41
Introduction The STEVAL-STRKT01 LoRa ® IoT tracker is designed and optimized to implement the latest technologies in IoT tracker applications such as asset, people and animal tracking, as well as fleet management. According to the selected use case, multiple features can be configured to satisfy application requirements and achieve the best performance in terms of power consumption and battery autonomy. The STEVAL-STRKT01 building blocks reduce power consumption, which changes according to each sub-system hardware and firmware configuration. The analysis performed and the examples shown can help users determine the best configuration for the STEVAL-STRKT01 in terms of sensor acquisition frequency, optimized sensor acquisition time, and any debug features necessary to achieve the longest possible battery life. STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403 - Rev 2 - December 2019 For further information contact your local STMicroelectronics sales office. www.st.com

STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

IntroductionThe STEVAL-STRKT01 LoRa® IoT tracker is designed and optimized to implement the latest technologies in IoT trackerapplications such as asset, people and animal tracking, as well as fleet management.

According to the selected use case, multiple features can be configured to satisfy application requirements and achieve the bestperformance in terms of power consumption and battery autonomy.

The STEVAL-STRKT01 building blocks reduce power consumption, which changes according to each sub-system hardwareand firmware configuration.

The analysis performed and the examples shown can help users determine the best configuration for the STEVAL-STRKT01 interms of sensor acquisition frequency, optimized sensor acquisition time, and any debug features necessary to achieve thelongest possible battery life.

STEVAL-STRKT01 power management architecture description and configuration for optimized battery life

AN5403

Application note

AN5403 - Rev 2 - December 2019For further information contact your local STMicroelectronics sales office.

www.st.com

Page 2: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

1 Acronyms and abbreviations

Acronym Description

API Application programming interface

GNSS Global navigation satellite system

MCU Microcontroller unit

LP Low power

ULP Ultra low power

AN5403Acronyms and abbreviations

AN5403 - Rev 2 page 2/41

Page 3: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

2 STEVAL-STRKT01

2.1 Overview

The STEVAL-STRKT01 is an optimized tracker solution over LoRaWAN network with simultaneous multi-constellation GNSS positioning and geofencing support.It is battery operated with a versatile smart power management architecture covering different application profiles.Some components and circuits supervise energy storage and manage energy supply modes, allowing theimplementation of power management strategies.The firmware acts on main power management main by disabling the power supply lines of subsystems notrequired by the application or by taking advantage of low power functions of the device.

Figure 1. STEVAL-STRKT01 block diagram and power management architecture

Li-Ion battery charger with

switches

GNSS module

pressure

LIV3

LORA_VDDD_VDD

STUSB1600_VDD

D_VDD

LIS2DW12_VDD

V

LPS22HB

HTS221

TCXO VDD (*)

STUSB1600A

USB

BATMS

SW_SEL

STBC02_SYS

TCXO

STBC02

User interfaces

BUS_USB

SPI

V

divider

SENS_VDDvoltage

CMWX1ZZABZLoRa module

STM32L072SX1276

ST1PS01EJRstep-down converter

LIS2DW12

2

EEPROM

C, GPIO

M95M02-DR

LIV3_VDD

GPIO

I

MEM_VDD

USB BATV VUSB type-C

controller

(*) USB-DP pin of the LoRamodule can be used to drive the VDD TCXO pin

humidity and temperature

UARTGPIO

3-axesaccelerometer

The main components involved in the power management strategies are the STUSB1600 (U500) USB Type-Ccontroller, the STBC02 (U400) battery charger and the ST1PS01EJR (U401) step-down converter.The STUSB1600 manages the USB Type-C attach/detach events and activates the 5 V supply path from the USBconnector to the STBC02 battery charger.The STBC02 power path management recharges the battery and supplies the system or allows the battery topower the device when the IN pin is not connected to a valid power sourceThe ST1PS01EJR is a nano-quiescent miniaturized synchronous step-down converter supplied by the STBC02SYS pin. Its output, set to 3.3 V, is directly connected to the CMWX1ZZABZ LoRa module VDD pin and to theLIS2DW12 (U301) VDD pin.The STBC02 hosts two SPDT load switches suitable to drive four supply lines:• STUSB1600 VDD• Sensors VDD (U303 and U304)• Teseo-LIV3F (U200)• M95M02-DR EEPROM (U600) memory

These switches can be activated by commands sent through a single wire connection from the STM32L0 MCUinside the CMWX1ZZABZ LoRa module.Moreover, the integrated TCXO can be supplied by STM32L0 GPIO PA12, disabling it when not needed.The TCXO driving is not enabled by default. As the GPIO number is limited, the STM32 PA12 is by default usedfor the USB communication. To implement this feature, a hardware modification is necessary (see Section 2.3 R106/R107 configuration for details).

AN5403STEVAL-STRKT01

AN5403 - Rev 2 page 3/41

Page 4: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

2.2 Setup

For energy consumption tests, follow the procedure below.

Step 1. Modify the battery to connect a jumper, a multimeter or a power analyzer.Step 1a. To measure the STEVAL-STRKT01 current consumption, cut the battery ground wire and

solder a two-pin header (e.g , PRPC002SAAN-RC) as shown in the following figure.The header allows connecting a current measurement tool or a jumper.

Figure 2. STEVAL-STRKT01 battery modification for current measurement

Step 1b. Use a jumper to short circuit the two-pin header to recharge the battery.The charger correctly determines the battery internal resistance.

Step 1c. Use a multimeter to measure the average current consumption, e. g. in low power modes.

Step 1d. Use a power analyzer to capture the current waveform of fast operations, such as radiotransmissions.

Step 2. Configure the STEVAL-STRKT01 according to the test you want to perform (refer to Section 8 Powerconsumption tests), by removing some resistors and/or load a specific firmware

2.3 R106/R107 configuration

R106 and R107 resistors are used to supply the temperature controlled oscillator (TCXO) embedded in theMurata module (U100). The TCXO supply line is accessible through VDD_TCXO pin (U100 pin 48).These resistors can be configured in a field configuration or a debug configuration.Field configurationIn this configuration, the USB data functionality is not available and the power optimization is performed byremoving R107, mounting R106 and driving VDD_TCXO pin through STM32L0 PA12 pin.Debug configurationIn this configuration, the USB connection can be used, but without power consumption optimization. By default,R107 is mounted and R106 is not mounted, as shown in Figure 3. VDD_TCXO is directly connected toLORA_VDD and is always on.The STM32L0 PA12 pin (U100 pin 1) is used for USB data functionality.

AN5403Setup

AN5403 - Rev 2 page 4/41

Page 5: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 3. STEVAL-STRKT01: R106/R107 configuration

GND6SMD 0201

U100

VDD

_TC

XO

GN

D

48

GND

SMD 0201

VDD_TCXO

1

56

GND8

PA12/USB_DP

GND554

R107LORA_VDD

GN

D4

53

GN

D1

4950G

ND

2

R1060 NM

55

GND7

0

57

GN

D3

5152

USB_DP

Figure 4. STEVAL-STRKT01: R106 layout position (top view)

AN5403R106/R107 configuration

AN5403 - Rev 2 page 5/41

Page 6: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 5. STEVAL-STRKT01: R107 layout position (bottom view)

2.4 LIS2DW12 SA0 pin configuration

The LIS2DW12 (U301) 3-axis accelerometer is accessed through I²C interface.Its slave address lowest bit, SA0, can be selected by connecting SA0/SDO (U301 pin 3) to GND or to VDD (referto LIS2DW12 datasheet on www.st.com for further details).The STEVAL-STRKT01 does not allow to change SA0 pin connection, even if the default configuration(connected to ground) causes a leakage of ~120 µA.To optimize LIS2DW12 power consumption, connect SA0 pin to VDD.

Figure 6. STEVAL-STRKT01: LIS2DW12 schematic diagram

LIS2DW12_INTsmc0603

SA0/SDO

CS2

R324

0

I2C - address 0011000 - 0x30

1

LIS2DW12

R3230 NM

INT2R325

SENS_I2C_SDA

11INT1

12

7RES

0

TP326

SMD 0201

GN

D6

U301

R3220 NM

SMD 0201

C31010uF

10VDD_IO

9VDD

LIS2DW12_INT2

SCL/SPC

4

NC

5

8GND1

SMD 0201

SMD 0201

SENS_VDD

INT1

SENS_I2C_SCK

D_VDDSMD 0201

C301100nF SDA/SDI/SDO

3

AN5403LIS2DW12 SA0 pin configuration

AN5403 - Rev 2 page 6/41

Page 7: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

3 FP-ATR-LORA1 application firmware

The main function of the FP-ATR-LORA1 application firmware is to collect data coming from sensors, geo-positionfrom GNSS and send them via LoRaWAN connectivity. It includes drivers for the LoRa radio, the Teseo-LIV3FGNSS module, the motion and environmental sensors, and the power management.To ensure full system functionalities as well as long battery autonomy, the FP-ATR-LORA1 implements full runand low power profiles.A state machine is implemented in the application firmware to manage the transitions among the various states.

3.1 FP-ATR-LORA1 state machine

The FP-ATR-LORA1 application firmware implements a state machine that can be used to develop, for example,asset tracking, fleet management and pet/child tracking applications.The state machine is composed of three main states: Run, Low Power and Ultra Low Power. However, othertemporary states (Read, Send, Check Acknowledgement, Retrieve Data, Prepare Low Power, Prepare Ultra LowPower) can be set to perform customized actions, such as reading sensors or sending data through theLoRaWAN network.At system reset, the device remains running to collect data from sensors and GNSS and monitor the sensorvalues to detect if some thresholds are overshoot or a geofence alarm is reported by the GNSS.When the accelerometer internal motion detection algorithm signals that the device is at rest, the device is put inlow power mode (inactivity), disabling some sensors and/or power domains; the device can be woken up again bythe accelerometer itself when it is moved (motion).If the device remains in low power mode for a long time, a timer will trigger it to enter ultra-low power mode; in thisstate, the power consumption is reduced at the minimum. After entering the ultra-low power mode, the systemwake ups periodically only to read sensors and send data. You can implement a check on the sensor data(acceleration, environmental data, geofence, etc.) to exit the ultra-low power mode and enter run mode (seeCheckSensorsData() function in main.c).Run: is the default state at system reset. All the devices are initialized and the application polls the environmentalsensors, the accelerometer, the GNSS sensor and battery ADC converter for updated data.Sensors and GNSS receiver are continuously monitored, to detect whether the sensor thresholds are overshootor the GNSS sends geofence alerts. These events cause the system to go to Read And Send mode.The accelerometer is also monitored to check:• inactivity: no movement is detected for a certain amount of time• wake-up: a movement is detected (the event can be triggered by briefly shaking the board)

Three timers are set to:• switch to Read state at a user-configurable time interval• switch to Send state• switch to Ultra Low Power mode after a certain interval

All subsystems, sensors, GNSS and MEM_VDD are powered and the devices are running. The MCU is in runmode. STUSB1600_VDD is activated depending on the USB cable connection (for more details, seeTable 3. STEVAL-STRKT01 power consumption).Low Power: the MCU enters sleep mode to reduce power consumption and can be woken up by accelerometerinterrupt events; the environmental sensors are disabled. If accelerometer wake-up event or timer event aredetected, the system switches to Read state and, subsequently, to Send state. If accelerometer inactivity event isdetected, the system switches to Ultra Low Power state. Before entering this state, a Prepare Low Power state isexecuted to disable unused power paths (no GNSS and no environmental sensors) and set a wakeup timer.Ultra Low Power: the MCU enters Stop mode to reduce the power consumption at the minimum.Environmental and accelerometer sensors are disabled and the MCU can be woken up only by the timer interruptevent. When this event is triggered, the system switches to Read state and, subsequently, to Send state.

AN5403FP-ATR-LORA1 application firmware

AN5403 - Rev 2 page 7/41

Page 8: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Before entering Ultra Low Power state, a Prepare Ultra Low Power state is set to disable unused power paths: thesensors subsystem, SENS_VDD, the GNSS subsystem, LIV3_VDD and MEM_VDD, are not powered. Theaccelerometer is put in shutdown mode by software command. The MCU is in stop mode. STUSB1600_VDD isactivated depending on the USB cable connection (for more details, see Table 3. STEVAL-STRKT01 powerconsumption).Read: the application gathers data from environmental, accelerometer and GNSS. After the Read state, data areready to be saved in the internal EEPROM and/or sent over the LoRaWAN network. The sensors are read andevaluated also in run mode. Anyway, this dedicated “temporary state” is implemented to have a coherent packetof data acquired from sensors at a specific timestamp.Send: the application sends data to the LoRaWAN network packed in a single message. After the message issent, the application performs the check on the acknowledgement (if this feature is enabled, i. e.LORAWAN_DEFAULT_CONFIRM_MSG_STATE define set to LORAWAN_CONFIRMED_MSG) and then the statemachine switches back to the previous state.

Figure 7. STEVAL-STRKT01: application state machine

AN5403FP-ATR-LORA1 state machine

AN5403 - Rev 2 page 8/41

Page 9: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

4 STEVAL-STRKT01 firmware update setup for energy profileconfiguration

4.1 Hardware and software requirements

To modify the STEVAL-STRKT01 firmware for configuring different energy profiles, the following resources areneeded (for further details refer to UM2541 and UM2487 on www.st.com):• Hardware

Figure 8. Hardware resources required for STEVAL-STRKT01 firmware upgrade1. STEVAL-STRKT01 evaluation board2. Programming cable3. Battery4. One of the following in-circuit debugger/programmer: ST-LINK/V2, ST-LINK/V3 or ST-LINK/V2-1 (ST-LINK/V2-1 is

part of any STM32 Nucleo-64 board, e.g. NUCLEO-F401RE)

• Software– FP-ATR-LORA1 (v2.1.1) STM32Cube function pack for IoT tracker node with LoRa connectivity, GNSS

and sensors– Development tool-chain and Compiler: IAR Embedded Workbench for ARM, RealView Microcontroller

Development Kit (MDK-ARM-STR) or System Workbench for STM32 (SW4STM32)

4.2 How to load a new firmware on the STEVAL-STRKT01

Step 1. Download the FP-ATR-LORA1 STM32Cube function pack for STEVAL-STRKT01 IoT tracker node

Step 2. Customize the parameters in the firmware to run a specific test

Step 3. Compile the firmware

Step 4. Turn the board on and make sure that the battery is sufficiently charged to run the exampleIf you need to recharge the battery, see Section 2.2 Setup

Step 5. Download the binary file

Step 6. Switch the board off and restart it before performing power measurementsRefer to UM2541 and UM2487 on www.st.com for details.

4.3 Update via ST-LINK/V2 in-circuit debugger/programmer

Step 1. Connect the 5-pin flat cable (male side) to STEVAL-STRKT01 CN501 connector as per Table 1

AN5403STEVAL-STRKT01 firmware update setup for energy profile configuration

AN5403 - Rev 2 page 9/41

Page 10: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Step 2. Connect the 5-pin flat cable (female side) to ST-LINK/V2 pins 1-5 as per Table 1

Step 3.Step 3a. Connect the battery and press SW400 button to power the board on (for 1.250 s at least)

or

Step 3b. Supply the STEVAL-STRKT01 via a Type-C USB cable (and a Type-C to Type-A adapter ifneeded)

Step 4. Connect the ST-LINK/V2 to a PC via a Type-A/mini B cable

Figure 9. Hardware configuration for STEVAL-STRKT01 firmware update using an ST-LINK/V2programmer

Table 1. ST-LINK/V2 programmer and STEVAL-STRKT01 pinout

ST-LINK/V2 connector (pin and label) STEVAL-STRKT01 CN501 (pin and label)

2, VAPP 5, D_VDD

4, GND 3, GND

7, TMS_SWDIO 2, SWD_SWDIO

9, TCK_SWCLK 4, SWD_SWCLK

15, NRST 1, nRESET

AN5403Update via ST-LINK/V2 in-circuit debugger/programmer

AN5403 - Rev 2 page 10/41

Page 11: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

4.4 Update via ST-LINK/V3 in-circuit debugger/programmer

To perform the update via ST-LINK/V3 you first have to combine it with the adapter (MB1441 plus MB1440, shownin Figure 10. Hardware configuration for STEVAL-STRKT01 firmware update using an ST-LINK/V3 programmer ).

Step 1. Connect the 5-pin flat cable (male side) to STEVAL-STRKT01 CN501 connector

Step 2. Connect the 5-pin flat cable (female side) to MB1440 CN6 connector pins 1-5 and leave pin 6unconnected

Step 3.Step 3a. Connect the battery and press SW400 button to power the board on (for 1.250 s at least)

or

Step 3b. Supply the STEVAL-STRKT01 via a Type-C USB cable (and a Type-C to Type-A adapter ifneeded)

Step 4. Connect the ST-LINK/V3 to a PC via a Type-A/micro B cable

Figure 10. Hardware configuration for STEVAL-STRKT01 firmware update using an ST-LINK/V3programmer

4.5 Update via STM32 Nucleo-64 on-board ST-LINK programmer

Step 1. Connect the 5-pin flat cable (male side) to STEVAL-STRKT01 CN501 connector

Step 2. Connect the 5-pin flat cable (female side) to the STM32 Nucleo SWD connector pins 1-5, leave pin 6unconnected and remove CN2 jumpers

AN5403Update via ST-LINK/V3 in-circuit debugger/programmer

AN5403 - Rev 2 page 11/41

Page 12: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Step 3.Step 3a. Connect the battery and press SW400 button to power the board on (for 1.250 s at least)

or

Step 3b. Supply the STEVAL-STRKT01 via a Type-C USB cable (and a Type-C to Type-A adapter ifneeded)

Step 4. Connect the STM32 Nucleo to a PC via a Type-A/mini B cable

Figure 11. Hardware configuration for STEVAL-STRKT01 firmware update using STM32 Nucleo-64 on-board ST-LINK programmer

AN5403Update via STM32 Nucleo-64 on-board ST-LINK programmer

AN5403 - Rev 2 page 12/41

Page 13: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

5 Firmware configuration

To perform power consumption optimization tests, you have to apply specific configurations to the firmware.Some settings can be changed from a #define in the firmware, others can be changed both at runtime by USBcommands (if USB is available) and by the corresponding #define in the firmware.

5.1 Enabling/disabling the USB

The firmware can be configured to enable the USB communication (the hardware must be configured accordingly)or disable it. Both configurations are done by acting on the USB_ENABLED define in hw_conf.h file.By uncommenting the USB_ENABLED define, the firmware is configured to use the USB interface and resistorsR106/R107 must be configured accordingly, as described in Section 2.3 R106/R107 configuration (debugconfiguration).By commenting the USB_ENABLED define, the firmware is configured to disable the USB interface and resistorsR106/R107 configuration generally used is as described in Section 2.3 R106/R107 configuration (fieldconfiguration).

5.2 Enabling/disabling TCXO VDD management

The firmware can be configured to manage the TCXO power, to activate it only during LoRa transmissions andsave power when not needed. It can be managed by using the same pin for USB communication; so thisconfiguration is mutually exclusive with USB enabling.In hw_conf.h, the USE_TCXO_VDD define can be used to enable/disable the TCXO VDD management. Thehardware must be configured accordingly.By setting the USE_TCXO_VDD define to 1, the firmware is configured to manage the TCXO VDD by the STM32GPIO PA12 and resistors R106/R107 must be configured as described in Section 2.3 R106/R107 configuration(field configuration). The USB cannot be used in this case.By setting the USE_TCXO_VDD define to 0, the firmware does not manage the TCXO VDD and resistors R106/R107 must be configured as described in Section 2.3 R106/R107 configuration (debug configuration). USB canbe enabled.

5.3 Enabling/disabling debug features

The firmware can be configured to enable or disable the debug features, such as the SWD debug interface andthe trace messages, in the hw_conf.h.By uncommenting the DEBUG define, the firmware is configured to use the debug interface, i.e. SWD for in-circuitdebugger connection.By commenting the DEBUG define, the firmware is configured to disable the debug interface helping to savepower.

5.4 Enabling/disabling memory

The firmware can be configured to enable or disable the features managing the M95M02-DR EEPROM memoryby using the MEMORY_ENABLED define in the hw_conf.h file.By uncommenting the MEMORY_ENABLED define, the firmware is configured to use the M95M02-DR EEPROMmemory.By commenting the MEMORY_ENABLED define, the firmware is configured to disable the M95M02-DR EEPROMmemory usage.

5.5 GNSS power management

The firmware can be configured to put the Teseo-LIV3F module in power saving mode by:• shutting down the module, switching its power line off• sending a standby software command to put it in standby mode

In the hw_conf.h file, GNSS_STANDBY_WAKEUP define is used to enable/disable the GNSS standby command.

AN5403Firmware configuration

AN5403 - Rev 2 page 13/41

Page 14: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

If GNSS_STANDBY_WAKEUP is set to 1, the GNSS is put in standby mode, through a command via serial interface,when it is not in use. This helps to speed the time up to the first fix at the next GNSS wakeup.If GNSS_STANDBY_WAKEUP is set to 0, the GNSS VDD supply line is powered off by disabling the associatedSTBC02 switch through a command on the single wire interface, when the GNSS is not in use. In this case thetime for the first fix will be longer.

5.6 Read timer

The firmware can be configured to periodically trigger data acquisition and sending.If APPLICATION_READ_TIMER = 1, the setting is enabled.If APPLICATION_READ_TIMER = 0, the setting is disabled.

5.7 Low power settings

The accelerometer inactivity event can make the STEVAL-STRKT01 board enter low power mode. The sameresult can be obtained with a timer.The accelerometer can be configured to rise an interrupt after a period of inactivity, i. e. no motion detected. Thisevent triggers the state machine change from full run to low power.When the system is in low power, a timer is configured to switch to ultra-low power mode after a configurable timeinterval (see SLEEP_TIMER_INTERVAL define in the firmware library).

Low power mode enabled

Use the following commands to enable the low power mode triggering:• !lpsensorevent-1 to enter low power mode on an accelerometer inactivity interrupt• !lpsleeptimer-1 to go from low power to ultra-low power mode after a certain time interval

If USB interface is not available, change the USE_EEPROM_SETTINGS to 0 and the corresponding values in thefirmware:• LOW_POWER_ON_SENSOR_EVENT_DEF = 1 to enter low power mode on an accelerometer inactivity

interrupt• LOW_POWER_ON_SLEEP_TIMER_DEF = 1 to go from low power to ultra-low power mode after a certain

time interval

Low power mode disabled

Use the following commands to disable the low power mode triggering:• !lpsensorevent-0 to disable accelerometer inactivity triggering• !lpsleeptimer-0 to disable ultra-low power triggering through the timer

If the USB interface is not available, change the USE_EEPROM_SETTINGS to 0 and the corresponding values inthe firmware:• LOW_POWER_ON_SENSOR_EVENT_DEF = 0 to enter low power mode on an accelerometer inactivity

interrupt• LOW_POWER_ON_SLEEP_TIMER_DEF = 0 to go from low power to ultra-low power after a certain time

interval

AN5403Read timer

AN5403 - Rev 2 page 14/41

Page 15: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

6 Power management key points

The STEVAL-STRKT01 board offers a wide flexibility that allows the evaluation of different features and usecases.The board power consumption is closely related to the chosen configuration. For this reason, to evaluate energyconsumption, it is necessary to take into account the key points impacting power consumption as well as theidentified use case:• state machine: the number of times the “run” and “send” states are executed impacts power consumption• power management device: STBC02 allows switching subsystems off, disabling functionalities when they

are not used• Teseo-LIV3F power consumption in standby mode is around 14 µA. This power consumption can be

reduced to zero by switching Teseo-LIV3F VDD off . However, in the first case, the GNSS does not need toresynchronize its RTC at every wakeup, thus the operating time-to-achieve-the-first-fix (TTFF) is reduced.

• VDD TCXO Murata module: according to the STEVAL-STRKT01 default configuration, the VDD TCXO isalways on. However, the LoRa module USB-DP pin can be used to drive the VDD TCXO pin, drasticallyreducing power consumption to ultra-low power state, by acting on resistors R106 and R107. The drawbackis the loss of USB data communication feature.

6.1 Power consumption optimization

By default, the STEVAL-STRKT01 board starts in RUN state but can switch to different states according to theapplication needs.For power consumption optimization the MCU, the sensors and the radio module should be active only whenneeded, to retrieve data from sensors and send them via LoRa. In the remaining time, everything must be put atthe lowest current consumption state.To select the right configuration for the board, you need to know (referring to Q1, Q2, Q3a and Q3b inFigure 12. Low power configuration selection scheme):1. if the continuous monitoring for environmental sensors is necessary

– if yes → only full run can be selected– if no → select the low power mode and go ahead

2. if the debug interface is needed and if any command should be sent via USB– if yes → you need USB connection– if no → USB GPIOs can be disconnected and power consumption is optimized: one of the USB GPIOs

can be used to drive the VDD TCXO, reducing the power consumption in low power and ultra-lowpower modes

3. when you need the USB functionality, check if the sending interval is less than 4 hoursa. ◦ if yes → GNSS time-to-first-fix (TTFF) can be optimized. If GNSS RTC is always powered, there

is no need to re-synchronize the RTC at the next wakeup, performing a hot start; this is possible ifephemeris are up-to-date (i.e. max 4 hours old). During low power, the GNSS is put in standby viaa software command (refer to Teseo-LIV3F documentation on www.st.com for further details). Inthese conditions, the TTFF can be optimized down to 5 seconds (2 seconds in theory)

◦ if no → GNSS TTFF cannot be optimized. If the GNSS remains in standby for more than 4 hours,the satellites ephemeris will be invalidated, so it is useless to put the GNSS in standby. To savepower, the best choice is to remove the power from GNSS. In these conditions, the TTFF isaround 40 seconds, as the Teseo-LIV3F performs a cold start

b. when you do not need the USB functionality, check if the sending frequency is less than 4 hours◦ if yes → GNSS TTFF can be optimized (GNSS RTC is always on, see 3a)◦ if no → GNSS TTFF cannot be optimized

AN5403Power management key points

AN5403 - Rev 2 page 15/41

Page 16: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 12. Low power configuration selection scheme

BEGIN

Select low power mode

Q3b: What is the sending

frequency? Is it less than 4 hours?

Y

Low power mode,USB not needed

and data sending

interval < 4 hours

4

Q2: Is the debug interface needed?

Any command should be sent via

USB?

N

Q1: Is the continuous

monitoring for environmental

sensors necessary?

Low power mode,USB needed and

data sending interval > 4 hours

Best choice for power

Y

N Y

YN

USB available

5 3optimization

Q3a: What is the sending

frequency? Is it less than 4 hours?

USB GPIOs can be disconnected to allow power

optimization

Low power mode, USB needed and

data sending interval < 4 hours

Low power mode,USB not needed

anddata sending

interval > 4 hours

Only full run mode can be selected. Low power mode

cannot be enabled

21

N

AN5403Power consumption optimization

AN5403 - Rev 2 page 16/41

Page 17: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

7 Low power configurations

To implement the configuration described in Figure 12. Low power configuration selection scheme, you need toperform some hardware and/or firmware configurations.

Important: Recompile the code to apply the firmware modifications.

The following table lists the current consumption related to low power configurations.

Table 2. Current consumption in different low power configurations

Configuration

Functionality

Lowpowermode

USB availability/TCXO VDD

management

GNSS in lowpower mode

Currentconsumption

1 Sensors continuous monitoring (no low powermode) OFF Don’t care Don’t care 58 mA

2

Low power mode

USB needed (for debug purpose or commandavailability)

Data sending interval < 4 hours (1)

ON USB availability Standby 1.4 mA

3

Low power mode

USB needed (for debug purpose or commandavailability)

Data sending interval >4 hours(1)

ON USB availability OFF 1.4 mA(2)

4

Low power mode

USB not needed

Data sending interval <4 hours(1)

ON TCXO VDDmanagement Standby 169 µA

5

Low power mode

USB not needed

Data sending interval >4 hours (1)

ON TCXO VDDmanagement OFF 155 µA

1. This duration is the max. validity time for ephemeris that allows having an advantage in terms of energy consumption bysending the standby command to the Teseo-LIV3F module instead of switching its power supply line off.

2. Switching the GNSS power supply line off reduces the current consumption by about 14 µA.

7.1 Configuration 1: sensor continuous monitoring

As described in Section 5.7 Low power settings the low power mode must be disabled by acting on the followingfirmware commands:• !lpsensorevent-0• !lpsleeptimer-0In this configuration, the USB/TCXO functionality can be selected according to the user needs (refer to Section 2.3 R106/R107 configuration for the consequent R106, R107 choice). To benefit from the USB functionality, theTCXO is not managed, causing 1.4 mA of extra current consumption.

7.2 Configuration 2: low power mode, USB used, data sending interval less than 4hours

To implement this case, follow the procedure below.

AN5403Low power configurations

AN5403 - Rev 2 page 17/41

Page 18: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Step 1. Activate the low power mode functionality. This can be done as described in Section 5.7 Low powersettings, by acting on the following firmware commands.– !lpsensorevent-1– !lpsleeptimer-1

Step 2. Use the USB functionality after checking the hardware configuration (R107 mounted, R106 notmounted), as described in Section 5.1 Enabling/disabling the USB.

Step 3. Activate the USB feature, by uncommenting the USB_ENABLED define, in the hw_conf.h file.

Step 4. As the sending interval is less than 4 hours, set the GNSS_STANDBY_WAKEUP to 1 in the hw_conf.h file.When the GNSS is not used, it is set to standby mode by a command via serial interface to speedTTFF up at next GNSS wakeup.

7.3 Configuration 3: low power mode, USB used, data sending interval more than 4hours

To implement this case, follow the procedure below.

Step 1. Follow steps 1-2-3 of use case 2.

Step 2. As the sending interval is more than 4 hours, set the GNSS_STANDBY_WAKEUP to 0 in the hw_conf.hfile.When the GNSS is not used, its VDD supply line is powered off by disabling the associated STBC02switch through a command on the single wire interface.

7.4 Configuration 4: low power mode, USB is not used, data sending interval lessthan 4 hours

To implement this case, follow the procedure below.

Step 1. Follow step 1 of use case 2.

Step 2. Disable the USB functionality after checking the hardware configuration (R107 not mounted, R106mounted), as described in Section 5.1 Enabling/disabling the USB.

Step 3. Disable the USB feature, by commenting the USB_ENABLED define, in the hw_conf.h file.

Step 4. As the sending interval is less than 4 hours, set the GNSS_STANDBY_WAKEUP to 1 in the hw_conf.h file.When the GNSS is not used, it is set to standby mode by a command via serial interface to speedTTFF up at next GNSS wakeup.

7.5 Configuration 5: low power mode, USB is not used, data sending interval morethan 4 hours

To implement this case, follow the procedure below.

Step 1. Follow steps 1-2-3 of use case 4.

Step 2. As the sending interval is more than 4 hours, set the GNSS_STANDBY_WAKEUP to 0 in the hw_conf.hfile.When the GNSS is not used, its VDD supply line is powered off by disabling the associated STBC02switch through a command on the single wire interface.

As described in Table 2. Current consumption in different low power configurations, this last case assures the bestperformance in terms of current consumption.

AN5403Configuration 3: low power mode, USB used, data sending interval more than 4 hours

AN5403 - Rev 2 page 18/41

Page 19: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

8 Power consumption tests

8.1 Battery charge

Test conditions:• charger settings: ISET=100 mA, IPRE=10 mA• firmware configuration: full run• battery is fully discharged: test starts when Type-C connector is plugged in

BackgroundThe STEVAL-STRKT01 board embeds the STBC02 battery charger allowing single-cell Li-Ion and Li-Poly batterychemistry to be charged up to a 4.45 V using a CC-CV charging algorithm.The charging cycle starts when a valid input voltage source is detected and signaled by the CHG pin toggling (6.2Hz) from a high impedance state to a low logic level. If the battery is totally discharged, the STBC02 chargerenters the pre-charge phase and starts charging in a constant current mode with the pre-charge current (IPRE)set. By contrast, as soon as the battery voltage reaches the VPRE threshold, the constant current fast chargephase starts and the relevant charging current increases to the IFAST level.The constant-current fast charge phase lasts until the battery voltage is lower than VFLOAT. Consequently, thecharging algorithm switches to a constant voltage (CV) mode. During the CV mode, the battery voltage isregulated to VFLOAT and the charging current starts decreasing over time. As soon as it goes below IEND, thecharging process is considered to be completed (EOC, end-of-charge) and the relevant status is shown as a 4.1Hz toggling signal on the CHG pin.

Figure 13. STEVAL-STRKT01 battery charge test (battery capacity = 480 mAh)

AN5403Power consumption tests

AN5403 - Rev 2 page 19/41

Page 20: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

8.2 Battery discharge

8.2.1 Overview

Figure 14. STEVAL-STRKT01 typical current consumption waveform

At system startup, some initialization operations are performed. The microcontroller configures all thesubsystems, it carries out a first measurement cycle and registers the node in the network. Thus, according to theallowed customization, the MCU typically drives the system in low power state to reduce the energy consumptionand subsequently it moves to the ultra-low power state if an accelerometer inactivity event is detected.A wakeup timer periodically triggers the system in ultra-low power state moving it from ultra-low power state toRUN state followed by the SEND state. Therefore, the system goes back to ultra-low power state.This main loop is repeated until the energy stored in the battery is enough to support it.

AN5403Battery discharge

AN5403 - Rev 2 page 20/41

Page 21: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 15. STEVAL-STRKT01 wakeup cycle waveforma. IAVERAGE = 56 mAb. IMAX = 92 mA, IAVERAGE = 88 mA, tTX = 175 msc. IMAX = 24 mA, IAVERAGE = 22 mA, tRX1 = 50 ms, tRX2 = 197 msd. IAVERAGE = 12 mA

RADIO TX

WAKE UPRADIO RX

SENSORS ACQUISITION

AND GNSS FIXING

GNSS GOES IN LOW POWER MODE

a

b

cd

Differently from the wakeup cycle, the energy of the main loop is closely related to the number and type ofperformed actions, as the energy efficiency of an ultra-low power system is based on the chosen components aswell as on the implementation of operating strategies able to guarantee the expected functions with the lowestenergy impact.System states (run, data acquisition, data transmission and low/ultra-low power) have an energy impact thatdepends on the average current and the time duration.The average current consumption during each phase is shown in the following table (for low power modes,transmissions are not taken into account).

Table 3. STEVAL-STRKT01 power consumption

Mode MCU Radio GNSS Sensors TCXO VDD Total current

RUN RUN Idle ON ON ON(1) 56 mA

Transmission RUN TX ON ON ON (1) 92 mA

Low power SLEEP mode Idle OFF ON ON (1) 4.6 mA

Ultra low power 1 STOP mode Idle OFF OFF ON (1) 1.4 mA

Ultra low power 2 STOP mode Idle Stand-by OFF OFF(2) 169 µA

Ultra low power 3 STOP mode Idle OFF OFF OFF (2) 155 µA

Ultra low power 4(3) STOP mode Idle OFF OFF OFF (2) 39 µA

1. Configuration described in Section 2.3 R106/R107 configuration (debug configuration).

AN5403Battery discharge

AN5403 - Rev 2 page 21/41

Page 22: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

2. Configuration described in Section 2.3 R106/R107 configuration (field configuration).3. Configuration described in Section 2.4 LIS2DW12 SA0 pin configuration.

On the basis of the consumption data shown above, some cases have been identified and tests performed,whose results are shown hereafter.

8.2.2 Ultra-low power testThe applied hypotheses match well with anti-tamper applications: the STEVAL-STRKT01 board is always sleepyand it wakes up only on an external trigger.

Test conditions

We assume that the battery is fully charged (VBAT = 4.2V). The STEVAL-STRKT01 board is configured to achievethe lowest power consumption, supposing that:• MCU is in STOP mode• Radio is in IDLE state• GNSS feeding line is off• Sensors feeding line is off• VDD_TCXO pin is managed by the microcontroller

The test starts when the Type-C connector is unplugged.

Results and comments

The test aims at assessing the battery life that allows the system to react to that asynchronous event.The estimated battery life in the stated conditions is 129 days.

Note: It can be extended to 512 days by connecting SA0 to VDD (as a suggestion for your implementation).

8.2.3 Full run testThe applied hypotheses match well with pet tracking applications.

Test conditions

We assume that the battery is fully charged (VBAT = 4.2 V). The STEVAL-STRKT01 board is configured in full run(i. e. to continuously monitor sensors and GNSS receiver) to detect whether the sensor thresholds are overshootor the GNSS sends geofence alerts and sends data to the LoRaWAN network (see Figure 12. Low powerconfiguration selection scheme).The test starts when the Type-C connector is unplugged.

Results and comments

The duration of the main loop is 20 seconds (worst case of the pet tracking application when in "alarm" condition).The battery life in the stated conditions is around 8.5 hours.Conditions:• LoRa sends data every 20 seconds• Data rate is DR_4• Test is performed indoor (no GNSS fix)

AN5403Battery discharge

AN5403 - Rev 2 page 22/41

Page 23: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 16. STEVAL-STRKT01 battery discharge test - full run

8.2.4 Low power test: 2 minutes, with and without optimizations

Test conditions

We assume that the battery is fully charged (VBAT = 4.2 V). The system goes through the startup phase (startup,LoRa network connection, GNSS fix, sensor reading cycle, transmission followed by low power/ULP mode) beforereaching the ultra-low power state.Four different configuration applicative cases have been taken into consideration and compared as shown in thetable below.

Table 4. Configuration applicative cases

USB GNSS cold start GNSS hot start

Available Case 3 Case 2

Not available Case 5 Case 4

Note: For all configuration applicative cases, see also Figure 12. Low power configuration selection scheme.The system retrieves data from sensors and GNSS receiver to detect whether the sensor thresholds areovershoot or the GNSS sends geofence messages. The test starts when the Type-C connector is unplugged.

Case 3

Hypotheses related to case 3 are:• GNSS feeding line is switched on and off• GNSS executes a cold start at every STEVAL-STRKT01 awakening• Murata module VDD_TCXO pin is always on• USB is available for debug

AN5403Battery discharge

AN5403 - Rev 2 page 23/41

Page 24: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 17. STEVAL-STRKT01 current consumption profile - case 3

Case 2

Hypotheses related to case 2 are:• GNSS feeding line always on• GNSS executes a hot start at every STEVAL-STRKT01 awakening to speed GNSS fix up (GNSS RTC is on)• Murata module VDD_TCXO pin is always on• USB is available for debug

Figure 18. STEVAL-STRKT01 current consumption profile - case 2

Case 5

Hypotheses related to case 5 are:• GNSS feeding line is switched on and off• GNSS executes a cold start at every STEVAL-STRKT01 awakening• R107 removed, R106 soldered. TCXO supply line is switched off when the STEVAL-STRKT01 enters ultra-

low power mode• USB is NOT available for debug

AN5403Battery discharge

AN5403 - Rev 2 page 24/41

Page 25: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 19. STEVAL-STRKT01 current consumption profile - case 5

Case 4

Hypotheses related to case 4 are:• GNSS feeding line always on• GNSS executes a hot start at every STEVAL-STRKT01 awakening to speed GNSS fix up (GNSS RTC is on)• R107 removed, R106 soldered. TCXO supply line is switched off when the STEVAL-STRKT01 enters ultra-

low power mode• USB is not available for debug

Figure 20. STEVAL-STRKT01 current consumption profile - case 4

Results and comments

The applied hypotheses match well with pet tracking applications. Four tests have been carried out by setting 2minutes as wakeup frequency. The estimated battery life is around 2 days.

Table 5. Configuration applicative cases: test results

USB GNSS cold start Results GNSS hot start Results

Available Case 3 Around 38 h Case 2 Around 43 h

Not available Case 5 Around 40 h Case 4 Around 53 h

AN5403Battery discharge

AN5403 - Rev 2 page 25/41

Page 26: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 21. Case 3: USB data communication is available (debug mode), awakening every 2 minutes, GNSScold started

Figure 22. Case 2: USB data communication is available (debug mode), awakening every 2 minutes, GNSShot started

Figure 23. Case 5: USB data communication is not available (power consumption optimized), awakeningevery 2 minutes, GNSS cold started

AN5403Battery discharge

AN5403 - Rev 2 page 26/41

Page 27: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 24. Case 4: USB data communication is not available (power consumption optimized), awakeningevery 2 minutes, GNSS hot started

8.2.5 Low power test: 30 minutes, with hardware optimizations

Test conditions

We assume that the battery is fully charged (VBAT = 4.2 V). The system goes through the startup phase (startup,LoRa network connection, GNSS fix, sensor reading cycle, transmission followed by low power/ULP mode) beforereaching the ultra-low power state.Two different configuration applicative cases have been taken into consideration and compared as shown in thetable below.

Table 6. Configuration applicative cases

USB GNSS hot start

Available Case 2

Not available Case 4

Note: For all configuration applicative cases, see also Figure 12. Low power configuration selection scheme.The system retrieves data from sensors and GNSS receiver to detect whether the sensor thresholds areovershoot or the GNSS sends geofence messages (see Figure 12. Low power configuration selection scheme).

Case 2

Hypotheses related to case 2 are:• GNSS feeding line always on• GNSS executes a hot start at every STEVAL-STRKT01 awakening to speed GNSS fix up (GNSS RTC is on)• R107 removed, R106 soldered. TCXO supply line is switched off when the STEVAL-STRKT01 enters ultra-

low power mode• USB is available for debug

AN5403Battery discharge

AN5403 - Rev 2 page 27/41

Page 28: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 25. Case 2: USB data communication is not available (power consumption optimized), GNSS coldstarted

Case 4

Hypotheses related to case 4 are:• GNSS feeding line always on• GNSS executes a hot start at every STEVAL-STRKT01 awakening to speed GNSS fix up (GNSS RTC is on)• R107 removed, R106 soldered. TCXO supply line is switched off when the STEVAL-STRKT01 enters ultra-

low power mode• USB is not available for debug

Figure 26. Case 4: USB data communication is not available (power consumption optimized), GNSS hotstarted

Results and comments

The applied hypotheses matches well with asset tracking applications. Two tests were carried out by setting 30minutes as wakeup frequency. The estimated battery life is shown in the following table.

Table 7. Configuration applicative cases: test results

USB GNSS hot start Results

Available Case 2 Around 213 h

Not available Case 4 Around 460 h

AN5403Battery discharge

AN5403 - Rev 2 page 28/41

Page 29: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 27. Case 2: USB data communication is available (debug mode), awakening every 30 minutes,GNSS hot started

Figure 28. Case 4: USB data communication is not available (power consumption optimized), awakeningevery 30 minutes, GNSS hot started

AN5403Battery discharge

AN5403 - Rev 2 page 29/41

Page 30: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

9 Schematic diagrams

Figure 29. STEVAL-STRKT01 circuit schematic (1 of 7)

SENS_I2C_SCK

I2C1_SDA_SENS

LIV3_VDD

STU

SB16

00_I

2C_S

DA

SPI2_SCK/I2S2_CK/PB13

UAR

T_TX

USB

_DM

SWD

_SW

CLK

2-LIV3

LIV3_TX

SPI2

_NSS

/I2S2

_WS/

PB12

SPI2

_SC

K/I2

S2_C

K/PB

13SP

I2_M

ISO

/I2S2

_MC

K/PB

14SP

I2_M

OSI

/I2S2

_SD

/PB1

5

PA4-

STU

SB16

00_R

STLI

V3_W

AKEU

P/U

SAR

T1_C

KAD

C2/

PA2/

LIV3

PPS

STBC02_NTC

1-LoRa MODULE

SPI_CS_M95

4-POWER MANAGEMENT

SWD

_SW

CLK

UART1_TXU

SB_D

P

LIS2DW12_INT

ADC2/PA2/LIV3PPS

PB6_INT

SENS_VDD

LIV3_PPS

MEM

_VD

D

STBC

02_S

W_S

EL

MEM

_VD

D

STU

SB16

00_V

DD

SEN

S_VD

D

PA8/LIV3WKUP

MEM_VDD

LED

_Use

r

5-INTERFACE

SPI2_NSS/I2S2_WS/PB12SPI2_SCK/I2S2_CK/PB13

SPI2_MISO/I2S2_MCK/PB14SPI2_MOSI/I2S2_SD/PB15

I2C1_SDA/PB9

I2C1_SCL_1600

LORA_VDD

I2C1_SDA_1600SW

D_S

WD

IO

STU

SB16

00_V

DD

D_V

DD

PA4-LIV3RSTn

SPI2_NSS/I2S2_WS/PB12

PB6-

STU

SB16

00_I

NT

STBC

02_W

KUP2

MC

USENS_I2C_SDA

LIV3_RSTn

LIV3_RX

D_VDD

SPI_MISO_M95

3-SENSORS

USB

_DP

STU

SB16

00_I

2C_S

CK

UART1_RX

PWR_NTC

STBC

02_n

CH

G2M

CU

LOR

A_VD

D

UART1_RX

SPI2_MISO/I2S2_MCK/PB14

LIV3

_VD

D

SPI_MOSI_M95

SENS_I2C_SCK_SWITCHSENS_I2C_SDA_SWITCH

SENS_INT

PB2-

USE

R_L

ED

SPI_SCK_M95

D_VDD

D_V

DD

STBC

02_B

ATM

S_ad

c

Butto

n_U

ser

MCU_WKUP/PA0

LIV3_WAKEUP

USB

_DM

LIV3

_VD

D

MC

U_n

RST

I2C1_SCL_SENS

BATM

S_AD

C5

PB5-

STBC

02_S

W_S

LAD

C3/

PA3/

STBC

02nC

HG

LPTI

M1_

IN2/

PB7

LORA_VDD SENS_VDD

6-MEMORY

STUSB1600_VDD

SPI2_MOSI/I2S2_SD/PB15

nRES

ET

UART1_TX

MC

U_W

KUP

STUSB1600_VDD

UAR

T_R

X

SWD

_SW

DIO

SEN

S_VD

D

D_V

DD

I2C1_SCL/PB8

AN5403Schematic diagrams

AN5403 - Rev 2 page 30/41

Page 31: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 30. STEVAL-STRKT01 circuit schematic (2 of 7)

USB_DP

2

R1100 NM

LoRa antenna

RCC_MCO/PA8

SMD 0402

USB_DM

pi greek filter

1

51G

ND

352

VDD_USB5

I2C1_SCL/PB8

9

PB6/

LPTI

M1_

ETR

40

LORA_VDD

LORA_VDD SWD_SWCLK

MCU_WKUP/PA0MCU_nRST

LPTIM1_OUT/PB2

1M

TCXO

_OU

T

SPI2_NSS/I2S2_WS/PB12

ADC

5/D

AC2/

PA5

RC

C_M

CO

/PA8

GND554

SMD 0201

L104L NM

SMD 0201

I2C1_SDA/PB9

STUSB1600_VDD

SWD_SWCLK

MCU_nRST

PA4/

ADC

4/D

AC1

R117

44

31STSAFE_nRST

GND

C110

15PB

14/S

PI2_

MIS

O

GND

17PB

12/S

PI2_

NSS

18

SMD 0201

24PA

2/AD

C2

SMD 0402Assembly 0Ohm resistor

C118100nF

1

LORA_VDD

2

VDD_MCU6

25

DBG_SX1276_DIO2

smc0201

I2C1_SCL/PB8

2

SENS_VDD

SPI2_MOSI/I2S2_SD/PB15

ADC5/DAC2/PA5

R1040 NM

4S2

SMD 0402

R1050 NM

2

LPTIM1_ETR/PB6

GND

35PB8/I2C1_SCL

36

GND

I2C1_SCL_SENS

MCU_nRST

4

DBG_CRF1/PA1

SPI2

_SC

K/I2

S2_C

K/PB

13

NX2016SA 24MHZ / EXS00A-CS05544 NOT MOUNTED

TP115SWD_SWDIO

TP100

R122

UART1_RX

SPI2_SCK/I2S2_CK/PB13

2

11DBG_SX1276_DIO512

3

ADC2/PA2

23PA

3/AD

C3

D_VDD

VDD_TCXO

DBG_CRF2/PC2

D_VDD

DBG_SX1276_DIO3

4

1600_I2C_EN

TP105

1M

SWD_SWDIO

SMD 0402

MCU_nRST

R100100K

GND10ANT

26

0

SPI

GND

unmount)

GND

14

D4

SWD_SWCLK

I2C1_SCL/PB8

1

3-4SEL

3S2

73S

1

C110 and C112 are temporarily replaced by 0OHm resistor

R107

uFL connector NM

SMD 0201

R121

PB9/I2C1_SDA

R10110K

UAR

T1_T

X

PB6_INT

ADC2/PA2/LIV3PPS

SIG

2

I2C1_SDA_1600GND

I2C1_SCL_1600

OSC_OUT

1-2SEL

2S14

D_VDD

GNDGND

55

GND7

smc0201

D_VDD

SMD 0201

46PH

0-O

SC_I

N

10DBG_SX1276_DIO4

VDDSTSAFE_nRST

GND

SENS_VDD

PA0/WKUP1

34

1

LORA_VDD

I2C1_SDA_1600

STUSB1600_VDDD_VDD

SMD 0201

U101

LPTIM1_IN2/PB7

SMD 0201

0

LPTIM1_IN2/PB7

I2C1_SDA/PB9

Exposed pad must be soldered to afloating plane. Do NOT connect topower or ground.

1

D_VDD

SPI2

_MO

SI/I2

S2_S

D/P

B15

D_VDD

4S1

PB5-STBC02_SW_SLBATMS_ADC5

USB_DM

VDD

_TC

XO

GN

D

I2C1_SDA_SENS

C114100nF

SMD 0402

C104100nF

I2C1_SDA_1600

STSAFE_nRST

PB5/

LPTI

M1_

IN1

ANT

C1021µF

SENS_VDD

14PB

15/S

PI2_

MO

SI

12

I2C1_SDA_SENS

smc0603

SMD 0201

SWD_SWDIO

UART1_TX

STG3692

DBG_CRF3/PC1

SMD 0201

Y100TP112

47TC

XO_O

UT

48

I2C1_SCL_SENS

TP104

R1260 NM

SMD 0201

C1151µF

C112

I2C1_SDA_SENS

C10810pF NM

TP111

R109

0 NM

R108

Assembly 0Ohm resistor

PB2/

LPTI

M1_

OU

T

LPTIM1_ETR/PB6

I2C1_SCL_SENS

or VDD_TCXO connection:Option1: Connect VDD_TCXO to VDD (assembly R107-R106 unmount) Option2: Connect VDD_TCXO to PA12 to make sure MCU

SPI2

_MIS

O/I2

S2_M

CK/

PB14

F

1

ADC

2/PA

2

I2C1_SDA/PB9

57

DBG_SX1276_DIO3

LPTIM1_IN2/PB7

USB_DP

D2

5

29DBG_CRF3/PC1

30

SMD 0201

C117100nF

41PA

13/S

WD

IO

42

56

GND8

R116

1

GND3 PA11/USB_DM

TP106

0

SENS_I2C_EN

DBG_SX1276_DIO1

TP107

0 NM R114R113

1GND1

TP108

R1034K7

0 NM

13D

BG_S

X127

6_D

IO0

33

2

15D

116

Con_SMA

C1051µF

ADC4/DAC1/PA4

16PB

13/S

PI2_

SCK

TP110

ADC

4/D

AC1/

PA4

PB2-USER_LED

2728

10GND

11

DBG_CRF2/PC2

I2C1_SCL_1600

2S2

6

PA12/USB_DP2

SMD 0402

R1060 NM

can control TCXO on/off (assembly R106- R107

SPI2_MISO/I2S2_MCK/PB14

PA10

/USA

RT1

_RX

19

OSC

_IN

OSC_IN

D_VDD

MCU_WKUP/PA0

MCU_WKUP/PA0

I2C1_SCL/PB8

ADC3/PA3

UART1_TX

DBG_SX1276_DIO4

0 NM

DBG_CRF1/PA1

38PB

7/LP

TIM

1_IN

2

39

R1180 NM

R12510K

R124

GND118

GND9

43G

ND

SPI2_MISO/I2S2_MCK/PB14

GND

GND

VDD_RF7

TP109

1

J100

32VREF+

1S2

DBG_SX1276_DIO1

37

SMD 0402

UAR

T1_R

X

SPI2

_NSS

/I2S2

_WS/

PB12

TP101

CMWX1ZZABZ-078

PA8/LIV3WKUP

LPTIM1_IN1/PB5

VDD_USB

D3

8

GN

D4

53

smc0603

R1024K7

GND

USB_DP

I2C

1_SD

A/PB

9

I2C1_SDA/PB9

DBG_SX1276_DIO5

OSC

_OU

T

GND

49G

ND

150

MCU reset and wake up

Sensor connections

Power and interface

UART1_RX

SPI2_NSS/I2S2_WS/PB12

LORA_VDD

smc0603

PA5/

ADC

5/D

AC2

22

DBG

_SX1

276_

DIO

0

PA14

/SW

CLK

BOO

T0

GND

SMD 0201

C10310µF

VREF+

DBG_SX1276_DIO29

2Vcc

0

USB_DM

D_VDD

SMD 0201

LIV3 communication

3

SMD 0201

C10910pF NM

U100

C11310uF

SMD 0201

L103L NM

SPI2_MOSI/I2S2_SD/PB15

13

1S1

LPTIM1_IN1/PB5

GND

SPI2_SCK/I2S2_CK/PB13

PA4-LIV3RSTn

SMD 0201

J101ANT

ADC3/PA3/STBC02nCHG

STUSB1600_VDD

D_VDD

ADC

3/PA

3

GND6

R11

2

MURATA module SWD - USB

PA9/

USA

RT1

_TX

I²C

D_VDD

GN

D2

20PA

8/M

CO

21

GND3

I2C

1_SC

L/PB

8

0 NM

0 NM

45PH

1-O

SC_O

UT

GND

LPTIM1_OUT/PB2

R11

1

VDD_USB

SMD 0201

C11610µF

I2C1_SCL_1600

AN5403Schematic diagrams

AN5403 - Rev 2 page 31/41

Page 32: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 31. STEVAL-STRKT01 circuit schematic (3 of 7)

16I2C_SDA

SMD 0402

R215

LIV3_RSTn

VCC_RF

SYS_RSTn

1

R224

WAKEUP

I2C_SDA

LIV3_WAKEUP

SMD 0402

R221

U202

6.8nH

0

R210

R200

TP205

R225

41PPS

SMD 0201

U200

R216

LIV3_VDD_RF

R214

J201

TX0

0 NM

I2C communication option (I2C1) @3.3V

1

TP206

LIV3_PPS

C208

120pF

0 NM

0

GND

LIV3_VDD_IO

R206

3GND

LIV3

_VD

D_R

FVCC_IO

VCC8

TP201

100nH NM

EN

RX0

SYS_RSTn

6

2

6

SMD 0402

C207100pF

TX0

C206100nF

RESERVED

R209

SMD 0402

R223R222

L202

LIV3_TX

2

R21710K

11RF_IN

3

R220

9

15

0

R204

0

1

RF_IN

27nH

ANTOFF

LIV3_RX

RESERVED1

LIV3_VDD_RF

GND_RF_12

GND1

U201

VCC

13AntOFF

14

BGA725L6

IN

VBATT

0 NM

0

Wake-Up

7

TP202

0 NM

J200RF in

C200

120pF

2 3 5

3RX0

R2050 NM

C20956pF

TP200

0

PPS

1K NM

1

SMD 0201

0

1K NM

R218

5

1K NM

R219

0 NM

GN

D

B39162B4327P810

4

SMD 0201

L200

2SI

G

RF_IN

µFL connector NM

R2030 NM

R213

5

R226

L201

OUT

I2C_SCL

4

LIV3_VDD_IO

0

C2013.9pF NM

17

WAKEUP I2C_SCL

SMD 0201

C2023.9pF NM

10

I2C_SCL18

GN

D_R

F

RX0

TESEO-LIV3F

VCC_RF

1K NM

SMD 0402

C2053.9pF NM

C204

120pF

GND1

2TX0

LIV3_VDD

GND

GND_RF_10

12

ANTOFF

SMD 0402

0

SMD 0201

C203100nF

Figure 32. STEVAL-STRKT01 circuit schematic (4 of 7)

Pressure Sensor - LPS22HB

SENS_VDD

SENS_I2C_SCK

SENS_I2C_SCK_SWITCHSENS_I2C_SDA_SWITCH

LIS2DW12_INT

SDA/SDI/SDOCS

6

SDO/SA0

CS6

I2C - address 0xB8

smc0603

SENS_I2C_SDA_SWITCHVDD_IO

9GND1

smr0201

U303

R319

0 NM

SENS_VDD

5GND

SA0/SDO

CS2

LPS22HB

R324

SENS_I2C_SCK_SWITCH

I2C - address 0011000 - 0x30

0

HTS221

C309100nF

5

1 LIS2DW12_INT

LIS2DW12

D_VDD

R3230 NM

INT2

4

SENS_I2C_SDA_SWITCH

SMD 0201

R325

LIS2DW12_INT2

I2C - address 0xBE

Humidity and Temperature Sensor -HTS221

GND8

SENS_I2C_SCK_SWITCHSENS_I2C_SDA_SWITCH

SENS_I2C_SDA

TP322

11INT1

12

SENS_I2C_SCK_SWITCH

7RES

3DRDY

3-axis accelerometer - LIS2DW12

0

TP326

SMD 0201

SCL/SPC4

LIS2DW12_INT

D_VDD

SENS_VDD

GN

D6

U301

R3220 NM

TP327

SMD 0201

C31010uF

2

10VDD_IO

9VDD

SCL/SPC

SENS_I2C_SDA

2

7

LIS2DW12_INT2

SCL/SPC

4

HTS221_DRDY

NC

5

INT1

SENS_I2C_SCK

D_VDDSMD 0201

C301100nF

1

8GND1

SMD 0201

INT_DRDY

TP324

U304

SDA/SDI

RES3

SMD 0201

C308100nF

SENS_I2C_SDA

SENS_VDD

VDD10

VDD1

LPS22HB_DRDY

SENS_I2C_SCK

SENS_INT

SENS_VDD

SDA/SDI/SDO

3

SMD 0201

AN5403Schematic diagrams

AN5403 - Rev 2 page 32/41

Page 33: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 33. STEVAL-STRKT01 circuit schematic (5 of 7)

C3

BATSNSFV-Connect as

CEN : Chargerenable pin.

close aspossible tothe batterypositiveterminal

Active high. 500kO internalpull-up(to LDO)CHG :Charging/faultflag. Active low(open drainoutput)WAKE-UP :Shipping modeexit input pin.Active high. 50kO internalpull-downSW_SEL: Loadswitch selectioninput (refer to

Battery charger

C2nRESET

0 NM

B1nCHG

STBC02_SW2_OA

TP409

STBC02_SW1_OA

SMD 0201

L401

EN

BAT2

STBC02_BATMS

STBC02_WKUP2MCU

D1A1

SMD 0201

R4350

SENS_VDD

smc0603

C4BATMS

B3

Wake-up

0

BATSNS ND

R4101M

TP418

STBC02_SYS

D403

SENS_VDD

SMD 0201

C40010uF

SMD 0201

STBC02_BATB4

GNDA3

TP405

SMD 0201

L406

TP420

R408

STBC02_BATMS

STBC02_RESET_NOW

SML04021Kohm @ 100 MHz

0 NM

0

VOUT

VDD_BUCK

ESDALC6V1-1U2

C411100nF

D_VDD

D1

ISET

R428

D401

C

TP406

2KR407

ST1PS01EJR buck converter

NC2D3

for low charging current ,5mA see pag 19

STBC02 Li-Ion battery charger with LDO

SMD 0201

R416100K

STBC02_BAT

MEM_VDD

TP421

U401

SMD 0201

0

R432

STUSB1600_VDD

LORA_VDD

VDD_LDO

STBC02_NTC

STBC02_RESET_NOW

SWC3

ST1PS01GOOD

D0

C40410uF

ZENER_3V07

C40110µF

C1SW_SEL

C402

SMD 0201

R401

TP408

E4SW1_OA

STUSB1600_VDD

to select 3.3V output

Rpre=200/IpreRset=200/Ifast

STBC02_BATMS_adc

STBC02_NTC

D_VDD

LIV3_VDD

SMD 0201

LIV3_VDD

E3SW1_OB

E2SW2_I

STBC02_SW1_OA

C412100nF

A2BATSNSFV

CEN

STBC02_SYS

STBC02_SW1_OB

SW400

STBC02_CEN

VIN

MEM_VDD

A5

BAT1D2

WAKE-UP

3.0 V150 mA (max)

SMD 0201

R424150

F2

TP416

LIV3_VDD

F3

SMD 0201

0

TP417

R418100K

D5

LDOF4

SMD 0201

R42227K

LDO level)

20K

STBC02_nCHG

D4

E3

GNDD2

STBC02_RST_PENDING

A

SYS2

VDD_BUCK

VBAT

4.7uF

R4340

TP412

R4300

GND

SMD 0603

A3

0 NMR414

1

NC1

R42533K

TP404

R427

0 NM

2

SW2_OAF1

MEM_VDD

NTC

SMD 0201

A1RESET_NOWSW1_I

TP415

TP407

TP411TP419

R413

LORA_VDD

IN1

STBC02_SW_SEL

B5

SYS1C5

TP413

SMD 0201

0

R406

ST1PS01EJR

STBC02_nCHG

LED (Red)

C4031uF

R411

D402

R412

R429

R41910K NM

TP410

STBC02_SW1_OB

STBC02_WAKE-UP

STBC02_SW2_OB

SMD 0201

R42356K

E1

STBC02_SW2_OA

STBC02_nCHG2MCU

LORA_VDD

D_VDD

STUSB1600_VDD

SML0201470 Ohms @ 100MHz

R4330

L403

BATSNS

STBC02_WKUP2MCU

STBC02

U400

B2

590

F5

AGND

STBC02_RST_PENDING

STBC02_nRESET

VDD_LDO

R409

STBC02_nRESET

USB_5V

C1

STBC02_SW2_OB

0

D_VDD

2.2uH

STBC02_WAKE-UP

smc0603

Switch 90

2

B2RST_PENDING

SMD 0201

VDD1

SENS_VDD

STBC02_WAKE-UP

SMD 0201

R42110K NM

1

GND

D_VDD

E5

IN2

A4

IPRE

STBC02_CEN

SW2_OB VDD1

SMD 0402

PGOODE1

SMD 0201

AN5403Schematic diagrams

AN5403 - Rev 2 page 33/41

Page 34: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Figure 34. STEVAL-STRKT01 circuit schematic (6 of 7)

R52010K

VBUS4B8

2

D505

7

22 23

STUSB1600

N.A.

U500

D_VDD

SPI2_SCK/I2S2_CK/PB13

PB6-STUSB1600_INT

SDA

8

MOUSER

76521

CN500

0

PWR_NTC123

5SWD_SWCLK4

R51710K

3

GND

B7

STUSB1600_ALER

T

LED_User

CN503

ESDALC6V1-1U2

D_VDD

STUSB1600_VDD

SMD 0201

R51910K

SMD 0201

TP504

D-2B6GND

21K

Battery connector

Buttons and LEDs

6

0201

DM

DP

C500

NC

SMD 0805

VBUS1CC1

A5

2

TX1+

SPI2_MISO/I2S2_MCK/PB14

VBUS_USB

SWD_SWDIO

R513 0 NM

SPI2_MISO/I2S2_MCK/PB14

A2

STL4P3LLH6

CC2DB6

10

A7

SMD 0201

C504

B2

VREG

_2V7

VDD

24

SWD_SWDIO

MCU_WKUP

SIN

K_EN

STUSB1600_ATTAC

H

GND

LED_User

321

8

SMD 0201

0R511

A6

GND

D-1

ESDA7P60-1U1M

R512 0

B6

ST1600_I2C_SDA

RX1-B9

1

8

2.5 5mA

VREG

_1V2

VSYS

RS: 700-0824P

ESDALC5-1BF4

VBUS_USB

GND4B11

RESET

A10

STUSB1600_VDDGND

Q500

SPI2_MOSI/I2S2_SD/PB15

CC1DB2

CC1

D+2B5

1µF

1

0R508

SMD

GND

MCU_WKUP

SMD 0201

GND

SMD 0201

1

ESDAULC5-1BF4

TP505

2

J501

SWD

SPI2_SCK/I2S2_CK/PB13

D503

B12

USB TYPE-C

ATTA

CH

SMT 3W 1.2 mm pitchMolex 78171-0003

GND

C1

10

25Exposed

R505

D+1A6

SPI2_NSS/I2S2_WS/PB12

UART_RX

VBUS_USB

ESDAULC5-1BF4

R50610K

GND

STUSB1600

1

ST1600_I2C_SDAUART_TX

PB6-STUSB1600_INT

UART_TX

nRESET

UART_RX

D_VDD

PB6-STUSB1600_INT

TX1-

2

SMD 0201

R500

100

SMD

STL4P3LLH6

GND

GND

0R521

USBD1

SMD 0201

C502

100nF

C507

5

B7

76521

DEBUG113

14

LED (white)

D501

20VB

US_

EN_S

RC

21

1

LED_User

STUSB1600_VDD

A3A4

2

SPI2_MOSI/I2S2_SD/PB15

GND

ST1600_I2C_SDA

RX2-

Switch

TP503

3

SWD/JTAG NM

VDD_USB_TYPEC

1234567891

R518

10K

SWD_SWCLK

316

GND

CC2B4

ADC2/PA2/LIV3PPS

VBUS_USB

A_B_SIDE

DEBUG2

VBUS_SENSE17

D509

PA4-STUSB1600_RST

Q501

220nF NM

R50110K

D_VDD

3

D507

2

SMD 0201

R5070 NM

VBUS3B3

SMD 0201

TP502

Test point/not assembled

R5150

J500

4

0201

VBU

S_EN

_SN

K

1

SBU2B7

9

STUSB1600_VDD

4

SBU1A8

ST1600_I2C_SCK

4

ESDA7P120-1U1M

LIV3_WAKEUP/USART1_CK

STUSB1600_RESET

Button_User

1µF

1

B6

8

VBAT

SWD_SWCLK

TX2+B1TX2-

10uF

VCONN

CC24

ESDALC5-1BF4

R51610K

CN502

D500

D508

19

SMD 0201

1µF

ALER

T#

GN

D

A6

GND3

GND1

SW500

VBAT

VBUS2

nRESET

ST1600_I2C_SCKUART_RX

STUSB1600_I2C_SDA

USB_DM

D504

RX2+

1

VDD_USB_TYPEC

SMD 0201

12345

0R510

PWR_NTC

UART_TX

A7

GND

C503

ADDR0

2

MOUSER

RX1+B10

11VB

US_

ERR

OR

12

GNDSMD 0201

R5140 NM

A1

A12

USB TYPE-C

18

SWD_SWDIO

GNDSINK_EN

SPI2_NSS/I2S2_WS/PB12

15

C505

nRESET

A7

SMD 0201

C50147µF

STUSB1600_VDD

D_VDD

SCL

7

Button_User

GND

STUSB1600_I2C_SCK

2

USBD0

ST1600_I2C_SCK

USB_5V

LED_User

2

A

USB_DP

CN501

A11

GND2

A9

9

GND

10K

1

5

R504

SMD 0201

BATT+

Test point/not assembled

Test point/not assembled

Test point/not assembled

STUSB1600_VDD

Figure 35. STEVAL-STRKT01 circuit schematic (7 of 7)

SPI_CS_M95

SPI_MOSI_M95

GND

SMD 0201

R607100k NM

W3

SMD 0201

R6050C

6

0R602

MEM_VDD

SMD

020

1

SPI_MISO_M95

GND

smc0603

R6040

SPI_SCK_M95

MEM_VDD

SMD 0201

U600 8VC

C

SPI_MOSI_M95SMD 0201

J600I2C2_SDA

I2C2_SCL

HOLD

R6000

2-pin Male Header NM

GND

SPI_MISO_M95

SMD 0201R6010

ST25DV64K ANTENNA

SPI_SCK_M95

MEM_VDD

SPI_CS_M95

C602100nF

S1

M95M02-DR

Q2

D5

R6060 NM

SMD 0201 R60310k

SMD

020

1 SMD 0201

C60110µF

GND

VSS

4

7

AN5403Schematic diagrams

AN5403 - Rev 2 page 34/41

Page 35: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

10 Conclusions

This application note explains how to select the right configuration to reach the best performance in terms ofbattery autonomy for the STEVAL-STRKT01.The most important parameter to be taken into account is the sending frequency: in power consumptionoptimization, the active components should be operative only when requested by the application ("sleep as muchas possible" strategy).Other configurations can be implemented, such as the low power mode triggered by the inactivity interrupt fromaccelerometer and ultra-low power mode triggered by a timer.On the basis of the sending interval, the GNSS power strategy is also impacted to speed its fix process up.Debug features also impact on the board power consumption. Therefore, they should be activated only if needed.In summary, depending on the use case, specific configurations can be selected, impacting on the STEVAL-STRKT01 autonomy, resulting in a battery duration of 8.5 hours to 1.4 years.

AN5403Conclusions

AN5403 - Rev 2 page 35/41

Page 36: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Revision history

Table 8. Document revision history

Date Version Changes

28-Oct-2019 1 Initial release.

10-Dec-2019 2 Updated Table 5. Configuration applicative cases: test results.

AN5403

AN5403 - Rev 2 page 36/41

Page 37: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

Contents

1 Acronyms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

2 STEVAL-STRKT01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 R106/R107 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 LIS2DW12 SA0 pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 FP-ATR-LORA1 application firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

3.1 FP-ATR-LORA1 state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 STEVAL-STRKT01 firmware update setup for energy profile configuration . . . . . . . . . .9

4.1 Hardware and software requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 How to load a new firmware on the STEVAL-STRKT01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Update via ST-LINK/V2 in-circuit debugger/programmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.4 Update via ST-LINK/V3 in-circuit debugger/programmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.5 Update via STM32 Nucleo-64 on-board ST-LINK programmer . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Firmware configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

5.1 Enabling/disabling the USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 Enabling/disabling TCXO VDD management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.3 Enabling/disabling debug features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.4 Enabling/disabling memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.5 GNSS power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.6 Read timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.7 Low power settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Power management key points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

6.1 Power consumption optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Low power configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

7.1 Configuration 1: sensor continuous monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.2 Configuration 2: low power mode, USB used, data sending interval less than 4 hours . . . . 17

7.3 Configuration 3: low power mode, USB used, data sending interval more than 4 hours . . . 18

AN5403Contents

AN5403 - Rev 2 page 37/41

Page 38: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

7.4 Configuration 4: low power mode, USB is not used, data sending interval less than 4 hours .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7.5 Configuration 5: low power mode, USB is not used, data sending interval more than 4 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Power consumption tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

8.1 Battery charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8.2 Battery discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.2.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.2.2 Ultra-low power test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8.2.3 Full run test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8.2.4 Low power test: 2 minutes, with and without optimizations . . . . . . . . . . . . . . . . . . . . . . . . 23

8.2.5 Low power test: 30 minutes, with hardware optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

AN5403Contents

AN5403 - Rev 2 page 38/41

Page 39: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

List of tablesTable 1. ST-LINK/V2 programmer and STEVAL-STRKT01 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Table 2. Current consumption in different low power configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Table 3. STEVAL-STRKT01 power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Table 4. Configuration applicative cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Table 5. Configuration applicative cases: test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Table 6. Configuration applicative cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Table 7. Configuration applicative cases: test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Table 8. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

AN5403List of tables

AN5403 - Rev 2 page 39/41

Page 40: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

List of figuresFigure 1. STEVAL-STRKT01 block diagram and power management architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Figure 2. STEVAL-STRKT01 battery modification for current measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Figure 3. STEVAL-STRKT01: R106/R107 configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Figure 4. STEVAL-STRKT01: R106 layout position (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Figure 5. STEVAL-STRKT01: R107 layout position (bottom view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Figure 6. STEVAL-STRKT01: LIS2DW12 schematic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Figure 7. STEVAL-STRKT01: application state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Figure 8. Hardware resources required for STEVAL-STRKT01 firmware upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Figure 9. Hardware configuration for STEVAL-STRKT01 firmware update using an ST-LINK/V2 programmer . . . . . . . . 10Figure 10. Hardware configuration for STEVAL-STRKT01 firmware update using an ST-LINK/V3 programmer . . . . . . . . 11Figure 11. Hardware configuration for STEVAL-STRKT01 firmware update using STM32 Nucleo-64 on-board ST-LINK

programmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Figure 12. Low power configuration selection scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 13. STEVAL-STRKT01 battery charge test (battery capacity = 480 mAh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 14. STEVAL-STRKT01 typical current consumption waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 15. STEVAL-STRKT01 wakeup cycle waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 16. STEVAL-STRKT01 battery discharge test - full run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Figure 17. STEVAL-STRKT01 current consumption profile - case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 18. STEVAL-STRKT01 current consumption profile - case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 19. STEVAL-STRKT01 current consumption profile - case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Figure 20. STEVAL-STRKT01 current consumption profile - case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Figure 21. Case 3: USB data communication is available (debug mode), awakening every 2 minutes, GNSS cold started . 26Figure 22. Case 2: USB data communication is available (debug mode), awakening every 2 minutes, GNSS hot started. . 26Figure 23. Case 5: USB data communication is not available (power consumption optimized), awakening every 2 minutes,

GNSS cold started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Figure 24. Case 4: USB data communication is not available (power consumption optimized), awakening every 2 minutes,

GNSS hot started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Figure 25. Case 2: USB data communication is not available (power consumption optimized), GNSS cold started . . . . . . 28Figure 26. Case 4: USB data communication is not available (power consumption optimized), GNSS hot started . . . . . . . 28Figure 27. Case 2: USB data communication is available (debug mode), awakening every 30 minutes, GNSS hot started . 29Figure 28. Case 4: USB data communication is not available (power consumption optimized), awakening every 30 minutes,

GNSS hot started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Figure 29. STEVAL-STRKT01 circuit schematic (1 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Figure 30. STEVAL-STRKT01 circuit schematic (2 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Figure 31. STEVAL-STRKT01 circuit schematic (3 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Figure 32. STEVAL-STRKT01 circuit schematic (4 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Figure 33. STEVAL-STRKT01 circuit schematic (5 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Figure 34. STEVAL-STRKT01 circuit schematic (6 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Figure 35. STEVAL-STRKT01 circuit schematic (7 of 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

AN5403List of figures

AN5403 - Rev 2 page 40/41

Page 41: STEVAL-STRKT01 power management architecture ......STEVAL-STRKT01 power management architecture description and configuration for optimized battery life AN5403 Application note AN5403

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to STproducts and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. STproducts are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design ofPurchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or servicenames are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

AN5403

AN5403 - Rev 2 page 41/41