32
Paper 9.1 1 95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS Ekaterina Laskin, Mehdi Khanpour, Ricardo Aroca, Keith W. Tang, Patrice Garcia 1 , Sorin P. Voinigescu University of Toronto, (1) STMicroelectronics

in 65nm Digital CMOS and Static Frequency Divider

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Paper 9.1 1

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider

in 65nm Digital CMOS

Ekaterina Laskin, Mehdi Khanpour,

Ricardo Aroca, Keith W. Tang,

Patrice Garcia1, Sorin P. Voinigescu

University of Toronto, (1) STMicroelectronics

Paper 9.1 2

Outline

• Motivation

• Circuit schematics

• Fabrication technology and passives

• Test setup

• Measurement results

• Conclusion

Paper 9.1 3

Motivation / Applications• DSB imaging / remote sensing receiver

• Receiver for 10+Gb/s data-rate communication

• Explore the capabilities of 65-nm CMOS– W-band operation

– Technology scaling

– System integration

• Higher frequency better range resolution

Paper 9.1 4

Receiver Block Diagram

• Fundamental-frequency VCO at 90GHz– Fewer spurs on die

• Transformer-based signal distribution– Low-loss, no DC power, small size– Single-ended to differential conversion – Bias & supply plane isolation

Paper 9.1 5

Transformer-Feedback LNA

• Transistor biased at JSOPT, sized to match RSOPT

• Transformer chosen to match ZIN

• Smaller devices for 50Ω match

[K.W. Tang, CICC ’07]

( )Sm

PIN

Lkg

LZRe =

Paper 9.1 6

Transformer-Feedback LNA

• 0.5pF decoupling at every bias node in layout• Provides a low-L short-circuit at these nodes

[K.W. Tang, CICC ’07]

1.5V 1.5V1.5V

RF in

VB

20 24

24 4020

40×1µm

2:1

to mixer RF port

LP LS

0.5pF

0.5pF

Paper 9.1 7

Mixer and IF Buffer

• 76-95GHz Gilbert cell mixer• 120pH inductors NF & 2nd harmonic LO reject• Biasing through transformer center tap

[D. Alldred, CSICS ‘06K.W. Tang, CICC ’07]

broadband IF buffer

LG=60nm

Paper 9.1 8

• Need: VCO at 90 GHz fundamental

Low phase noise

High output power

Distribute signal to mixer and divider

• From [K.W. Tang, CSICS’06]:

• Choose: Quadrature Colpitts VCO at 90 GHz

Buffers to equalize tank loading

168.5137.5

Colpitts VCOCross-coupled77 GHz

VCO Topology

Paper 9.1 9

VCO Schematic

Con

trol

+C

ontr

ol−

60fF

92pH

250f

F58

pH

41pH

450p

H

• 4 symmetrically coupled Colpitts VCOs• VCO core: 0.2mA/μm, buffers: 0.3mA/μm

P

QRDIFFRDIFF

RQUAD

Paper 9.1 10

VCO Analysis

T-line

T-lineT-line

T-line ⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

4

3

2

1

4

3

2

1

11121312

12111213

13121112

12131211

V

V

V

V

I

I

I

I

ZZZZ

ZZZZ

ZZZZ

ZZZZ

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

2

3πj

2

πj

4

3

2

1

e

e

e

1

I

I

I

I

• Solution for quadrature oscillation mode:

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

2

3πj-

jπ-

2

πj-

4

3

2

1

e

e

e

1

I

I

I

IRT

jXT

PRLRS

C1

CVAR

ZD ZT

Q 02RQUAD

4RQUAD

+2RDIFF

02R4R

QuadOddEven

Paper 9.1 11

• C1=60fF, L=32pH• NFET: 72×0.8μm×60nm

– CGS’=0.75fF/μm– CGD’=0.4fF/μm– CSB’=0.65fF/μm

• Varactor: 34×0.8μm×60nm– CVAR=24fF 41fF– CB’=0.7fF/μm– CL=3fF

Colpitts VCO Frequency

Paper 9.1 12

Colpitts VCO Frequency

88.4 GHz91.5 GHzSimulated

(with extraction)

88.2 GHz91.2 GHzMeasured

100.2 GHz107.2 GHzSimulated

(no extraction)

96.7 GHz101 GHzHand analysis

Lower limitUpper limitfOSC

• Accurate prediction by hand analysis• Agreement between simulated & measured fOSC

Paper 9.1 13

VCO and Buffers

• Symmetry is maintained throughout VCO

150μm

buffersbuffersbuffersbuffers

75μm×75μm75μm×75μm

150μm150μm

170μm170μm

PPtanktank

Paper 9.1 14

Frequency Divider

• Layout designed to minimize critical path delay

from VCO

out

22μm

100μm

200μm

Paper 9.1 15

Technology – 65nm GP CMOS

• fMAX=280GHz, fT=195GHz

• Device: 80×60nm×1μm, one side gate contact

• 7 metal backend, Metal-Over-Metal capacitors

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1 1.2VDS (V)

f T, f

MA

X(G

Hz)

fMAX

fT

VGS=0.65V

50

100

150

200

250

300

0.1 1JDS (mA/μm)

f T, f

MA

X(G

Hz)

20.02

fMAX

fT

VDS=1V

Paper 9.1 16

Measured varactor at 94 GHz

• LG=60nm, Wtotal=27.5μm, CVAR’=1.53fF/μm2

• C variation: 25fF – 42fF, Q: 6 – 8 at 94 GHz

G SD

50 fingers

4

5

6

7

8

9

-0.6 -0.3 0 0.3 0.6 0.9 1.2VGS (V)

Q

20

25

30

35

40

45

CV

AR

(fF

)

CVAR

Q

Paper 9.1 17

S11

, S22

, S21

(dB

)Measured 24-µm 1:1 transformer

• Transformer:– VCO & Div– VCO & Mixer– LNA & Mixer

• MAG < -1.5dB

port 1

port 2 center tap

+ −

+ −

d

sw

d=24μmw=2μms=1μm

Paper 9.1 18

Receiver Die Photo

1095μm

600μ

m

Paper 9.1 19

Bias Distribution

• Metal mesh distributes ground, VDD, bias to all cells• Substrate contacts, distributed decoupling, low R, L• Meets all density rules

Paper 9.1 20

Measurement Setup• SSB gain• Linearity• Phase

noise• Tuning

range• Divider

• DSB NF• DSB gain

Paper 9.1 21

DC Power Consumption

206.4 (158)Total:

19.616.3Divider 50-Ω driver

22.418.6Divider

28.8244 VCO buffers

57.6

1.2

48Quadrature VCO

28.51950-Ω IF amplifier

13.59Mixer

36

1.5

24LNA

Power (mW)Supply (V)Current (mA)Block

Paper 9.1 22

VCO Tuning & Output Power

VC

O F

req

uen

cy (

GH

z)

VC

O O

utp

ut

Po

wer

(d

Bm

)

• 88.2 – 91.2GHz tuning range for all temperatures• +3dBm to -4dBm total VCO output power

Paper 9.1 23

Measured VCO Phase Noise

• -95dBc/Hz at 1MHz offset• Measured at 90.3GHz• 100 averages

Paper 9.1 24

SSB Receiver Conversion Gain

-10

-5

0

5

10

15

75 80 85 90 95 100 105RF (GHz)

Dif

fere

nti

al G

ain

(d

B)

-35

-30

-25

-20

-15

-10

S11

(dB

)

Gain

S11

1.2V1.5V1.8VS11

• 12 dB differential gain with nominal bias• S11 better than -15 dB over the BW

VCO = 89GHz

Paper 9.1 25

Measured Receiver DSB NF

• 6 – 9.5 dB DSB NF• Gain confirmed by NF measurement

0

2

4

6

8

10

12

14

16

18

0 3 6 9 12 15 18IF (GHz)

Dif

fere

nti

al G

ain

(d

B)

4

6

8

10

12

14

16

18

20

22

DS

B N

F (

dB

)

NFGain

VCO = 89GHz

Paper 9.1 26

Measured Rx Optimal Bias

• Current swept in the 1st LNA stage

• JGAIN,OPT > JNFMIN,OPT , insensitive to VT, Ibias variation

1

3

5

7

9

11

13

15

0 0.1 0.2 0.3 0.4 0.5Current Density (mA/μm)

1

3

5

7

9

11

13

15

0 0.1 0.2 0.3 0.4 0.5Current Density (mA/μm)

25 °C50 °C75 °C

LO=89GHzIF = 6 GHz

Paper 9.1 27

Measured Receiver Linearity

• RF = 85 GHz, LO = 89 GHz• Input P1-dB = -18 dBm

Dif

fere

nti

al G

ain

(d

B)

Ou

tpu

t P

ow

er (

dB

m)

Paper 9.1 28

Measured Static Divider Operation

• Measured by observing the VCO and divider signals simultaneously

44

44.2

44.4

44.6

44.8

45

45.2

45.4

45.6

88 88.5 89 89.5 90 90.5 91VCO Frequency (GHz)

25 °C50 °C

Paper 9.1 29

Comparison to Previous Work: 60G

0.13μm CMOS0.13µm SiGe

BiCMOS65-nm GP CMOSTechnology

3.8 mm25.78 mm20.66 mm2Die Area

1.2V2.7 V1.2 V / 1.5 VSupply

76.8 mW527 mW206.4 mWDC Power

-93dBc/Hz (at 29GHz)

-90dBc/Hz-95 dBc/Hz (at

90.3GHz)VCO PN @ 1MHz off.

28.4-29.4GHz16.8-18.3GHz88.3-91.3GHzVCO Freq.

-15.8 dBm-36 dBm-18 dBmInput P1-dB

10.45-6.7 dB7 dBNF

11.8 dB38-40 dB12.5 dBPower Gain

57 – 63 GHz59 – 64 GHz76 – 95 GHz3-dB BW

VCO, doubler, LNA, mixer, IF amplifier

LNA, super-heterodyne receiver,

PLL, BB amp.

fundamental VCO, LNA, mixer, 50-Ω IF amp, static divider

Integration level

S. Emami, ISSCC07B. Floyd, ISSCC06This WorkSpec.

Paper 9.1 30

Comparison to Previous Work: 77G

250 fMAX SiGe HBT

6.46 mm2

3.3 / 5 V

186 mW

-95 dBc/Hz (at 54GHz)

52 GHz

-27.5 dBm

8-10 dB

35 dB

76 – 80 GHz

VCO, LNA, mixer, injection locked divider

Babakhani, ISSCC’06

230/300GHz fT/fMAX

0.13µm SiGe HBT65-nm GP CMOSTechnology

1.02 mm20.66 mm2Die Area

1.8 / 2.5 / 3.3 V1.2 V / 1.5 VSupply

700 mW206.4 mWDC Power

-99 dBc/Hz-95 dBc/Hz (at

90.3GHz)VCO PN @ 1MHz off.

76 GHz88.3-91.3GHzVCO Freq.

-30 dBm-18 dBmInput P1-dB

5.2 dB7 dBNF

31 dB12.5 dBPower Gain

85 – 96 GHz76 – 95 GHz3-dB BW

VCO, mixer, LNA, 50-Ω IF amplifier,

static ÷ 64

fundamental VCO, LNA, mixer, 50-Ω IF

amp, static ÷ 2

Integration level

Nicolson, MTT’08This WorkSpec.

Paper 9.1 31

Conclusion• 76-95GHz receiver with 90-GHz VCO and divider

• Clock distribution using transformers

• Unique bias distribution & isolation scheme

• Operation verified up to 100°C

• Highest-frequency CMOS receiver (for now)

• W-band receiver integration demonstrated

Paper 9.1 32

Acknowledgements• Alexander Tomkins for varactor measurements

• Kenneth Yau for transistor measurements

• STMicroelectronics for fabrication

• Christophe Garnier and Bernard Sautreuil for technology access

• NSERC for funding