31
Synthesis and Applications Synthesis and Applications of Semiconductor of Semiconductor Nanowires Nanowires •Group 17 •余余余 •F90943055 RTO RTCVD poly RTCVD nitride Clean Module Load lock ellipso- meter foup aduate Institute of Electronics Engineering, NTU Nanoelectroni cs

Synthesis and Applications of Semiconductor Nanowires Group 17 余承曄 F90943055 Graduate Institute of Electronics Engineering, NTU Nanoelectronics

Embed Size (px)

Citation preview

Synthesis and Applications of Synthesis and Applications of Semiconductor NanowiresSemiconductor Nanowires

•Group 17•余承曄•F90943055

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

OutlineOutline

Synthesis of semiconductor nanowires Electrical device Optical device Nanowire sensor

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Laser-assisted Catalytic Growth (LCG)Laser-assisted Catalytic Growth (LCG)

Growth system :

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nd-yttrium-aluminum-garnet laser (wavelength, 532 nm)

Nanoelectronics

Laser-assisted Catalytic Growth (LCG)Laser-assisted Catalytic Growth (LCG)

Growth mechanism :

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Vapor-liquid-solid (VLS) growth modelCatalyst : Fe, Ni, Au, …Catalyst : Fe, Ni, Au, …

Nanoelectronics

Si nanowires :

Laser-assisted Catalytic Growth Laser-assisted Catalytic Growth (LCG)(LCG)

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Scale bar:100nm Scale bar:10nm

Nanoelectronics

Laser-assisted Catalytic Growth Laser-assisted Catalytic Growth (LCG)(LCG)

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Ge nanowires :

Scale bar:9nm Scale bar:5nm

Nanoelectronics

Nanowire diameter control

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

SiNW diameters grown from 5-, 10-, 20-, and 30-nm-diam Au nanoclusters.

Solution-liquid-solid (SLS) Synthesis

Growth of InP, InAs, and GaAs (III-V)

Low-temperature ( ~203°C)

Potential limitation: catalyst must melt below the solvent boiling point

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Thermal evaporation method

Experimental apparatus:

(1) furnace; (2) quartz tube; (3) quartz cover; (4) ceramic boat; (5) pure silicon

powder; (6) iron-patterned

silicon substrate.RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Thermal evaporation method

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Pre-patterned Fe on the growth surface No laser need

Template-assisted Synthesis

Process flow for preparing ordered nanowires with a template

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Template-assisted Synthesis

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

low-temperature VLS method

using low-melting-point metals, such as Ga, In, and Bi, as the solvent

SiHx(g)+xH(g) Ga-Si(l)+xH2(g)

Ga–Si alloy is possible at temperatures as low as 100 °C.

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Ga

low-temperature VLS method

nanowires with uniform diameters distributed around 6 nm using gallium as the molten solvent, at temperatures less than 400 °C in hydrogen plasma

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Nanowire superlattice

•Upon completion of the first growth step, a different material (red) can be grown from the end of the nanowire.•Repetition of steps leads to a compositional superlattice within a single nanowire.

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Nanowire superlattice

GaAs/GaP nanowire junctions

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Scale bar:10nmAbrupt junction : Nanowire diameterCatalystGrowth temperature

Nanowire superlattice

a 40-nm-diameter GaP(5)/GaAs(5)/GaP(5)/GaAs(5)/GaP(10)/GaAs(5)/GaP(20)/GaAs(5)/GaP(40)/GaAs(5)/GaP(5) superlattice RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Junction devices

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Bipolar Transistor

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Invertors

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

PN junction & FETs

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Nano-logic gates

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Nanowire Computation

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Nanowire LEDs

InP LED

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Nanowire LEDs

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

65(n)+68(p)nmPeak at 820nm

39(n)+49(p)nmPeak at 680nm

Bulk bandgap of InP :925nm

Nanowire Sensor for PH Detection

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Real-time detection of protein binding

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Real-time detection of reversible protein binding

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

Real-time Detection of Ca2+ Ions

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

References

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

1. A. M. Morales and C. M. Lieber, Science 279, 210 (1998).

2. M. S. Gudiksen et al., Nature 415, 617 (2002).

3. B. H. Hong et al., Science 294, 348 (2001).

4. T. Thurn-Albrecht et al., Science 290, 2126 (2000)

5. A. J. Yin et al., Applied Physics Letters 79, 1039 (2001).

6. M. Paulose et al., Applied Physics Letters 81, 153 (2002).

7. Y. Cui and C. M. Lieber, Science 291, 851 (2001).

8. Y. Huang et al., Science 294, 1313 (2001).

9. Y. Cui et al., Science 293, 1289 (2001).

References

RTO

RTCVDpoly

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Graduate Institute of Electronics Engineering, NTU

Nanoelectronics

10. M. K. Sunkara et al., Applied Physics Letters 79, 1546 (2001).

11. T. J. Trentlor et al., Science 270, 1791 (1995)

12. Yi Cui et al., Applied Physics Letters 78, 2214 (2001).

13. Z. H. Wu et al., Applied Physics Letters 81, 5177 (2002).

14. Qian Gu et al., Applied Physics Letters 76, 3020 (2000).