). Regulation of microRNA function inanimals. Nat. Rev. Mol. Cell Biol. 20, 21-37. doi:10.1038/s41580-018-0045-7

Geiss, G. K., Bumgarner, R. E., Birditt, B., Dahl, T., Dowidar, N., Dunaway, D. L.,Fell, H. P., Ferree, S., George, R. D., Grogan, T. et al. (2008). Direct multiplexedmeasurement of gene expression with color-coded probe pairs. Nat. Biotechnol.26, 317-325. doi:10.1038/nbt1385

Gerber, A. P., Luschnig, S., Krasnow, M. A., Brown, P. O. and Herschlag, D.(2006). Genome-wide identification of mRNAs associated with the translationalregulator PUMILIO in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 103,4487-4492. doi:10.1073/pnas.0509260103

Gildor, T. and Ben-Tabou de-Leon, S. (2015). Comparative study of regulatorycircuits in two sea urchin species reveals tight control of timing and highconservation of expression dynamics. PLoS Genet. 11, e1005435. doi:10.1371/journal.pgen.1005435

Giraldez, A. J., Mishima, Y., Rihel, J., Grocock, R. J., Van Dongen, S., Inoue, K.,Enright, A. J. and Schier, A. F. (2006). Zebrafish miR-430 promotesdeadenylation and clearance of maternal mRNAs. Science 312, 75-79. doi:10.1126/science.1122689

Graindorge, A., Thuret, R., Pollet, N., Osborne, H. B. and Audic, Y. (2006).Identification of post-transcriptionally regulated Xenopus tropicalis maternalmRNAs by microarray. Nucleic Acids Res. 34, 986-995. doi:10.1093/nar/gkj492

15

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 16: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

Graindorge, A., Le Tonqueze, O., Thuret, R., Pollet, N., Osborne, H. B. andAudic, Y. (2008). Identification of CUG-BP1/EDEN-BP target mRNAs in Xenopustropicalis. Nucleic Acids Res. 36, 1861-1870. doi:10.1093/nar/gkn031

Groisman, I., Jung, M.-Y., Sarkissian, M., Cao, Q. and Richter, J. D. (2002).Translational control of the embryonic cell cycle. Cell 109, 473-483. doi:10.1016/S0092-8674(02)00733-X

Guo, H., Zhu, P., Yan, L., Li, R., Hu, B., Lian, Y., Yan, J., Ren, X., Lin, S., Li, J. et al.(2014). The DNA methylation landscape of human early embryos. Nature 511,606-610. doi:10.1038/nature13544

Guven-Ozkan, T., Nishi, Y., Robertson, S. M. and Lin, R. (2008). Globaltranscriptional repression in C. elegans germline precursors by regulatedsequestration of TAF-4. Cell 135, 149-160. doi:10.1016/j.cell.2008.07.040

Haberle, V., Li, N., Hadzhiev, Y., Plessy, C., Previti, C., Nepal, C., Gehrig, J.,Dong, X., Akalin, A., Suzuki, A. M. et al. (2014). Two independent transcriptioninitiation codes overlap on vertebrate core promoters. Nature 507, 381-385.doi:10.1038/nature12974

Hadzhiev, Y., Qureshi, H. K., Wheatley, L., Cooper, L., Jasiulewicz, A., VanNguyen, H., Wragg, J. W., Poovathumkadavil, D., Conic, S., Bajan, S. et al.(2019). A cell cycle-coordinated Polymerase II transcription compartmentencompasses gene expression before global genome activation. Nat. Commun.10, 691. doi:10.1038/s41467-019-08487-5

Hake, L. E. and Richter, J. D. (1994). CPEB is a specificity factor that mediatescytoplasmic polyadenylation during Xenopus oocytematuration.Cell 79, 617-627.doi:10.1016/0092-8674(94)90547-9

Hamatani, T., Carter, M. G., Sharov, A. A. and Ko, M. S. H. (2004). Dynamics ofglobal gene expression changes during mouse preimplantation development.Dev. Cell 6, 117-131. doi:10.1016/S1534-5807(03)00373-3

Hanson, G. and Coller, J. (2018). Codon optimality, bias and usage in translationand mRNA decay. Nat. Rev. Mol. Cell Biol. 19, 20-30. doi:10.1038/nrm.2017.91

Hanyu-Nakamura, K., Sonobe-Nojima, H., Tanigawa, A., Lasko, P. andNakamura, A. (2008). Drosophila Pgc protein inhibits P-TEFb recruitment tochromatin in primordial germ cells. Nature 451, 730-733. doi:10.1038/nature06498

Hanyu-Nakamura, K., Matsuda, K., Cohen, S. M. and Nakamura, A. (2019). Pgcsuppresses the zygotically-acting RNA decay pathway to protect germ plasmRNAs in the Drosophila embryo.Development 146, dev167056. doi:10.1242/dev.167056

Hara, M., Petrova, B. and Orr-Weaver, T. L. (2017). Control of PNG kinase, a keyregulator of mRNA translation, is coupled to meiosis completion at egg activation.Elife 6, e22219. doi:10.7554/eLife.22219

Harrison, M. M., Botchan, M. R. and Cline, T. W. (2010). Grainyhead and Zeldacompete for binding to the promoters of the earliest-expressed Drosophila genes.Dev. Biol. 345, 248-255. doi:10.1016/j.ydbio.2010.06.026

Harrison, M. M., Li, X.-Y., Kaplan, T., Botchan, M. R. and Eisen, M. B. (2011).Zelda binding in the early Drosophila melanogaster embryo marks regionssubsequently activated at the maternal-to-zygotic transition. PLoS Genet. 7,e1002266. doi:10.1371/journal.pgen.1002266

Harvey, S. A., Sealy, I., Kettleborough, R., Fenyes, F., White, R., Stemple, D. andSmith, J. C. (2013). Identification of the zebrafish maternal and paternaltranscriptomes. Development 140, 2703-2710. doi:10.1242/dev.095091

Hendrickson, P. G., Dorais, J. A., Grow, E. J., Whiddon, J. L., Lim, J.-W., Wike,C. L., Weaver, B. D., Pflueger, C., Emery, B. R., Wilcox, A. L. et al. (2017).Conserved roles of mouse DUX and human DUX4 in activating cleavage-stagegenes and MERVL/HERVL retrotransposons. Nat. Genet. 49, 925-934. doi:10.1038/ng.3844

Heyn, P., Kircher, M., Dahl, A., Kelso, J., Tomancak, P., Kalinka, A. T. andNeugebauer, K. M. (2014). The earliest transcribed zygotic genes are short,newly evolved, and different across species. Cell Rep. 6, 285-292. doi:10.1016/j.celrep.2013.12.030

Hilbert, L., Sato, Y., Kimura, H., Julicher, F., Honigmann, A., Zaburdaev, V. andVastenhouw, N. L. (2018). Transcription organizes euchromatin similar to anactive microemulsion. bioRxiv. doi:10.1101/234112

Hontelez, S., van Kruijsbergen, I., Georgiou, G., van Heeringen, S. J.,Bogdanovic, O., Lister, R. and Veenstra, G. J. C. (2015). Embryonictranscription is controlled by maternally defined chromatin state. Nat. Commun.6, 10148. doi:10.1038/ncomms10148

Hug, C. B., Grimaldi, A. G., Kruse, K. and Vaquerizas, J. M. (2017). Chromatinarchitecture emerges during zygotic genome activation independent oftranscription. Cell 169, 216-228.e19. doi:10.1016/j.cell.2017.03.024

Ivanova, I., Much, C., Di Giacomo, M., Azzi, C., Morgan, M., Moreira, P. N.,Monahan, J., Carrieri, C., Enright, A. J. and O’Carroll, D. (2017). The RNAm(6)A reader YTHDF2 is essential for the post-transcriptional regulation of thematernal transcriptome and oocyte competence. Mol. Cell 67, 1059-1067.E4.doi:10.1016/j.molcel.2017.08.003

Jevtic, P. and Levy, D. L. (2015). Nuclear size scaling during Xenopus earlydevelopment contributes to midblastula transition timing. Curr. Biol. 25, 45-52.doi:10.1016/j.cub.2014.10.051

Jevtic, P. and Levy, D. L. (2017). Both nuclear size and DNA amount contribute tomidblastula transition timing in Xenopus laevis.Sci. Rep. 7, 675-679. doi:10.1038/s41598-017-08243-z

Jiang, L., Zhang, J., Wang, J.-J., Wang, L., Zhang, L., Li, G., Yang, X., Ma, X.,Sun, X., Cai, J. et al. (2013). Sperm, but not oocyte, DNA methylome is inheritedby zebrafish early embryos. Cell 153, 773-784. doi:10.1016/j.cell.2013.04.041

Joseph, S. R., Palfy, M., Hilbert, L., Kumar, M., Karschau, J., Zaburdaev, V.,Shevchenko, A. and Vastenhouw, N. L. (2017). Competition between histoneand transcription factor binding regulates the onset of transcription in zebrafishembryos. Elife 6, e23326. doi:10.7554/eLife.23326

Junker, J. P., Noel, E. S., Guryev, V., Peterson, K. A., Shah, G., Huisken, J.,McMahon, A. P., Berezikov, E., Bakkers, J. and van Oudenaarden, A. (2014).Genome-wide RNA tomography in the zebrafish embryo. Cell 159, 662-675.doi:10.1016/j.cell.2014.09.038

Kaaij, L. J. T., Mokry, M., Zhou, M., Musheev, M., Geeven, G., Melquiond,A. S. J., de Jesus Domingues, A. M., de Laat, W., Niehrs, C., Smith, A. D. et al.(2016). Enhancers reside in a unique epigenetic environment during earlyzebrafish development. Genome Biol., 17, 146. doi:10.1186/s13059-016-1013-1

Kaaij, L. J. T., van der Weide, R. H., Ketting, R. F. and deWit, E. (2018). Systemicloss and gain of chromatin architecture throughout zebrafish development. CellRep. 24, 1-10.e4. doi:10.1016/j.celrep.2018.06.003

Kalinka, A. T., Varga, K. M., Gerrard, D. T., Preibisch, S., Corcoran, D. L.,Jarrells, J., Ohler, U., Bergman, C. M. and Tomancak, P. (2010). Geneexpression divergence recapitulates the developmental hourglass model. Nature468, 811-814. doi:10.1038/nature09634

Kane, D. A., Hammerschmidt, M., Mullins, M. C., Maischein, H. M., Brand, M.,van Eeden, F. J., Furutani-Seiki, M., Granato,M., Haffter, P., Heisenberg, C. P.et al. (1996). The zebrafish epiboly mutants. Development 123, 47-55.

Ke, Y., Xu, Y., Chen, X., Feng, S., Liu, Z., Sun, Y., Yao, X., Li, F., Zhu, W., Gao, L.et al. (2017). 3D chromatin structures of mature gametes and structuralreprogramming during mammalian embryogenesis. Cell 170, 367-381.E20.doi:10.1016/j.cell.2017.06.029

Kedde, M., Strasser, M. J., Boldajipour, B., Vrielink, J. A. F. O., Slanchev, K., leSage, C., Nagel, R., Voorhoeve, P. M., van Duijse, J., Ørom, U. A. et al. (2007).RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131,1273-1286. doi:10.1016/j.cell.2007.11.034

Kim, J. H. and Richter, J. D. (2006). Opposing polymerase-deadenylase activitiesregulate cytoplasmic polyadenylation. Mol. Cell 24, 173-183. doi:10.1016/j.molcel.2006.08.016

Kim, S. and Elbaum, M. (2013a). Enzymatically driven transport: a kinetic theory fornuclear export. Biophys. J. 105, 1997-2005. doi:10.1016/j.bpj.2013.09.011

Kim, S. and Elbaum, M. (2013b). A simple kinetic model with explicit predictions fornuclear transport. Biophys. J. 105, 565-569. doi:10.1016/j.bpj.2013.04.025

Kimelman, D., Kirschner, M. and Scherson, T. (1987). The events of themidblastula transition in Xenopus are regulated by changes in the cell cycle. Cell48, 399-407. doi:10.1016/0092-8674(87)90191-7

Kisielnicka, E., Minasaki, R. and Eckmann, C. R. (2018). MAPK signaling couplesSCF-mediated degradation of translational regulators to oocyte meioticprogression. Proc. Natl. Acad. Sci. USA 115, E2772-E2781. doi:10.1073/pnas.1715439115

Kopito, R. B. and Elbaum, M. (2007). Reversibility in nucleocytoplasmic transport.Proc. Natl. Acad. Sci. USA 104, 12743-12748. doi:10.1073/pnas.0702690104

Kopito, R. B. and Elbaum, M. (2009). Nucleocytoplasmic transport: athermodynamic mechanism. HFSP J. 3, 130-141. doi:10.2976/1.3080807

Krauchunas, A. R., Horner, V. L. and Wolfner, M. F. (2012). Proteinphosphorylation changes reveal new candidates in the regulation of eggactivation and early embryogenesis in D. melanogaster. Dev. Biol. 370,125-134. doi:10.1016/j.ydbio.2012.07.024

Kronja, I., Whitfield, Z. J., Yuan, B., Dzeyk, K., Kirkpatrick, J., Krijgsveld, J. andOrr-Weaver, T. L. (2014a). Quantitative proteomics reveals the dynamics ofprotein changes during Drosophila oocyte maturation and the oocyte-to-embryotransition. Proc. Natl. Acad. Sci. USA 111, 16023-16028. doi:10.1073/pnas.1418657111

Kronja, I., Yuan, B., Eichhorn, S. W., Dzeyk, K., Krijgsveld, J., Bartel, D. P. andOrr-Weaver, T. L. (2014b). Widespread changes in the posttranscriptionallandscape at the Drosophila oocyte-to-embryo transition. Cell Rep. 7, 1495-1508.doi:10.1016/j.celrep.2014.05.002

Kwasnieski, J. C., O’rr-Weaver, T. and Bartel, D. P. (2019). Early genomeactivation in Drosophila is extensivewith an initial tendency for aborted transcriptsand retained introns. https://www.biorxiv.org/content/10.1101/375204v2.

Lagha, M., Bothma, J. P., Esposito, E., Ng, S., Stefanik, L., Tsui, C., Johnston,J., Chen, K., Gilmour, D. S., Zeitlinger, J. et al. (2013). Paused pol II coordinatestissuemorphogenesis in the Drosophila embryo.Cell 153, 976-987. doi:10.1016/j.cell.2013.04.045

Laue, K., Rajshekar, S., Courtney, A. J., Lewis, Z. A. and Goll, M. G. (2019). Thematernal to zygotic transition regulates genome-wide heterochromatinestablishment in the zebrafish embryo. Nat. Commun. 10, 1551. doi:10.1038/s41467-019-09582-3

Laver, J. D., Li, X., Ray, D., Cook, K. B., Hahn, N. A., Nabeel-Shah, S., Kekis, M.,Luo, H., Marsolais, A. J., Fung, K. Y. et al. (2015a). Brain tumor is a sequence-specific RNA-binding protein that directs maternal mRNA clearance during theDrosophila maternal-to-zygotic transition. Genome Biol. 16, 94. doi:10.1186/s13059-015-0659-4

16

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 17: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

Laver, J. D., Marsolais, A. J., Smibert, C. A. and Lipshitz, H. D. (2015b).Regulation and function of maternal gene products during the maternal-to-zygotictransition in Drosophila. Curr. Top. Dev. Biol. 113, 43-84. doi:10.1016/bs.ctdb.2015.06.007

Lecuyer, E., Yoshida, H., Parthasarathy, N., Alm, C., Babak, T., Cerovina, T.,Hughes, T. R., Tomancak, P. and Krause, H. M. (2007). Global analysis ofmRNA localization reveals a prominent role in organizing cellular architecture andfunction. Cell 131, 174-187. doi:10.1016/j.cell.2007.08.003

Lee, M. T., Bonneau, A. R., Takacs, C. M., Bazzini, A. A., DiVito, K. R., Fleming,E. S. andGiraldez, A. J. (2013). Nanog, Pou5f1 and SoxB1 activate zygotic geneexpression during the maternal-to-zygotic transition.Nature 503, 360-364. doi:10.1038/nature12632

Leichsenring, M., Maes, J., Mossner, R., Driever, W. and Onichtchouk, D.(2013). Pou5f1 transcription factor controls zygotic gene activation in vertebrates.Science 341, 1005-1009. doi:10.1126/science.1242527

Li, X.-Y., Harrison, M. M., Villalta, J. E., Kaplan, T. and Eisen, M. B. (2014).Establishment of regions of genomic activity during the Drosophila maternal tozygotic transition. Elife 3, e03737 doi:10.7554/eLife.03737

Li, L., Guo, F., Gao, Y., Ren, Y., Yuan, P., Yan, L., Li, R., Lian, Y., Li, J., Hu, B. et al.(2018). Single-cell multi-omics sequencing of human early embryos. Nat. CellBiol. 20, 1227. doi:10.1038/s41556-018-0166-4

Liang, H.-L., Nien, C.-Y., Liu, H.-Y., Metzstein, M. M., Kirov, N. and Rushlow, C.(2008). The zinc-finger protein Zelda is a key activator of the early zygotic genomein Drosophila. Nature 456, 400-403. doi:10.1038/nature07388

Lindeman, L. C., Andersen, I. S., Reiner, A. H., Li, N., Aanes, H., Østrup, O.,Winata, C., Mathavan, S., Muller, F., Alestrom, P. et al. (2011). Prepatterning ofdevelopmental gene expression by modified histones before zygotic genomeactivation. Dev. Cell 21, 993-1004. doi:10.1016/j.devcel.2011.10.008

Little, S. C., Tikhonov, M. and Gregor, T. (2013). Precise developmental geneexpression arises from globally stochastic transcriptional activity. Cell 154,789-800. doi:10.1016/j.cell.2013.07.025

Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M. and Pan, T. (2015). N(6)-methyladenosine-dependent RNA structural switches regulate RNA-proteininteractions. Nature 518, 560-564. doi:10.1038/nature14234

Liu, X., Wang, C., Liu, W., Li, J., Li, C., Kou, X., Chen, J., Zhao, Y., Gao, H., Wang,H. et al. (2016). Distinct features of H3K4me3 and H3K27me3 chromatin domainsin pre-implantation embryos. Nature 537, 558-562. doi:10.1038/nature19362

Liu, C., Ma, Y., Shang, Y., Huo, R. and Li, W. (2018a). Post-translational regulationof the maternal-to-zygotic transition. Cell. Mol. Life Sci. 75, 1707-1722. doi:10.1007/s00018-018-2750-y

Liu, G., Wang, W., Hu, S., Wang, X. and Zhang, Y. (2018b). Inherited DNAmethylation primes the establishment of accessible chromatin during genomeactivation. Genome Res. 28, 998-1007. doi:10.1101/gr.228833.117

Loedige, I., Stotz, M., Qamar, S., Kramer, K., Hennig, J., Schubert, T., Loffler, P.,Langst, G., Merkl, R., Urlaub, H. et al. (2014). The NHL domain of BRAT is anRNA-binding domain that directly contacts the hunchback mRNA for regulation.Genes Dev. 28, 749-764. doi:10.1101/gad.236513.113

Lorch, Y., LaPointe, J. W. and Kornberg, R. D. (1987). Nucleosomes inhibit theinitiation of transcription but allow chain elongation with the displacement ofhistones. Cell 49, 203-210. doi:10.1016/0092-8674(87)90561-7

Lott, S. E., Villalta, J. E., Schroth, G. P., Luo, S., Tonkin, L. A. and Eisen, M. B.(2011). Noncanonical compensation of zygotic X transcription in early Drosophilamelanogaster development revealed through single-embryo RNA-Seq. PLoSBiol. 9, e1000590-e1000513. doi:10.1371/journal.pbio.1000590

Lu, X., Li, J. M., Elemento, O., Tavazoie, S. andWieschaus, E. F. (2009). Couplingof zygotic transcription to mitotic control at the Drosophila mid-blastula transition.Development 136, 2101-2110. doi:10.1242/dev.034421

Lu, F., Liu, Y., Inoue, A., Suzuki, T., Zhao, K. and Zhang, Y. (2016). Establishingchromatin regulatory landscape during mouse preimplantation development. Cell165, 1375-1388. doi:10.1016/j.cell.2016.05.050

Lund, E., Liu, M., Hartley, R. S., Sheets, M. D. and Dahlberg, J. E. (2009).Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevisembryos. RNA (New York, N.Y.) 15, 2351-2363. doi:10.1261/rna.1882009

Luo, H., Li, X., Claycomb, J. M. and Lipshitz, H. D. (2016). The Smaug RNA-binding protein is essential for microRNA synthesis during the Drosophilamaternal-to-zygotic transition. G3 (Bethesda) 6, 3541-3551. doi:10.1534/g3.116.034199

Lykke-Andersen, K., Gilchrist, M. J., Grabarek, J. B., Das, P., Miska, E. andZernicka-Goetz, M. (2008). Maternal Argonaute 2 is essential for early mousedevelopment at the maternal-zygotic transition. Mol. Biol. Cell 19, 4383-4392.doi:10.1091/mbc.e08-02-0219

Mansfield, J. H., Wilhelm, J. E. and Hazelrigg, T. (2002). Ypsilon Schachtel, aDrosophila Y-box protein, acts antagonistically to Orb in the oskar mRNAlocalization and translation pathway. Development 129, 197-209.

Materna, S. C., Nam, J. andDavidson, E. H. (2010). High accuracy, high-resolutionprevalence measurement for the majority of locally expressed regulatory genes inearly sea urchin development. Gene Expr. Patterns 10, 177-184. doi:10.1016/j.gep.2010.04.002

Mathavan, S., Lee, S. G. P., Mak, A., Miller, L. D., Murthy, K. R. K., Govindarajan,K. R., Tong, Y., Wu, Y. L., Lam, S. H., Yang, H. et al. (2005). Transcriptome

analysis of zebrafish embryogenesis using microarrays. PLoS Genet. 1, 260-276.doi:10.1371/journal.pgen.0010029

Matsumoto, K., Meric, F. and Wolffe, A. P. (1996). Translational repressiondependent on the interaction of the Xenopus Y-box protein FRGY2 with mRNA.Role of the cold shock domain, tail domain, and selective RNA sequencerecognition. J. Biol. Chem. 271, 22706-22712. doi:10.1074/jbc.271.37.22706

McCleland, M. L. and O’Farrell, P. H. (2008). RNAi of mitotic cyclins in Drosophilauncouples the nuclear and centrosome cycle. Curr. Biol. 18, 245-254. doi:10.1016/j.cub.2008.01.041

Medvedev, S., Yang, J., Hecht, N. B. and Schultz, R. M. (2008). CDC2A (CDK1)-mediated phosphorylation of MSY2 triggers maternal mRNA degradation duringmouse oocyte maturation. Dev. Biol. 321, 205-215. doi:10.1016/j.ydbio.2008.06.016

Medvedev, S., Pan, H. and Schultz, R. M. (2011). Absence of MSY2 in mouseoocytes perturbs oocyte growth and maturation, RNA stability, and thetranscriptome. Biol. Reprod. 85, 575-583. doi:10.1095/biolreprod.111.091710

Millonigg, S., Minasaki, R., Nousch, M. and Eckmann, C. R. (2014). GLD-4-mediated translational activation regulates the size of the proliferative germ cellpool in the adult C. elegans germ line. PLoS Genet. 10, e1004647. doi:10.1371/journal.pgen.1004647

Mishima, Y. and Tomari, Y. (2016). Codon usage and 3′ UTR length determinematernal mRNA stability in zebrafish.Mol. Cell 61, 874-885. doi:10.1016/j.molcel.2016.02.027

Mishima, Y., Giraldez, A. J., Takeda, Y., Fujiwara, T., Sakamoto, H., Schier, A. F.and Inoue, K. (2006). Differential regulation of germline mRNAs in soma andgerm cells by zebrafish miR-430. Curr. Biol. 16, 2135-2142. doi:10.1016/j.cub.2006.08.086

Moraes, K. C. M., Wilusz, C. J. and Wilusz, J. (2006). CUG-BP binds to RNAsubstrates and recruits PARN deadenylase. RNA (New York, N.Y.) 12,1084-1091. doi:10.1261/rna.59606

Mutlu, B., Chen, H. M., Moresco, J. J., Orelo, B. D., Yang, B., Gaspar, J. M.,Keppler-Ross, S., Yates, J. R., III, Hall, D. H., Maine, E. M. et al. (2018).Regulated nuclear accumulation of a histone methyltransferase times the onset ofheterochromatin formation in C. elegans embryos. Sci. Adv. 4, eaat6224. doi:10.1126/sciadv.aat6224

Nelson, M. R., Leidal, A. M. and Smibert, C. A. (2004). Drosophila Cup is aneIF4E-binding protein that functions in Smaug-mediated translational repression.EMBO J. 23, 150-159. doi:10.1038/sj.emboj.7600026

Nelson, M. R., Luo, H., Vari, H. K., Cox, B. J., Simmonds, A. J., Krause, H. M.,Lipshitz, H. D. and Smibert, C. A. (2007). A multiprotein complex that mediatestranslational enhancement in Drosophila. J. Biol. Chem. 282, 34031-34038.doi:10.1074/jbc.M706363200

Newport, J. and Kirschner, M. (1982). A major developmental transition in earlyXenopus embryos: II. Control of the onset of transcription. Cell 30, 687-696.

Newton, F. G., Harris, R. E., Sutcliffe, C. and Ashe, H. L. (2015). Coordinate post-transcriptional repression of Dpp-dependent transcription factors attenuatessignal range during development. Development 142, 3362-3373. doi:10.1242/dev.123273

Nien, C.-Y., Liang, H.-L., Butcher, S., Sun, Y., Fu, S., Gocha, T., Kirov, N., Manak,J. R. and Rushlow, C. (2011). Temporal coordination of gene networks by Zeldain the early Drosophila embryo. PLoS Genet. 7, e1002339. doi:10.1371/journal.pgen.1002339

Nousch, M., Techritz, N., Hampel, D., Millonigg, S. and Eckmann, C. R. (2013).The Ccr4-Not deadenylase complex constitutes the main poly(A) removal activityin C. elegans. J. Cell Sci. 126, 4274-4285. doi:10.1242/jcs.132936

Nousch, M., Yeroslaviz, A., Habermann, B. and Eckmann, C. R. (2014). Thecytoplasmic poly(A) polymerases GLD-2 and GLD-4 promote general geneexpression via distinct mechanisms. Nucleic Acids Res. 42, 11622-11633. doi:10.1093/nar/gku838

Nousch, M., Minasaki, R. and Eckmann, C. R. (2017). Polyadenylation is the keyaspect of GLD-2 function in C. elegans. RNA (New York, N.Y.) 23, 1180-1187.doi:10.1261/rna.061473.117

Ogiyama, Y., Schuettengruber, B., Papadopoulos, G. L., Chang, J.-M. andCavalli, G. (2018). Polycomb-dependent chromatin looping contributes to genesilencing during Drosophila development. Mol. Cell 71, 73-88.e5. doi:10.1016/j.molcel.2018.05.032

Ohnishi, Y., Totoki, Y., Toyoda, A., Watanabe, T., Yamamoto, Y., Tokunaga, K.,Sakaki, Y., Sasaki, H. and Hohjoh, H. (2010). Small RNA class transition fromsiRNA/piRNA to miRNA during pre-implantation mouse development. NucleicAcids Res. 38, 5141-5151. doi:10.1093/nar/gkq229

Oulhen, N. andWessel, G. M. (2016). Differential Nanos 2 protein stability results inselective germ cell accumulation in the sea urchin. Dev. Biol. 418, 146-156.doi:10.1016/j.ydbio.2016.07.007

Owens, N. D. L., Blitz, I. L., Lane, M. A., Patrushev, I., Overton, J. D., Gilchrist,M. J., Cho, K. W. Y. and Khokha, M. K. (2016). Measuring absolute RNA copynumbers at high temporal resolution reveals transcriptome kinetics indevelopment. Cell Rep. 14, 632-647. doi:10.1016/j.celrep.2015.12.050

Paillard, L., Omilli, F., Legagneux, V., Bassez, T., Maniey, D. and Osborne, H. B.(1998). EDEN and EDEN-BP, a cis element and an associated factor that mediate

17

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 18: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

sequence-specific mRNA deadenylation in Xenopus embryos. EMBO J. 17,278-287. doi:10.1093/emboj/17.1.278

Palfy, M., Joseph, S. R. and Vastenhouw, N. L. (2017). The timing of zygoticgenome activation.Curr. Opin. Genet. Dev. 43, 53-60. doi:10.1016/j.gde.2016.12.001

Paranjpe, S. S., Jacobi, U. G., van Heeringen, S. J. and Veenstra, G. J. (2013). Agenome-wide survey of maternal and embryonic transcripts during Xenopustropicalis development. BMC Genomics 14, 762. doi:10.1186/1471-2164-14-762

Pauli, A., Valen, E., Lin, M. F., Garber, M., Vastenhouw,N. L., Levin, J. Z., Fan, L.,Sandelin, A., Rinn, J. L., Regev, A. et al. (2012). Systematic identification of longnoncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 22,577-591. doi:10.1101/gr.133009.111

Peat, J. R., Dean, W., Clark, S. J., Krueger, F., Smallwood, S. A., Ficz, G., Kim,J. K., Marioni, J. C., Hore, T. A. and Reik, W. (2014). Genome-wide bisulfitesequencing in zygotes identifies demethylation targets and maps the contributionof TET3 oxidation. Cell Rep. 9, 1990-2000. doi:10.1016/j.celrep.2014.11.034

Perez-Montero, S., Carbonell, A., Moran, T., Vaquero, A. and Azorin, F. (2013).The embryonic linker histone H1 variant of Drosophila, dBigH1, regulates zygoticgenome activation. Dev. Cell 26, 578-590. doi:10.1016/j.devcel.2013.08.011

Perez-Romero, C. A., Tran, H., Coppey, M., Walczak, A. M., Fradin, C. andDostatni, N. (2018). Live Imaging of mRNA transcription in Drosophila embryos.Methods Mol. Biol. 1863, 165-182. doi:10.1007/978-1-4939-8772-6_10

Pesin, J. A. andOrr-Weaver, T. L. (2008). Regulation of APC/C activators inmitosisandmeiosis.Annu. Rev. Cell Dev. Biol. 24, 475-499. doi:10.1146/annurev.cellbio.041408.115949

Piatek, M. J. and Werner, A. (2014). Endogenous siRNAs: regulators of internalaffairs. Biochem. Soc. Trans. 42, 1174-1179. doi:10.1042/BST20140068

Pinder, B. D. and Smibert, C. A. (2013). microRNA-independent recruitment ofArgonaute 1 to nanos mRNA through the Smaug RNA-binding protein. EMBORep. 14, 80-86. doi:10.1038/embor.2012.192

Popken, J., Brero, A., Koehler, D., Schmid, V. J., Strauss, A., Wuensch, A.,Guengoer, T., Graf, A., Krebs, S., Blum, H. et al. (2014). Reprogramming offibroblast nuclei in cloned bovine embryos involves major structural remodelingwith both striking similarities and differences to nuclear phenotypes of in vitrofertilized embryos. Nucleus 5, 555-589. doi:10.4161/19491034.2014.979712

Potok,M. E., Nix, D. A., Parnell, T. J. andCairns, B. R. (2013). Reprogramming thematernal zebrafish genome after fertilization to match the paternal methylationpattern. Cell 153, 759-772. doi:10.1016/j.cell.2013.04.030

Presnyak, V., Alhusaini, N., Chen, Y.-H., Martin, S., Morris, N., Kline, N., Olson,S.,Weinberg, D., Baker, K. E., Graveley, B. R. et al. (2015). Codon optimality is amajor determinant of mRNA stability. Cell 160, 1111-1124. doi:10.1016/j.cell.2015.02.029

Prioleau, M. N., Huet, J., Sentenac, A. and Mechali, M. (1994). Competitionbetween chromatin and transcription complex assembly regulates geneexpression during early development. Cell 77, 439-449. doi:10.1016/0092-8674(94)90158-9

Pritchard, D. K. and Schubiger, G. (1996). Activation of transcription in Drosophilaembryos is a gradual process mediated by the nucleocytoplasmic ratio. GenesDev. 10, 1131-1142. doi:10.1101/gad.10.9.1131

Rabani, M., Pieper, L., Chew, G. L. and Schier, A. F. (2017). A massively parallelreporter assay of 3′UTR sequences identifies in vivo rules for mRNA degradation.Mol. Cell 68, 1083-1094.e5. doi:10.1016/j.molcel.2017.11.014

Radhakrishnan, A., Chen, Y.-H., Martin, S., Alhusaini, N., Green, R. and Coller, J.(2016). The DEAD-box protein Dhh1p couples mRNA decay and translation bymonitoring codonoptimality.Cell167, 122-132.e129. doi:10.1016/j.cell.2016.08.053

Ramos, S. B. V., Stumpo, D. J., Kennington, E. A., Phillips, R. S., Bock, C. B.,Ribeiro-Neto, F. and Blackshear, P. J. (2004). The CCCH tandem zinc-fingerprotein Zfp36l2 is crucial for female fertility and early embryonic development.Development 131, 4883-4893. doi:10.1242/dev.01336

Rothe, M., Pehl, M., Taubert, H. and Jackle, H. (1992). Loss of gene functionthrough rapid mitotic cycles in the Drosophila embryo. Nature 359, 156-159.doi:10.1038/359156a0

Rouget, C., Papin, C., Boureux, A., Meunier, A.-C., Franco, B., Robine, N., Lai,E. C., Pelisson, A. and Simonelig, M. (2010). Maternal mRNA deadenylationand decay by the piRNA pathway in the early Drosophila embryo. Nature 467,1128-1132. doi:10.1038/nature09465

Ruzov, A., Dunican, D. S., Prokhortchouk, A., Pennings, S., Stancheva, I.,Prokhortchouk, E. andMeehan, R. R. (2004). Kaiso is a genome-wide repressorof transcription that is essential for amphibian development. Development 131,6185-6194. doi:10.1242/dev.01549

Ruzov, A., Savitskaya, E., Hackett, J. A., Reddington, J. P., Prokhortchouk, A.,Madej, M. J., Chekanov, N., Li, M., Dunican, D. S., Prokhortchouk, E. et al.(2009). The non-methylated DNA-binding function of Kaiso is not required in earlyXenopus laevis development. Development 136, 729-738. doi:10.1242/dev.025569

Saeki, H., Ohsumi, K., Aihara, H., Ito, T., Hirose, S., Ura, K. and Kaneda, Y.(2005). Linker histone variants control chromatin dynamics during earlyembryogenesis. Proc. Natl. Acad. Sci. USA 102, 5697-5702. doi:10.1073/pnas.0409824102

Salles, F. J., Lieberfarb, M. E., Wreden, C., Gergen, J. P. and Strickland, S.(1994). Coordinate initiation of Drosophila development by regulatedpolyadenylation of maternal messenger-RNAs. Science 266, 1996-1999.doi:10.1126/science.7801127

Sandler, J. E. and Stathopoulos, A. (2016). Quantitative single-embryo profile ofDrosophila genome activation and the dorsal-ventral patterning network.Genetics202, 1575-1584. doi:10.1534/genetics.116.186783

Sandler, J. E., Irizarry, J., Stepanik, V., Dunipace, L., Amrhein, H. andStathopoulos, A. (2018). A developmental program truncates long transcriptsto temporally regulate cell signaling. Dev. Cell 47, 773-784.E6. doi:10.1016/j.devcel.2018.11.019

Santos, F., Hendrich, B., Reik, W. and Dean, W. (2002). Dynamic reprogrammingof DNA methylation in the early mouse embryo. Dev. Biol. 241, 172-182. doi:10.1006/dbio.2001.0501

Sato, Y., Hilbert, L., Oda, H., Wan, Y., Heddleston, J. M., Chew, T.-L., Zaburdaev,V., Keller, P., Lionnet, T., Vastenhouw, N. et al. (2019). Quantitativemeasurements of chromatin modification dynamics during zygotic genomeactivation. bioRxiv http://dx.doi.org/10.1101/601393.

Schubert, C. M., Lin, R., de Vries, C. J., Plasterk, R. H. and Priess, J. R. (2000).MEX-5 and MEX-6 function to establish soma/germline asymmetry in earlyC. elegans embryos. Mol. Cell 5, 671-682. doi:10.1016/s1097-2765(00)80246-4

Schulz, K. N. and Harrison, M. M. (2018). Mechanisms regulating zygotic genomeactivation. Nat. Rev. Genet. 20, 221-234. doi:10.1038/s41576-018-0087-x

Schulz, K. N., Bondra, E. R., Moshe, A., Villalta, J. E., Lieb, J. D., Kaplan, T.,McKay, D. J. and Harrison, M. M. (2015). Zelda is differentially required forchromatin accessibility, transcription factor binding, and gene expression in theearly Drosophila embryo. Genome Res. 25, 1715-1726. doi:10.1101/gr.192682.115

Semotok, J. L., Cooperstock, R. L., Pinder, B. D., Vari, H. K., Lipshitz, H. D. andSmibert, C. A. (2005). Smaug recruits the CCR4/POP2/NOT deadenylasecomplex to trigger maternal transcript localization in the early Drosophila embryo.Curr. Biol. 15, 284-294. doi:10.1016/j.cub.2005.01.048

Semotok, J. L., Luo, H., Cooperstock, R. L., Karaiskakis, A., Vari, H. K., Smibert,C. A. and Lipshitz, H. D. (2008). Drosophila maternal Hsp83 mRNAdestabilization is directed by multiple SMAUG recognition elements in the openreading frame. Mol. Cell. Biol. 28, 6757-6772. doi:10.1128/MCB.00037-08

Seydoux, G. and Fire, A. (1994). Soma-germline asymmetry in the distributions ofembryonic RNAs in Caenorhabditis elegans. Development 120, 2823-2834.

Seydoux, G., Mello, C. C., Pettitt, J., Wood, W. B., Priess, J. R. and Fire, A.(1996). Repression of gene expression in the embryonic germ lineage ofC. elegans. Nature 382, 713-716. doi:10.1038/382713a0

Sha, Q.-Q., Dai, X.-X., Dang, Y., Tang, F., Liu, J., Zhang, Y.-L. and Fan, H.-Y.(2017). A MAPK cascade couples maternal mRNA translation and degradation tomeiotic cell cycle progression in mouse oocytes. Development 144, 452-463.doi:10.1242/dev.144410

Shen, L., Inoue, A., He, J., Liu, Y., Lu, F. and Zhang, Y. (2014). Tet3 and DNAreplication mediate demethylation of both the maternal and paternal genomes inmouse zygotes. Cell Stem Cell 15, 459-471. doi:10.1016/j.stem.2014.09.002

Shermoen, A. W. and O’Farrell, P. H. (1991). Progression of the cell cycle throughmitosis leads to abortion of nascent transcripts. Cell 67, 303-310. doi:10.1016/0092-8674(91)90182-X

Shindo, Y. and Amodeo, A. A. (2019). Dynamics of free and chromatin-boundhistone H3 during early embryogenesis. Curr. Biol. 29, 359-366.e4. doi:10.1016/j.cub.2018.12.020

Siddiqui, N. U., Li, X., Luo, H., Karaiskakis, A., Hou, H., Kislinger, T., Westwood,J. T., Morris, Q. and Lipshitz, H. D. (2012). Genome-wide analysis of thematernal-to-zygotic transition in Drosophila primordial germ cells. Genome Biol.13, R11. doi:10.1186/gb-2012-13-2-r11

Skirkanich, J., Luxardi, G., Yang, J., Kodjabachian, L. andKlein, P. S. (2011). Anessential role for transcription before the MBT in Xenopus laevis. Dev. Biol. 357,478-491. doi:10.1016/j.ydbio.2011.06.010

Smibert, C. A., Lie, Y. S., Shillinglaw, W., Henzel, W. J. and Macdonald, P. M.(1999). Smaug, a novel and conserved protein, contributes to repression of nanosmRNA translation in vitro. RNA (New York, N.Y.) 5, 1535-1547. doi:10.1017/S1355838299991392

Song, Y., Marmion, R. A., Park, J. O., Biswas, D., Rabinowitz, J. D. andShvartsman, S. Y. (2017). Dynamic control of dNTP synthesis in early embryos.Dev. Cell 42, 301-308.E3. doi:10.1016/j.devcel.2017.06.013

Sousa Martins, J. P., Liu, X., Oke, A., Arora, R., Franciosi, F., Viville, S., Laird,D. J., Fung, J. C. and Conti, M. (2016). DAZL and CPEB1 regulate mRNAtranslation synergistically during oocyte maturation. J. Cell Sci. 129, 1271-1282.doi:10.1242/jcs.179218

Spike, C. A., Huelgas-Morales, G., Tsukamoto, T. and Greenstein, D. (2018).Multiple mechanisms inactivate the LIN-41 RNA-binding protein to ensure arobust oocyte-to-embryo transition in Caenorhabditis elegans. Genetics 210,1011-1037. doi:10.1534/genetics.118.301421

Stapel, L. C., Lombardot, B., Broaddus, C., Kainmueller, D., Jug, F., Myers,E. W. and Vastenhouw, N. L. (2016). Automated detection and quantification ofsingle RNAs at cellular resolution in zebrafish embryos. Development 143,540-546. doi:10.1242/dev.128918

18

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 19: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

Stapel, L. C., Zechner, C. and Vastenhouw, N. L. (2017). Uniform gene expressionin embryos is achieved by temporal averaging of transcription noise. Genes Dev.31, 1635-1640. doi:10.1101/gad.302935.117

Stapel, L. C., Broaddus, C. and Vastenhouw, N. L. (2018). Detection andautomated analysis of single transcripts at subcellular resolution in zebrafishembryos. Methods Mol. Biol. 1649, 143-162. doi:10.1007/978-1-4939-7213-5_9

Stebbins-Boaz, B., Cao, Q., deMoor, C. H., Mendez, R. andRichter, J. D. (1999).Maskin is a CPEB-associated factor that transiently interacts with elF-4E.Mol. Cell4, 1017-1027. doi:10.1016/S1097-2765(00)80230-0

Stein, P., Rozhkov, N. V., Li, F., Cardenas, F. L., Davydenko, O., Vandivier, L. E.,Gregory, B. D., Hannon, G. J. and Schultz, R. M. (2015). Essential role forendogenous siRNAs during meiosis in mouse oocytes. PLoS Genet. 11,e1005013. doi:10.1371/journal.pgen.1005013

Stoeckius, M., Grun, D., Kirchner, M., Ayoub, S., Torti, F., Piano, F., Herzog, M.,Selbach, M. and Rajewsky, N. (2014). Global characterization of the oocyte-to-embryo transition in Caenorhabditis elegans uncovers a novel mRNA clearancemechanism. EMBO J. 33, 1751-1766. doi:10.15252/embj.201488769

Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. and Bartel, D. P. (2014).Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature508, 66-71. doi:10.1038/nature13007

Suh, N., Baehner, L., Moltzahn, F., Melton, C., Shenoy, A., Chen, J. andBlelloch, R. (2010). MicroRNA function is globally suppressed in mouse oocytesand early embryos. Curr. Biol. 20, 271-277. doi:10.1016/j.cub.2009.12.044

Sun, Y., Nien, C.-Y., Chen, K., Liu, H.-Y., Johnston, J., Zeitlinger, J. andRushlow, C. (2015). Zelda overcomes the high intrinsic nucleosome barrier atenhancers during Drosophila zygotic genome activation. Genome Res. 25,1703-1714. doi:10.1101/gr.192542.115

Sun, J., Yan, L., Shen, W. and Meng, A. (2018). Maternal Ybx1 safeguardszebrafish oocyte maturation and maternal-to-zygotic transition by repressingglobal translation. Development 145, dev166587. doi:10.1242/dev.166587

Svoboda, P., Franke, V. and Schultz, R. M. (2015). Sculpting the transcriptomeduring the oocyte-to-embryo transition in mouse. Curr. Top. Dev. Biol. 113,305-349. doi:10.1016/bs.ctdb.2015.06.004

Sysoev, V. O., Fischer, B., Frese, C. K., Gupta, I., Krijgsveld, J., Hentze, M. W.,Castello, A. and Ephrussi, A. (2016). Global changes of the RNA-boundproteome during thematernal-to-zygotic transition in Drosophila.Nat. Commun. 7,12128. doi:10.1038/ncomms12128

Tadros, W. and Lipshitz, H. D. (2009). The maternal-to-zygotic transition: a play intwo acts. Development 136, 3033-3042. doi:10.1242/dev.033183

Tadros, W., Houston, S. A., Bashirullah, A., Cooperstock, R. L., Semotok, J. L.,Reed, B. H. and Lipshitz, H. D. (2003). Regulation of maternal transcriptdestabilization during egg activation in Drosophila. Genetics 164, 989-1001.

Tadros, W., Goldman, A. L., Babak, T., Menzies, F., Vardy, L., Orr-Weaver, T.,Hughes, T. R., Westwood, J. T., Smibert, C. A. and Lipshitz, H. D. (2007).SMAUG is a major regulator of maternal mRNA destabilization in Drosophila andits translation is activated by the PAN GU kinase. Dev. Cell 12, 143-155. doi:10.1016/j.devcel.2006.10.005

Tan, M. H., Au, K. F., Yablonovitch, A. L., Wills, A. E., Chuang, J., Baker, J. C.,Wong,W. H. and Li, J. B. (2013). RNA sequencing reveals a diverse and dynamicrepertoire of the Xenopus tropicalis transcriptome over development. GenomeRes. 23, 201-216. doi:10.1101/gr.141424.112

Tang, F., Kaneda, M., O’Carroll, D., Hajkova, P., Barton, S. C., Sun, Y. A., Lee, C.,Tarakhovsky, A., Lao, K. and Surani, M. A. (2007). Maternal microRNAs areessential for mouse zygotic development. Genes Dev. 21, 644-648. doi:10.1101/gad.418707

Temme, C., Zhang, L., Kremmer, E., Ihling, C., Chartier, A., Sinz, A., Simonelig,M. and Wahle, E. (2010). Subunits of the Drosophila CCR4-NOT complex andtheir roles in mRNA deadenylation. RNA (New York, N.Y.) 16, 1356-1370. doi:10.1261/rna.2145110

Thomsen, S., Anders, S., Janga, S. C., Huber, W. and Alonso, C. R. (2010).Genome-wide analysis of mRNA decay patterns during early Drosophiladevelopment. Genome Biol. 11, R93. doi:10.1186/gb-2010-11-9-r93

Tsukamoto, S., Kuma, A., Murakami, M., Kishi, C., Yamamoto, A. andMizushima, N. (2008). Autophagy is essential for preimplantation developmentof mouse embryos. Science 321, 117-120. doi:10.1126/science.1154822

Tsukamoto, T., Gearhart, M. D., Spike, C. A., Huelgas-Morales, G., Mews, M.,Boag, P. R., Beilharz, T. H. and Greenstein, D. (2017). LIN-41 and OMAribonucleoprotein complexes mediate a translational repression-to-activation switchcontrolling oocyte meiotic maturation and the oocyte-to-embryo transition inCaenorhabditis elegans. Genetics 206, 2007-2039. doi:10.1534/genetics.117.203174

Tu, Q., Cameron, R. A. and Davidson, E. H. (2014). Quantitative developmentaltranscriptomes of the sea urchin Strongylocentrotus purpuratus. Dev. Biol. 385,160-167. doi:10.1016/j.ydbio.2013.11.019

van Heeringen, S. J., Akkers, R. C., van Kruijsbergen, I., Arif, M. A., Hanssen,L. L. P., Sharifi, N. and Veenstra, G. J. C. (2014). Principles of nucleation ofH3K27 methylation during embryonic development. Genome Res. 24, 401-410.doi:10.1101/gr.159608.113

Vardy, L. and Orr-Weaver, T. L. (2007). The Drosophila PNG kinase complexregulates the translation of cyclin B. Dev. Cell 12, 157-166. doi:10.1016/j.devcel.2006.10.017

Vastenhouw, N. L., Zhang, Y., Woods, I. G., Imam, F., Regev, A., Liu, X. S., Rinn, J.andSchier,A.F. (2010).Chromatinsignatureofembryonicpluripotency isestablishedduring genome activation. Nature 464, 922-926. doi:10.1038/nature08866

Veenstra, G. J. C., Destree, O. H. andWolffe, A. P. (1999). Translation of maternalTATA-binding protein mRNA potentiates basal but not activated transcription inXenopus embryos at the midblastula transition. Mol. Cell. Biol. 19, 7972-7982.doi:10.1128/MCB.19.12.7972

Veil, M., Yampolsky, L. Y., Gruning, B. and Onichtchouk, D. (2019). Pou5f3,SoxB1, and Nanog remodel chromatin on high nucleosome affinity regions atzygotic genome activation.GenomeRes. 29, 383-395. doi:10.1101/gr.240572.118

Voeltz, G. K. and Steitz, J. A. (1998). AUUUA sequences direct mRNAdeadenylation uncoupled from decay during Xenopus early development. Mol.Cell. Biol. 18, 7537-7545. doi:10.1128/MCB.18.12.7537

Vopalensky, P., Pralow, S. and Vastenhouw, N. L. (2018). Reduced expression ofthe Nodal coreceptor Oep causes loss of mesendodermal competence inzebrafish. Development 145, dev158832 doi:10.1242/dev.158832

Wang, Q. T., Piotrowska, K., Ciemerych, M. A., Milenkovic, L., Scott, M. P.,Davis, R. W. and Zernicka-Goetz, M. (2004). A genome-wide study of geneactivity reveals developmental signaling pathways in the preimplantation mouseembryo. Dev. Cell 6, 133-144. doi:10.1016/S1534-5807(03)00404-0

Wang, J., Garrey, J. and Davis, R. E. (2014). Transcription in pronuclei and one- tofour-cell embryos drives early development in a nematode. Curr. Biol. 24,124-133. doi:10.1016/j.cub.2013.11.045

Wang, M., Ly, M., Lugowski, A., Laver, J. D., Lipshitz, H. D., Smibert, C. A. andRissland, O. S. (2017). ME31B globally represses maternal mRNAs by twodistinct mechanisms during the Drosophila maternal-to-zygotic transition. Elife 6,e27891. doi:10.7554/eLife.27891

Wei, Z., Angerer, R. C. andAngerer, L. M. (2006). A database of mRNA expressionpatterns for the sea urchin embryo. Dev. Biol. 300, 476-484. doi:10.1016/j.ydbio.2006.08.034

Weidmann, C. A., Raynard, N. A., Blewett, N. H., Van Etten, J. and Goldstrohm,A. C. (2014). The RNA binding domain of Pumilio antagonizes poly-adenosinebinding protein and accelerates deadenylation. RNA (New York, N.Y.) 20,1298-1319. doi:10.1261/rna.046029.114

Wessel, G. M., Brayboy, L., Fresques, T., Gustafson, E. A., Oulhen, N., Ramos,I., Reich, A., Swartz, S. Z., Yajima, M. and Zazueta, V. (2014). The biology of thegerm line in echinoderms. Mol. Reprod. Dev. 81, 679-711. doi:10.1002/mrd.22223

White, R. J., Collins, J. E., Sealy, I. M.,Wali, N., Dooley, C.M., Digby, Z., Stemple,D. L., Murphy, D. N., Billis, K., Hourlier, T. et al. (2017). A high-resolution mRNAexpression time course of embryonic development in zebrafish. Elife 6, 1328.doi:10.7554/eLife.30860

Winata, C. L., Lapinski, M., Pryszcz, L., Vaz, C., Bin Ismail, M. H., Nama, S.,Hajan, H. S., Lee, S. G. P., Korzh, V., Sampath, P. et al. (2018). Cytoplasmicpolyadenylation-mediated translational control of maternal mRNAs directsmaternal-to-zygotic transition. Development 145, dev159566. doi:10.1242/dev.159566

Workman, J. L. andKingston, R. E. (1998). Alteration of nucleosome structure as amechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545-579.doi:10.1146/annurev.biochem.67.1.545

Wu, J., Huang, B., Chen, H., Yin, Q., Liu, Y., Xiang, Y., Zhang, B., Liu, B., Wang,Q., Xia, W. et al. (2016). The landscape of accessible chromatin in mammalianpreimplantation embryos. Nature 534, 652-657. doi:10.1038/nature18606

Wu, J., Xu, J., Liu, B., Yao, G., Wang, P., Lin, Z., Huang, B., Wang, X., Li, T., Shi,S. et al. (2018). Chromatin analysis in human early development revealsepigenetic transition during ZGA. Nature 557, 256-260. doi:10.1038/s41586-018-0080-8

Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X.,Yan, J. et al. (2013). Single-cell RNA-Seq profiling of human preimplantationembryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131-1139. doi:10.1038/nsmb.2660

Yanai, I., Peshkin, L., Jorgensen, P. and Kirschner, M. W. (2011). Mapping geneexpression in two Xenopus species: evolutionary constraints and developmentalflexibility. Dev. Cell 20, 483-496. doi:10.1016/j.devcel.2011.03.015

Yang, J., Tan, C., Darken, R. S., Wilson, P. A. and Klein, P. S. (2002). Beta-catenin/Tcf-regulated transcription prior to the midblastula transition.Development 129, 5743-5752. doi:10.1242/dev.00150

Yang, Y., Zhou, C., Wang, Y., Liu, W., Liu, C., Wang, L., Liu, Y., Shang, Y., Li, M.,Zhou, S. et al. (2017). The E3 ubiquitin ligase RNF114 and TAB1 degradation arerequired for maternal-to-zygotic transition. EMBO Rep. 18, 205-216. doi:10.15252/embr.201642573

Yu, J., Hecht, N. B. and Schultz, R. M. (2001). Expression of MSY2 in mouseoocytes and preimplantation embryos. Biol. Reprod. 65, 1260-1270. doi:10.1095/biolreprod65.4.1260

Yu, J., Hecht, N. B. and Schultz, R. M. (2002). RNA-binding properties andtranslation repression in vitro by germ cell-specific MSY2 protein.Biol. Reprod. 67,1093-1098. doi:10.1095/biolreprod67.4.1093

19

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT

Page 20: The maternal-to-zygotic transition revisited · REVIEW The maternal-to-zygotic transition revisited Nadine L. Vastenhouw1,*, Wen Xi Cao2 and Howard D. Lipshitz2,* ABSTRACT The development

Yu, C., Ji, S.-Y., Sha, Q.-Q., Dang, Y., Zhou, J.-J., Zhang, Y.-L., Liu, Y., Wang, Z.-W., Hu, B., Sun, Q.-Y. et al. (2016). BTG4 is a meiotic cell cycle-coupledmaternal-zygotic-transition licensing factor in oocytes. Nat. Struct. Mol. Biol. 23,387-394. doi:10.1038/nsmb.3204

Zamir, E., Kam, Z. and Yarden, A. (1997). Transcription-dependent induction of G1phase during the zebra fish midblastula transition. Mol. Cell. Biol. 17, 529-536.doi:10.1128/MCB.17.2.529

Zenk, F., Loeser, E., Schiavo, R., Kilpert, F., Bogdanovic, O. and Iovino, N.(2017). Germ line-inherited H3K27me3 restricts enhancer function duringmaternal-to-zygotic transition. Science 357, 212-216. doi:10.1126/science.aam5339

Zhang, P., Ni, X., Guo, Y., Guo, X., Wang, Y., Zhou, Z., Huo, R. and Sha, J.(2009a). Proteomic-based identification of maternal proteins in mature mouseoocytes. BMC Genomics 10, 348. doi:10.1186/1471-2164-10-348

Zhang, P., Zucchelli, M., Bruce, S., Hambiliki, F., Stavreus-Evers, A., Levkov, L.,Skottman, H., Kerkela, E., Kere, J. and Hovatta, O. (2009b). Transcriptomeprofiling of human pre-implantation development. PLoS ONE 4, e7844. doi:10.1371/journal.pone.0007844

Zhang, M., Kothari, P., Mullins, M. and Lampson, M. A. (2014a). Regulationof zygotic genome activation and DNA damage checkpoint acquisition at the mid-blastula transition. Cell Cycle 13, 3828-3838. doi:10.4161/15384101.2014.967066

Zhang, Y., Vastenhouw, N. L., Feng, J., Fu, K., Wang, C., Ge, Y., Pauli, A., vanHummelen, P., Schier, A. F. and Liu, X. S. (2014b). Canonical nucleosomeorganization at promoters forms during genome activation. Genome Res. 24,260-266. doi:10.1101/gr.157750.113

Zhang, B., Zheng, H., Huang, B., Li, W., Xiang, Y., Peng, X., Ming, J., Wu, X.,Zhang, Y., Xu, Q. et al. (2016). Allelic reprogramming of the histone modificationH3K4me3 in early mammalian development. Nature 537, 553-557. doi:10.1038/nature19361

Zhang, B., Wu, X., Zhang, W., Shen, W., Sun, Q., Liu, K., Zhang, Y., Wang, Q., Li,Y., Meng, A. et al. (2018). Widespread enhancer dememorization and promoterpriming during parental-to-zygotic transition. Mol. Cell 1, 673-686.e676. doi:10.1016/j.molcel.2018.10.017

Zhao, B. S., Wang, X., Beadell, A. V., Lu, Z., Shi, H., Kuuspalu, A., Ho, R. K. andHe, C. (2017). m(6)A-dependent maternal mRNA clearance facilitates zebrafishmaternal-to-zygotic transition. Nature 542, 475-478. doi:10.1038/nature21355

20

REVIEW Development (2019) 146, dev161471. doi:10.1242/dev.161471

DEVELO

PM

ENT