60
Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Embed Size (px)

Citation preview

Page 1: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Morphogen gradient, cascade, signal transduction

Maternal effect genes

Zygotic genesSyncytial blastoderm

Cellular blastoderm

Page 2: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Homeotic selector genesSimilar signal into different structures—

Different interpretation—controlled by Hox genes

Page 3: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Metamorphosis

Page 4: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Homeotic transformation of the wing and haltereHomeotic genes—mutated into homeosis transformation

As positional identity specifiers

Mutant-antennapedia—into legBithorax-haltere into wing

Page 5: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Imaginal discs and adult thoracic appendages

Bithorax mutation—Ubx misexpressed T3 into T2 –anterior haltere into Anterior wing

Postbithorax muation (pbx)—Regulatory region of the Ubx—Posterior of the haltere into wing

Page 6: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Homeotic selector genes

Each segment unique identity—master regulator genesHomeotic selector genes—control other genes-required throughout development

Spatial& temporal expression—mechanism of controlling of these genes

Fig. 5-37

Page 7: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Regulatory elements

Page 8: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

The spatial pattern of expression of genes of the bithorax complex

Bithorax—Ultrabithorax –5-12 Abdominal-A—7-13 Abdominal-B—10-13

Bithorax mutant –PS 4 default state

Fig. 5-39

Page 9: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Bithorax mutant –PS 4 default state+Ubx—5,6+Abd-A—7,8,9+Abd-B—10Combinatorial manner

Lack Ubx—5,6 to 4 also 7-14 thorax structure in the abdomen

Hox—gap, pair-rule for the first 4 hours, then polycomb (repression), and Trithorax (activation)

Fig. 5-39

Page 10: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Segmental identity of imaginal disc

Antennapedia—expressed in legs, but not in antennaIf in head, antennae into legs

Hth (homothorax) and Dll (distal-less)—expressed in antennae and legIn antenna: as selector to specify antennaIn leg: antennapedia prevents Hth and Dll acting together

Dominant antennapedia mutant (gene on)—blocks Hth and Dll in antennae disc, so leg formsNo Hth, antenna into leg

Page 11: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Gene expression in the visceral mesoderm patterns the underlying gut endodermPatterning of the endoderm

Labial—antennapedia complex

Fig. 5-40

Page 12: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Fly and mouse/human genomes of homeotic genes

Page 13: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm
Page 14: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Homeobox and homeodomain

Page 15: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm
Page 16: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Expression pattern and the location on chromosome

Page 17: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Mutation in HoxD13—synpolydactylyExtra digits & interphalangeal webbing (hetero)Similar but more severe & bony malformation of hands, wrists (Homo)

Page 18: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Before fertilization ligand immobilized

Small quantities—bound to torso at the poleslittle left to diffuse

Anterior/posterior extremities

Terminal structure-acron., telson, most posterior abdominal segment

Torso---receptor tyrosine kinaseLigand---trunk

Fig. 5-7

Page 19: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Torso signaling

Groucho: repressorHuckenbein, tailless are released from transcriptional suppression

Page 20: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Egg chamber formation(oogenesis)

Page 21: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Signals from older to younger egg chambers

Red arrow: Delta-Notch induces anterior polar follicle cellsJAK-STAT: form the stalk cellsYellow arrow: signals induce E-cadherins expression

Page 22: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

The oocyte move towards one end in contact with follicle cellsBoth the oocyte and the posterior follicle cells express high levels of the E-cadherin

If E-cadherin is removed, the oocyte is randomly positioned.Then the oocyte induces surrounding follicle cell to adopt posterior fate.

A/P Determination during oogenesis

Page 23: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

The EGFR signal establishes the A/P and D/V axial pattern

Red-actinGreen-gurken proteinAs well as mRNA

The expression of EGFR pathway target gene

Page 24: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Torpedo--EGFR

Page 25: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Specifying the Anterior-Posterior Axis of the

Drosophila Embryo During Oogenesishttp://www.youtube.com/watch?v=GntFBUa6nvs

Page 26: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Specifying the Anterior-Posterior Axis of the

Drosophila Embryo During Oogenesis

Protein kinase A orients the microtubules

Page 27: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

mRNA localization in the oocyte

Dynein-gurken and bicoid to the plus endKinesin—oskar to the minus end

Page 28: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

The EGFR signal establishes the A/P and D/V axial pattern

Gurken—TGFTorpedo--- EGFR

Page 29: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

The localization of Gurken RNA

Cornichon, and Brainiac-Modification and Transportation of the protein

K10, Squid localize gurken mRNA (3’UTR&coding region)

Cappuccino and Spire –cytoskeleton ofthe oocyte

MAPK pathway

Page 30: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

The Key determinant in D/V polarity is pipe mRNA in follicle cells

Page 31: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

windbeutel—ER protein pipe—heparansulfate 2-o-sulfotransferase (Golgi) nudel—serine protease

The activation of Toll

Page 32: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Perivitelline space

Fig. 31-16

The dorsal-ventral pathway

Page 33: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm
Page 34: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Maternal genes—Fertilization to cellular blastodermDorsal system—for ventral structure(mesoderm, neurogenic ectoderm)

Toll gene product rescue the defectToll mutant – dorsalized (no ventral structure)

2. Transfer wt cytoplasm into Toll mutant specify a new dorsal-ventral axis (injection site =ventral side) spatzle (ligand) fragment diffuses throughout the space

Toll pathway

Page 35: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Without Toll activationDorsal + cactusToll activation –tube (adaptor) and pelle (kinase)Phosphorylate cactus and promote its degradation

B cell gene expressionDorsal=NF-kBCactus=I-kB

The mechanism of localization of dorsal protein to the nucleus

Page 36: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Dorsalization mutation

Page 37: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

The activation of NF-B by TNF-

NLS

Page 38: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Fig. 31-17

The dorsal-ventral pathways

Page 39: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Dorsal nuclear gradientActivates—twist, snail (ventral)Represses—dpp, zen (dorsal)

Fig. 31-19

Page 40: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Toll protein activation results in a gradient of intranuclear dorsal protein

Spatzle is processed in the perivitelline space after fertilization

Fig. 5-8

Page 41: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Zygotic genes pattern the early embryoDorsal protein activates twist and snail represses dpp, zen, tolloid

Rhomboid----neuroectodermRepressed by snail (not most ventral)

Binding sites for dorsal protein in their regulatory regions

Model for the subdivision of the dorso-ventral axis into different regions by the gradient in nuclear dorsal protein

Fig. 5-13

Page 42: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Dorsalized embryo—Dorsal protein is not in nucleiDpp is everywhereTwist and snail are not expressed

Threshold effect—integrating Function of regulatory binding sites

Regulatory element=developmental switches

High affinity (more dorsal region-low conc.)

Low affinity (ventral side-high conc.)

Nuclear gradient in dorsal protein

Fig. 5-14

Page 43: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Dpp protein gradient

Cellularization---signal through transmembrane proteinsDpp=BMP-4(TGF-)Dpp protein levels high, increase dorsal cellsshort of gastrulation (sog) prevent the dpp spreading into neuroectodermSog is degraded by Tolloid (most dorsal)

Page 44: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Snail—(mesoderm)Reduce E-cadherin cell migration

Page 45: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Microarray analysisfor gene expression profile

Page 46: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Smad= Sma + MadSma-C. elegansMad-Fly

1. Antagonist2. Proteases

Fig. 31-24

The TGK-/BMP signaling pathway

dpp: decapentaplegic

Page 47: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Fig. 31-23

The Wnt and BMP pathways are used in early development

Page 48: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

The self-renewal signal of the niche-Dpp signaling

EMBO reports, 12, 519-2011

Page 49: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Biological responses to TGF-family signaling

Page 50: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Type I, II receptor-Ser/Thr phosphorylation

The Smad-dependent pathway activated by TGF-

Page 51: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Colorectal cancer: type II receptorPancreatic cancers: 50% Smad

One component between receptor and gene regulation

The Smad-dependent pathway activated by TGF-

Page 52: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

De-repression of target genes in Dpp signaling

groucho

Nature reviews genetics-8-663-2007

Activation

repression

Page 53: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Structural and Functional Domains of Smad Family

TGFb , Activin: R-Smad 2,3BMPs: R-Smad 1, 5, 8Common Smad4-nucleocytoplasmic shuttling, DNA bindingInhibitory Smads: I-Smad 6, 7

bioscience.org

Page 54: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Integration of two signal pathways at the

promoter

Cell,95,737, 1998SBE: Smad binding elementARE: activin-response elementTRE: TPA-response element (AP-1 binding)XBE: transcription X

Smad2 and FAST Smad3 and c-Jun/cFos

Page 55: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Overview of TGF-b family signaling

Development, 136-3691-2009

Page 56: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Post-translational modification of TGF- receptor

Trends in Cell Biology, 19, 385-2009

Page 57: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

The functions of the TGF- receptors are regulated by protein associations

Trends in Cell Biology, 19, 385-2009

Page 58: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Different internalization pathwaysresulted in distinct cellular effects

Trends in Cell Biology, 19, 385-2009

Page 59: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Models of morphogen gradient formation

Fig. 31-11, 12, 13sharpen

Page 60: Morphogen gradient, cascade, signal transduction Maternal effect genes Zygotic genes Syncytial blastoderm Cellular blastoderm

Fig. 31-21

The axis determining systems