22
Secure Energy f or America RPSEA UDW Forum June 22 & 23, 2010 David Anderson GE Global Research [email protected] (518) 387 4017 Subsea Processing Simulator 071211901

Subsea Processing Simulatorn Simulator

Embed Size (px)

Citation preview

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 1/22

Secure Energy for America

RPSEA UDW ForumJune 22 & 23, 2010

David AndersonGE Global Research

[email protected](518) 387 4017

Subsea Processing 

Simulator07121‐1901

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 2/22

2Secure Energy for America

Motivation

Need robust subsea processing design processes andequipment

Need capability to model subsea processing systems for

Design – system optimization, validation

Operation – operating envelopes, transients, trouble shooting

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 3/22

3Secure Energy for America

Program Objectives

1. Create architecture and library to simulate subseaprocessing systems

2. Experimentally validate Simulator and methodologies

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 4/22

4Secure Energy for America

Separator Simulator

Software architecture

Hierarchical structure

Integration with commercial process simulator

Dynamic and steady state analyses

Statistical pre- and post-processing

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 5/22

5Secure Energy for America

Architecture

Standardized unit models(nodes)

Connectivity

Arbitrary stream variables

Unit models allow organization& zooming

Steady state, transient

capability

Flashing and linkage to processsimulator - HYSYS

)ODVK

3K\VLFV

&OHDQXS      ,    Q

    O      H    W            3    R    U    W    V

8QLTXHO\$GGUHVVHG8QLWV

6WDQGDUGL]HG,QWHUIDFHV

      (

       [      L    W            3    R    U    W    V

   G  a  s  s   t  r  e  a  m

Multiphase

Oil stream

SKDVHVHSDUDWRU

0 RGHOQHWZ RUN

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 6/226Secure Energy for America

NPSS Capabilities

Library Management:

• Security / Encryption (DLL, DLM)

• Version control—RepositorySimulation Management:

• Auto Solver Setup & Constraints

Flexibility:• Open architecture (User Defined Components)

Power:• Batch, Interactive & API operation modes.

Flexible Report Generation

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 7/227Secure Energy for America

Hierarchical Simulator

=RRP LQJ

SimpleSimple Processing Systems

Simple Component ModelsSimple Component Interfaces

Simple Fluid Systems & Chemistry

Low Fidelity

Low Resolution

Computationally InexpensiveEasy to build & troubleshoot

ComplexComplex Processing Systems

Complex Component ModelsComplex Component Interfaces

Complex Fluid Systems & Chemistry

High Fidelity

High Resolution

Computationally ExpensiveEvolved from simpler models

Pilot Scale 

Equipment Suppliers Design & Optimization 

Operation Engineers Specification & Operation 

RPSEA Phase 1Lab Scale

Simulator Architectural Entitlement

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 8/228Secure Energy for America

C++ Unit ModulesAnd

Stream Components

Integration with Process Simulator

HYSYS Environment

Flow Conditioner(Entry)

NPSS Simulator Environment

FlowDe-Conditioner

(Exit)

HYSYSInputs

HYSYSParameters

AdditionalBoundaryDefinitions

Outputs

Integration of Simulator into field modelAugments field model data set

Flashing capability

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 9/229Secure Energy for America

Simulating Transients

*UDYLW\6HSDUDWLRQ

0 RGHOV,QOHW

: HLU2XWOHWV

8SVWUHDP &RQGLWLRQV

9DOYH

9DOYH

9DOYH

2LO2XW

: DWHU2XW

*DV2XW

Three phase separator in virtual test loop

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 10/2210Secure Energy for America

Statistical Package

1) Operational Envelope

2) Net Present Value

3) Design Optimization

4) Model Tuning / Data Mining

Go

No-Go

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 11/2211Secure Energy for America

Modeling Strategy Background

EmpiricalData OnlyDiscreteMay be accurate but not general

AnalyticalEquations

ContinuousGeneral but may not be accurate

Examples:

Heat flux (Fourier’s Law)

Elasticity (Hooke’s Law)

dxdT kAq x −=

ε σ   E =

EmpiricalTypical: hybrid approach

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 12/2212Secure Energy for America

Modeling Strategy

1: Analytical Model

X

Y

2: Experimental Data

X

Y

3: Tune

X

Y

topology

anchors

topologypulled toward

anchors(Translation & Rotation)

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 13/2213Secure Energy for America

Summary and Next Step

Simulator ready for validation

Flow loop construction nearingcompletion- Three phase horizontal separator

- Model oils, water, air/nitrogen

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 14/22

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 15/2215Secure Energy for America

Example

LLCC: Liquid-Liquid Cylindrical CycloneC. Oropeza-Vazquez et al (U. Tulsa). G. Kouba (Chevron) Oil-Water Separation in a Novel Liquid-Liquid Cylindrical Cyclone (LLCC ®  ) Compact Separator—Experiments and Modeling . Journal of FluidsEngineering, Vol 126, July 2004 (553-564)

C. Oropeza-Vazquez Thesis: Multiphase Flow Separation in Liquid-Liquid Cylindrical Cyclone and Gas-Liquid Cylindrical Cyclone Compact Separators (U. Tulsa, 2001)

4 inlet flow regimes:

• Stratified• Dispersed O/W + W• Double DO/W• DO/W

X’s: VSO & VSW; Split RatioY’s: Water Cut @ Water Out

)LJXUHIURP 2URSH]D9D]TXH]

Sub Models:

• Flow Regime• Inlet Flow• Nozzle• Cyclone

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 16/2216Secure Energy for America

Tuned Model Results

[WXQLQJSDUDP HWHUV [SDUDP HWHUVFRQWLQXRXV

3UHWXQHG

Model tuned within flow regime.Validate with additional data. Beware edges(extrapolation)

Much improvement

)LJXUHIURP 2URSH]D9D]TXH]

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 17/2217Secure Energy for America

LLCC Objectives

LLCC Model from papers coded in RPSEA -mediocre agreement with data & U Tulsaversion

)LJXUHIURP 2URSH]D9D]TXH]

RPSEA Simulator

Opportunity: Tune MATLAB LLCC model to test dataDevelop and demonstrate methodologies and tools

)LJXUHIURP 2URSH]D9D]TXH]

)LJXUHIURP 2URSH]D9D]TXH]

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 18/2218Secure Energy for America

Tuning Methodology

Step 1: select tuning parameters

Step 2: choose data subsets

Step 3: optimize TF for each subset

Step 4: Fit TF=TF(X’s)

)LJXUHIURP 2URSH]D9D]TXH]

0 D['URSOHW6L]H7)

(IIHFWLYH6SOLW5DWLR7)

Tune empirics, trust physics

Two tuning parameters (Both in Inlet Model):

TP1 on max droplet size

TP2 on skewing of effective Split Ratio

)LJXUHIURP 2URSH]D9D]TXH]

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 19/2219Secure Energy for America

Tuning Methodology

Step 1: select tuning parameters

Step 2: choose data subsets

Step 3: optimize TF for each subset

Step 4: Fit TF=TF(X’s)

)LJXUHIURP 2URSH]D9D]TXH]

Group Data by flow regime

Option 1: 2 TP for 46 data points: toomuch of smoothing, not enoughaccuracy?

Option 2: further subdivide by Runs: 2TP for each of 5 subsets.

Try Option 2 

)LJXUHIURP 2URSH]D9D]TXH]

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 20/22

20Secure Energy for America

Tuning Methodology

Step 1: select tuning parameters

Step 2: choose data subsets

Step 3: optimize TF for each subset

Step 4: Fit TF=TF(X’s)

J P ] ] ]

Simulate each X within Run using all TPcombos

Choose TP1 & TP2 that minimizes error

If best fit is poor, more/different TPs are neededIf best fit is good, can TP be dropped? (Pareto)

%HWWHUDJUHHP HQW

)LJXUHIURP 2URSH]D9D]TXH]

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 21/22

21Secure Energy for America

Tuning Methodology

Step 1: select tuning parameters

Step 2: choose data subsets

Step 3: optimize TF for each subset

Step 4: Fit TF=TF(X’s)

J P ] ] ]

10 Tuning Parameters but no continuity wrt V SW & V SO 

( polynomial fit) 2x3 parameters--continuous 

5XQ96:

P V962

P V73 73

8/2/2019 Subsea Processing Simulatorn Simulator

http://slidepdf.com/reader/full/subsea-processing-simulatorn-simulator 22/22

22Secure Energy for America

Outline

1. Program Overview

2. Modeling Methodology

3. Dry Run before Lab Experiments

4. Conclusions