Static Cmos

Embed Size (px)

Citation preview

  • 8/2/2019 Static Cmos

    1/49

    DESIGNING OF COMBINATIONAL

    LOGIC GATES IN CMOS

    G.SUSMITHA

    ROLL NO:06

  • 8/2/2019 Static Cmos

    2/49

    COMBINATIONAL VS. SEQUENTIAL LOGIC

    CombinationalLogicCircuit

    Out In Combinational

    LogicCircuit

    Out In

    State

    Combinational Sequential

    Output = f (In) Output = F(In, Previous In)

  • 8/2/2019 Static Cmos

    3/49

    STATIC CMOS CIRCUIT

    At every point in time (except during the switchingtransients) each gate output is connected to eitherV DD or V ss via a low-resistive path.

    The outputs of the gates assume at all times the valueof the Boolean function, implemented by the circuit

    This is in contrast to the dynamic circuit class, whichrelies on temporary storage of signal values on thecapacitance of high impedance circuit nodes.

  • 8/2/2019 Static Cmos

    4/49

    STATIC COMPLEMENTARY CMOS

    F(In1,In2,InN)

    In1In2

    InN

    In1In2InN

    PUN

    PDN

    PMOS only

    NMOS only

    PUN and PDN are dual logic networks

  • 8/2/2019 Static Cmos

    5/49

    NMOS TRANSISTORS

    IN SERIES/PARALLEL CONNECTIONTransistors can be thought as a switch controlled by its gate signal

    NMOS switch closes when switch control input is high

    X Y

    A B

    Y = X if A and B

    XY

    A

    B Y = X if A OR B

    NMOS Transistors pass a strong 0 but a weak 1

  • 8/2/2019 Static Cmos

    6/49

    PMOS TRANSISTORS

    IN SERIES/PARALLEL CONNECTION

    X Y

    A B

    Y = X if A AND B = A + B

    X Y

    A

    B Y = X if A OR B = AB

    PMOS Transistors pass a strong 1 but a weak 0

    PMOS switch closes when switch control input is low

  • 8/2/2019 Static Cmos

    7/49

    THRESHOLD DROPS

    VDD 0PDN

    CL VDD CL

    S

    SD

    D

    VGS

    0 VDD

    PUN

    0 VDD

    - VTn

    VDD |VTp |

    VDD

    0 VDD

    CL

    S

    D

    CL

    VDD

    VDD

    S

    D

    VGS

  • 8/2/2019 Static Cmos

    8/49

    COMPLEMENTARY CMOS LOGIC STYLE

  • 8/2/2019 Static Cmos

    9/49

  • 8/2/2019 Static Cmos

    10/49

    COMPLEX CMOS GATE

    D

    A

    B C

    D

    AB

    C

    OUT = D + A (B + C)

  • 8/2/2019 Static Cmos

    11/49

    CONSTRUCTING A COMPLEX GATE

    C

    (a) pull-down network

    SN1 SN4

    SN2

    SN3 D

    F F

    A

    D B

    C

    D

    F

    A

    B

    C

    (b) Deriving the pull-up network hierarchically by identifyingsub-nets

    D

    A

    A

    B

    C

    V DD V DD

    B

    (c) complete gate

  • 8/2/2019 Static Cmos

    12/49

    C

    A B

    X = C (A + B)

    B

    AC

    i

    j

    ABC

    Logic Graph

    j

    VDDX

    X

    i

    GND

    AB

    C

    PUN

    PDN

  • 8/2/2019 Static Cmos

    13/49

    C

    A B

    X = (A+B)(C+D)

    B

    A

    D

    VDDX

    X

    GND

    AB

    C

    PUN

    PDN

    C

    D

    D

    ABCD

  • 8/2/2019 Static Cmos

    14/49

    EXAMPLE: X = AB+CD

    GND

    x

    a

    b c

    d

    V DD x

    GND

    x

    a

    b c

    d

    V D D x

    (a) Logic graphs for ( ab+cd ) (b) Euler Paths { a b c d }

    a c d

    x

    V D D

    GND

    (c) stick diagram for ordering {a b c d }

    b

  • 8/2/2019 Static Cmos

    15/49

    PROPERTIES OF COMPLEMENTARY CMOSGATES:

    High noise margins :V OH and V OL are at V DD and GND , respectively.

    No static power consumption : There never exists a direct path between V DD andV SS ( GND ) in steady-state mode .

    Comparable rise and fall times: (under appropriate sizing conditions)

  • 8/2/2019 Static Cmos

    16/49

    SWITCH DELAY MODEL

    AReq

    A

    Rp

    A

    Rp

    A

    Rn CL

    A

    CL

    B

    Rn

    A

    Rp

    B

    Rp

    A

    Rn C int

    B

    Rp

    A

    Rp

    A

    Rn

    B

    Rn CL

    C int

    INV

  • 8/2/2019 Static Cmos

    17/49

    INPUT PATTERN EFFECTS ON DELAY

    Delay is dependent onthe pattern of inputs

    Low to high transition both inputs go low

    delay is 0.69 R p /2 CL one input goes low

    delay is 0.69 R p CL

    High to low transition both inputs go high

    delay is 0.69 2Rn CL

    CL B

    Rn

    A

    Rp

    B

    Rp

    A

    Rn C int

  • 8/2/2019 Static Cmos

    18/49

    TRANSISTOR SIZING

    CL

    B

    Rn

    A

    Rp

    B

    Rp

    A

    Rn Cint

    B

    Rp

    A

    Rp

    A

    Rn

    B

    Rn CL

    C int 2

    2

    2 2

    1 1

    4

    4

  • 8/2/2019 Static Cmos

    19/49

    FAN-IN CONSIDERATIONS

    DCBA

    D

    C

    B

    A CL

    C3

    C2

    C1

    Distributed RC model(Elmore delay)

    tpHL = 0.69 R eqn (C1+2C 2+3C 3+4C L)

    Propagation delay deteriorates rapidly as afunction of fan-in quadratically in the worstcase.

  • 8/2/2019 Static Cmos

    20/49

    Fast Complex Gates:Design Technique 1

    Transistor sizing as long as fan-out capacitance dominates

    Progressive sizing

    InN CL

    C3

    C2

    C1 In1

    In2

    In3

    M1

    M2

    M3

    MN Distributed RC line

    M1 > M2 > M3 > > MN (the fet closest to the

    output is the smallest)

  • 8/2/2019 Static Cmos

    21/49

    FAST COMPLEX GATES:DESIGN TECHNIQUE 2Transistor ordering

    C2

    C1 In1

    In2

    In3

    M1

    M2

    M3 CL

    C2

    C1 In3

    In2

    In1

    M1

    M2

    M3 CL

    critical path critical path

    charged1

    0 1 charged

    charged1

    delay determined by time todischarge C L, C 1 and C 2

    delay determined by time todischarge C L

    1

    1

    0 1

  • 8/2/2019 Static Cmos

    22/49

    FAST COMPLEX GATES:DESIGN TECHNIQUE 3

    F = ABCDEFGH

  • 8/2/2019 Static Cmos

    23/49

    Delay in a Logic Gate

    Gate delay:

    d = h + p

    effort delay intrinsic delay

    Effort delay:

    h = g f

    logical effort effective fanout = C out /C in

    Logical effort is a function of topology, independent of sizingEffective fanout (electrical effort) is a function of load/gate size

  • 8/2/2019 Static Cmos

    24/49

    LOGICAL EFFORT

    f g pC C

    C Rk Delayin

    Lunit unit

    1

    g logical effort ,which is defined as how much moreinput capacitance a gate presents to deliver the sameoutput current as inverter.

    P-intrincsic delay:ratio of intrinsic delays of gate andinverter

    F-effective fanout

  • 8/2/2019 Static Cmos

    25/49

    EXAMPLES OF LOGICAL EFFORT

    B

    A

    A B

    F

    V DDV DD

    A B

    A

    B

    F

    V DD

    A

    F

    1

    2 2 2

    2

    2

    1 1

    4

    4

    Inverter 2-input NAND 2-input NOR

    g = 1 g = 4/3 g = 5/3

  • 8/2/2019 Static Cmos

    26/49

    LOGICAL EFFORT OF GATES

    IntrinsicDelay

    EffortDelay

    1 2 3 4 5

    Fanout f

    1

    2

    3

    4

    5

    I n v e r t e

    r : g =

    1 ; p =

    1

    2 - i n p u t

    N A N D

    :g = 4 / 3

    ; p = 2

    N o r m a l i z e d D e l a y

  • 8/2/2019 Static Cmos

    27/49

    LOGICAL EFFORT OF COMMON LOGIC GATES

  • 8/2/2019 Static Cmos

    28/49

    MULTISTAGE NETWORKS

    N i

    iii f g p Delay1

    Stage effort: h i = g ifi

    Path electrical effort: F = C out /C in

    Path logical effort: G = g 1g2g N

    Branching effort: B = b 1b2b N

    Path effort: H = GFB

    Path delay D = S d i = S p i + S h i

  • 8/2/2019 Static Cmos

    29/49

    BRANCHING EFFORT

    Branching effort:

    pathon

    pathoff pathon

    C

    C C b

  • 8/2/2019 Static Cmos

    30/49

    OPTIMUM EFFORT PER STAGE

    H h N When each stage bears the same effort:

    N H h

    P NH p f g D N iii / 1

    Minimum path delay

    Effective fanout of each stage: ii gh f

    Stage efforts: g 1f1 = g 2f2 = = g NfN

  • 8/2/2019 Static Cmos

    31/49

    Example: Optimize Path

    g = 1f = a g = 5/3

    f = b/a

    g = 5/3f = c/b

    g = 1

    f = 5/c

    1a

    b c

    5

  • 8/2/2019 Static Cmos

    32/49

    EXAMPLE 8-INPUT AND

  • 8/2/2019 Static Cmos

    33/49

    RATIOED LOGIC

  • 8/2/2019 Static Cmos

    34/49

    IMPROVED LOADS

    V DD

    V SS

    PDN1

    Out

    V DD

    V SS

    PDN2

    Out

    A A B B

    M1 M2

    Differential Cascode Voltage Switch Logic (DCVSL)

  • 8/2/2019 Static Cmos

    35/49

    DCVSL EXAMPLE

    B

    A A

    B B B

    Out

    Out

    XOR-NXOR gate

  • 8/2/2019 Static Cmos

    36/49

    PASS-TRANSISTOR LOGIC

    I n p u t s

    Switch

    Network

    Out Out

    A

    B

    B

    B

    N transistors

    No static consumption

    Pass transistors require low switching energy to chargeup a node due to the reduced voltage swing

  • 8/2/2019 Static Cmos

    37/49

    EXAMPLE: AND GATE

    B

    B

    F = AB

    0

  • 8/2/2019 Static Cmos

    38/49

    DIFFERENTIAL PASS TRANSISTOR LOGIC

    A

    B

    A

    B

    B B B B

    A

    B

    A

    B

    F=AB

    F=AB

    F=A+B

    F=A+B

    B B

    A

    A

    A

    A

    F=A

    F=A

    OR/NOR EXOR/NEXORAND/NAND

    F

    F

    Pass-TransistorNetwork

    Pass-TransistorNetwork

    AABB

    AABB

    Inverse

    (a)

    (b)

  • 8/2/2019 Static Cmos

    39/49

    NMOS ONLY LOGIC:LEVEL RESTORING TRANSISTOR

    M 2

    M 1

    M n

    M r

    Out A

    B

    V DD V DD Level Restorer

    X

    Advantage: Full Swing

    Ratio problem

  • 8/2/2019 Static Cmos

    40/49

    TRANSMISSION GATE

    A B

    C

    C

    A B

    C

    C

    B

    C L

    C = 0 V

    A = 2.5 V C = 2.5 V

  • 8/2/2019 Static Cmos

    41/49

    TRANSMISSION GATE BASEDMULTIPLEXER

    AM 2

    M 1

    B

    S

    S

    S F

    V DD

  • 8/2/2019 Static Cmos

    42/49

    TRANSMISSION GATE XOR

    A

    B

    F

    B

    A

    B

    B M1

    M2

    M3/M4

  • 8/2/2019 Static Cmos

    43/49

    V out

    0 V

    2.5 V

    2.5 VR n

    R p

    0.0 1.0 2.00

    10

    20

    30

    V out , V

    essance,oms

    R n

    R p

    R n || R p

  • 8/2/2019 Static Cmos

    44/49

    DELAY IN TRANSMISSION GATE NETWORKS

    V 1 V i-1

    C

    2.5 2.5

    0 0

    V i V i+1

    C C

    2.5

    0

    V n-1 V n

    C C

    2.5

    0

    In

    V 1 V i V i+1

    C

    V n-1 V n

    C C

    In R eq R eq R eq R eq

    C C

    (a)

    (b)

    C

    R eq R eq

    C C

    R eq

    C C

    R eq R eq

    C C

    R eq

    C In

    m

    (c)

  • 8/2/2019 Static Cmos

    45/49

  • 8/2/2019 Static Cmos

    46/49

    PROS AND CONS:

    Pros:Robustnessgood performanceNo Static Power Dissipation

    Cons:

    Requires 2N transistors with a fan in ofN

  • 8/2/2019 Static Cmos

    47/49

    CONCLUSION:

    Static CMOS circuits can be used for devicesthat have no extreme area,complexity or

    speedconstraints

  • 8/2/2019 Static Cmos

    48/49

    REFERENCES:

    1.DIGITAL INTEGRATED CIRCUTS BYJAN RABAEY,ANANTHA CHANDRAKASAN,BORIVOJE NIKOLIC

    2.http://bwrc.eecs.berkeley.edu/ICbook

  • 8/2/2019 Static Cmos

    49/49

    THANK U