87
Strong Coupling QCD ECT*, Trento September 2014 Michael Pennington Jefferson Lab

Strong Coupling Q C D

  • Upload
    nida

  • View
    42

  • Download
    2

Embed Size (px)

DESCRIPTION

Michael Pennington Jefferson Lab. ECT*, Trento September 2014. Strong Coupling Q C D. d. u. u. Michael Pennington Jefferson Lab. ECT*, Trento September 2014. Strong Coupling Q C D. Fritzsch. Gell-Mann. q ( i D - m ) q. =. q. Leutwyler. QCD. q=u,d,s, c,b,t. 1. - PowerPoint PPT Presentation

Citation preview

Page 1: Strong Coupling  Q C D

Strong Coupling QCDStrong Coupling QCD

ECT*, TrentoSeptember 2014

ECT*, TrentoSeptember 2014

Michael PenningtonJefferson Lab

Michael PenningtonJefferson Lab

Page 2: Strong Coupling  Q C D

Strong Coupling QCDStrong Coupling QCD

ECT*, TrentoSeptember 2014

ECT*, TrentoSeptember 2014

Michael PenningtonJefferson Lab

Michael PenningtonJefferson Lab

u

u

d

Page 3: Strong Coupling  Q C D

QCD

FritzschFritzsch

Gell-MannGell-Mann

LeutwylerLeutwyler

q ( i D - m ) q

- F F

q

14

=QCD q=u,d,s,

c,b,t

Page 4: Strong Coupling  Q C D

QCD

pQCD

confinementasymptotic freedom

strong QCDstrong QCD

0

1

0 10-15

r (m)

strong coupling

Page 5: Strong Coupling  Q C D

strong couplingstrong couplingpQCDpQCD

Strong physics problems

d

u

u

s

u_

Page 6: Strong Coupling  Q C D

strong couplingstrong couplingpQCDpQCD

Strong physics problems

Page 7: Strong Coupling  Q C D

strong couplingstrong couplingpQCDpQCD

Strong physics problems

Page 8: Strong Coupling  Q C D
Page 9: Strong Coupling  Q C D

Schwinger-Dyson Equations

-1-1-

Page 10: Strong Coupling  Q C D

-1 -1

-

mass function

wavefunctionrenormalisation

Fermion propagator

Page 11: Strong Coupling  Q C D

-1 -1

-

Gauge variant quantities: only physical quantities are gauge independent

mass function

wavefunctionrenormalisation

Fermion propagator

Page 12: Strong Coupling  Q C D

QCD

Schwinger-Dyson Equations

M

V

Bound State Equations

Page 13: Strong Coupling  Q C D

QCD

Schwinger-Dyson Equations

M

V

Bound State Equations

dressed quark propagator

Page 14: Strong Coupling  Q C D

QCD

Schwinger-Dyson Equations

M

V

Bound State Equations

dressed quark propagator

qq scattering kernel

Page 15: Strong Coupling  Q C D

QCD

Schwinger-Dyson Equations

P

V

f , m

Bound State Equations

Page 16: Strong Coupling  Q C D

SDE/BSE – ANL/KSU

pion/vectormesons

qq

Pq q

q q= +5 - -

qq

qqV = +

--

MV (GeV)

MP (GeV2)2

v

Page 17: Strong Coupling  Q C D

p2 GeV2

effective interaction strength

Maris & Tandy

10-3 103

Page 18: Strong Coupling  Q C D

p2 GeV2

Qin, Chang, Liu, Roberts, Wilson

effective interaction strength

10-3 103

Page 19: Strong Coupling  Q C D

q

q q

qq

q q

electromagnetic formfactors

Page 20: Strong Coupling  Q C D

Can Maris-Tandy (or Qin et al. ) modelling

be deduced from the SDE/DSEs?

q

q

Maris-Tandy model

V

Page 21: Strong Coupling  Q C D

q

q

q ( i D - m ) q - F F q=QCD q=u,d,s,

c,b,t

14

q

qq

Page 22: Strong Coupling  Q C D

Schwinger-Dyson Equations

Page 23: Strong Coupling  Q C D

2 equations

2 equations

12 equations

QEDQEDSchwinger-Dyson Equations

Page 24: Strong Coupling  Q C D

q

k p

pk k p=

-1 -1q

Ball & Chiu

Ward – Green –Takahashi Gauge Invariance

Page 25: Strong Coupling  Q C D

pk k p=

-1 -1q

Ball & Chiu

Ward – Green –Takahashi Gauge Invariance

q

k p

Page 26: Strong Coupling  Q C D

pk k p=

-1 -1q

Ward – Green –Takahashi Gauge Invariance

q

k p

1,2,..,8

q 0

Page 27: Strong Coupling  Q C D

-1 -1

-

mass function

wavefunctionrenormalisation

Fermion propagator

how to regularize: d4k dnk

Page 28: Strong Coupling  Q C D

QEDQEDSchwinger-Dyson Equations

k2, q2 >> p2

k2, p2 >> q2

Gauge Invariance & Multiplicative Renormalizibility

Kizilersu & P

Page 29: Strong Coupling  Q C D

Unquenched Massless renormalised at: =0.2, : varying Kizilersu et al

Page 30: Strong Coupling  Q C D

Unquenched Massless renormalised at: =0.2, : varying Kizilersu et al

Page 31: Strong Coupling  Q C D

. . . .

Consistent truncation

Gauge Invariance &Multiplicative Renormalizibility

QED

(i) remove divergences (eg. quadratic div.)(ii) ensure correct gauge dependence (eg. transversality of boson)

Schwinger-Dyson Equations

Page 32: Strong Coupling  Q C D

Consistent Solutions ofConsistent Solutions of QCD

q ( i D - m ) q q=QCD q=u,d,s,

c,b,t

- F F 14

Page 33: Strong Coupling  Q C D

axial gauges

Schwinger-Dyson Equations

QCD

(q) orthogonal to q

and n - the axial vector

Baker, Ball & Zachariasen

Page 34: Strong Coupling  Q C D

axial gauges BBZ

Schwinger-Dyson Equations

QCD

(q) orthogonal to q

and n - the axial vector

Slavnov-Taylor Identity

Page 35: Strong Coupling  Q C D

Richardson Potential

b

b_

heavy quark potential spectrum

Page 36: Strong Coupling  Q C D

bb

Page 37: Strong Coupling  Q C D

0.1 nm

positronium

V(r)

r

V(r)

r

g

g

e+

e-

1 fm

bottomonium

b

b_

b

b

1 fm

bottomonium

b

b_

b

b

Page 38: Strong Coupling  Q C D

gluon propagatorinterquark potential

rp ~ 1

r >> 1, p << 1

Coulomb : OBE

r << 1, p >> 1

Page 39: Strong Coupling  Q C D

rp ~ 1

r >> 1, p << 1

Coulomb : OBE

r << 1, p >> 1

Richardson Potential

interquark potential

Page 40: Strong Coupling  Q C D

axial gauges

Schwinger-Dyson Equations

QCD

(q) orthogonal to q

and n - the axial vector

G1(q2, n.q), G2(q2, n.q)

Page 41: Strong Coupling  Q C D

axial gauges

QCD

(q) orthogonal to q

and n - the axial vector

G1(q2, n.q), G2(q2, n.q)

Baker, Ball & Zachariasen

G2(q2, n.q) = 0G1(q2, n.q) ~ 1/q2

ie ~ 1/q4

Schwinger-Dyson Equations

Page 42: Strong Coupling  Q C D

axial gauges

QCD

(q) orthogonal to q

and n - the axial vector

Baker, Ball & Zachariasen

West showed axial gauge could NOT be more singular than 1/q2

G1(q2, n.q), G2(q2, n.q)

G2(q2, n.q) = 0G1(q2, n.q) ~ 1/q2

ie ~ 1/q4

Schwinger-Dyson Equations

Page 43: Strong Coupling  Q C D

(q)

covariant gauges

QCD

Schwinger-Dyson Equations

Page 44: Strong Coupling  Q C D

(q)

covariant gauges

(q) = T + qq

q2q2

Gl (q)

T (q) = gqq

q2-

D (q) = q2

Gh(q) QCD

Schwinger-Dyson Equations

Page 45: Strong Coupling  Q C D

first just gluons Pagels, Mandelstam, Bar-Gadda

Gl (q)

Studies in covariant gauges

Page 46: Strong Coupling  Q C D

first just gluons Pagels, Mandelstam, Bar-Gadda

Gl (q)

STIGl

~ 1/q4 possible

Studies in covariant gauges

Page 47: Strong Coupling  Q C D

(q)

covariant gauges

(q) = T + qq

q2q2

Gl (q)

T (q) = gqq

q2-

D (q) = q2

Gh(q)

=g

i

Slavnov-Taylor Identity

Schwinger-Dyson Equations

Page 48: Strong Coupling  Q C D

(q)

Landau gauge

(q) = T + qq

q2q2

Gl (q)

T (q) = gqq

q2-

D (q) = q2

Gh(q)

Slavnov-Taylor Identity

Brown & P (1988) Gh = 1

Schwinger-Dyson Equations

Page 49: Strong Coupling  Q C D

Brown & P1988

Gl (q)

Studies in the Landau gauge

q2 (GeV2)

Gl

R(q

)

Page 50: Strong Coupling  Q C D

Brown & P1988

Gl (q)

Nf = 2

s = 0.25

q2 (GeV2)

Gl

R(q

)

Nf = 2

s = 0.25

q2 (GeV2)

Gl

R(q

)

Studies in the Landau gauge

Page 51: Strong Coupling  Q C D

Richardson Potential

b

b_

heavy quark potential spectrum

Page 52: Strong Coupling  Q C D

Schwinger-Dyson Equations

Page 53: Strong Coupling  Q C D

Schwinger-Dyson Equations

von Smekal, Alkofer et al: ghosts are essentialghosts are essential

Page 54: Strong Coupling  Q C D

Landau gauge studiesLandau gauge studies

(k) = Gl (k) T(k) / k2

Gl (k) Gl (q) V(k,q,p)

q

k

(q) = Gl (q) T(q) / q2

Page 55: Strong Coupling  Q C D

Landau gauge studiesLandau gauge studies

(k) = Gl (k) T(k) / k2

Gl (k) Gl (q) V(k,q,p)

q

k

(q) = Gl (q) T(q) / q2

Model 1: V ~ 1

Page 56: Strong Coupling  Q C D

Tübingen, Graz, DarmstadtTübingen, Graz, Darmstadt

Gluon

Ghost

20 2 0.02 0.2distance (fm)

FischerDeep Infrared

scaling solution

Page 57: Strong Coupling  Q C D

Ghost

Gluon A(p)

Gluon B(p)

p2

Page 58: Strong Coupling  Q C D

Ghost

Gluon A(p)

Gluon B(p)

p2

Page 59: Strong Coupling  Q C D

Ghost

Gluon A(p)

Gluon B(p)

p2

Page 60: Strong Coupling  Q C D

Ghost

Gluon A(p)

Gluon B(p)

p2 von Smekal, Lerche

Page 61: Strong Coupling  Q C D

Schwinger-Dyson Equations

Page 62: Strong Coupling  Q C D

Schwinger-Dyson Equations

loss of symmetry

engineering to maintain scaling solution: V ~ Gh/Gl

Page 63: Strong Coupling  Q C D

Lattice QCD

Page 64: Strong Coupling  Q C D
Page 65: Strong Coupling  Q C D
Page 66: Strong Coupling  Q C D

p/a (GeV)

a2 D

(p2 )

V = 1284

Lattice Results: Cucchieri, Mendes

Page 67: Strong Coupling  Q C D

gluon

ghost

Bogolubsky et al. 2009Bogolubsky et al. 2009

p2

p2

Oliveira & Silva

Page 68: Strong Coupling  Q C D

p2 GeV2

Papavassiliou, BinosiBoucaud et al

Rodriguez Quintero

“massive”Solution of Gluon & Ghost SDEs

Page 69: Strong Coupling  Q C D

Tübingen, Graz, DarmstadtTübingen, Graz, Darmstadt

Gluon

Ghost

20 2 0.02 0.2distance (fm)

FischerDeep Infrared

scaling solution

Page 70: Strong Coupling  Q C D

p2 GeV2

Papavassiliou, BinosiBoucaud et al

Rodriguez Quintero

Wilson & P

“massive”Solution of Gluon & Ghost SDEs

Page 71: Strong Coupling  Q C D

V(k,q,p)

Model 1: V ~ 1

Model 2: V ~ Gh/ Gl

p

k

q

Gl (k)

Gl (q)

Page 72: Strong Coupling  Q C D

p

k

q

= bare vertex

Wilson & P

Page 73: Strong Coupling  Q C D

p

k

q

= bare vertex

Page 74: Strong Coupling  Q C D

p

k

q

= bare vertex

Page 75: Strong Coupling  Q C D

m2 + p2 [ 1 + ln( )]11 Nc g2

12 4p2 + m2

2

13

22

p2=Gl (p2)

Aguilar, Binosi, Papavassiliou

Wilson & P

m2 ~ 0.1 GeV2

Page 76: Strong Coupling  Q C D

q

k

p

To reproduce lattice results: ghost-gluon vertex has to have important non-Taylor terms

Coupled ghost equation

= ig fabc ( k – q FIR(k,p,q))k.q

q2

FIR 0, when k 0

Page 77: Strong Coupling  Q C D

p2 GeV2

“massive”Solution of Gluon & Ghost SDEs

Page 78: Strong Coupling  Q C D

Running coupling

Taylor coupling

Aguilar coupling

(GeV2)

Page 79: Strong Coupling  Q C D

Schwinger-Dyson Equations

Page 80: Strong Coupling  Q C D

Schwinger-Dyson Equations

Page 81: Strong Coupling  Q C D

Bloch

Meyers & Swanson

Adding quartic interactions

Page 82: Strong Coupling  Q C D

q ( i D - m ) q - F F q=QCD q=u,d,s,

c,b,t

14

QCDAdding quartic interactions

m02 AA

+

QCD ?Meyers & Swanson

Page 83: Strong Coupling  Q C D
Page 84: Strong Coupling  Q C D

ghost

sunset

squint

Page 85: Strong Coupling  Q C D

Consistent Solutions ofConsistent Solutions of QCD

q ( i D - m ) q q=QCD q=u,d,s,

c,b,t

- F F 14

Truncation respects: Gauge invariance Multiplicative Renormalizability

Page 86: Strong Coupling  Q C D

Can Maris-Tandy (or Qin et al. ) modelling

be deduced from the SDE/DSEs?

q

q

Maris-Tandy model

V

Page 87: Strong Coupling  Q C D

q

q

q ( i D - m ) q - F F q=QCD q=u,d,s,

c,b,t

14

q

qq