Stars 2015 Senior

Embed Size (px)

Citation preview

  • 8/17/2019 Stars 2015 Senior

    1/4

    Liceul Internaţional de Informatică Bucureşti

    Societatea de Ştiinţe Matematice

    Stelele Matematicii 2015, Seniori

    Problema 1.   Arătaţi că există un şir de numere naturale impare   m1   <m2  

  • 8/17/2019 Stars 2015 Senior

    2/4

    Liceul Internaţional de Informatică Bucureşti

    Societatea de Ştiinţe Matematice

    Stars of Mathematics 2015, Senior Level — Solutions

    Problem 1.  Show that there are positive odd integers  m1  < m2   n, the difference m4−2n4 is a perfect square, and it is readilychecked that  m and  n are relatively prime. The conclusion follows.

    Problem 2.   Let γ , γ 0, γ 1, γ 2  be coplanar circles such that  γ i   is internally tangent to  γ  at Ai,and γ i and  γ i+1 are externally tangent at Bi+2, i  = 0, 1, 2 (indices are reduced modulo 3). Thetangent at Bi, common to γ i−1  and γ i+1, meets γ  at C i, located in the half-plane opposite  Aiwith respect to the line  Ai−1Ai+1. Show that the three lines  AiC i  are concurrent.

    Flavian Georgescu 

    Solution 1.   Let γ i  cross the lines  AiC i+1  and  AiC i+2  again at  X i+2  and  Y i+1, respectively.Since the homothety centred at Ai, transforming γ i   into γ , sends X i+2 to C i+1 and  Y i+1 to

    C i+2, the lines  X i+2Y i+1  and C i+1C i+2  are parallel, so AiC i+1/AiC i+2 =  X i+2C i+1/Y i+1C i+2.On the other hand, since C i  has equal powers relative to  γ i+1  and γ i+2, C iX i+1

     ·C iAi+2 =

    C iB2i   = C iY i+2 · C iAi+1, it follows that  C iX i+1 =  C iB2i /C iAi+2  and  C iY i+2 =  C iB2i /C iAi+1.Hence   AiC i+1/AiC i+2   = (Bi+1C i+1/Bi+2C i+2)

    2(AiC i+2/AiC i+1), so   AiC i+1/AiC i+2   =Bi+1C i+1/Bi+2C i+2, and consequently

    2i=0(AiC i+1/AiC i+2) =

    2i=0(Bi+1C i+1/Bi+2C i+2) =

    1. Since the sines of the angles C iAiC  j  are proportional to the lengths of the correspondingchords  AiC  j, the conclusion follows by Ceva’s theorem in trigonometric form in the triangleC 0C 1C 2.

    A

    A

    A

    D D

    D

    B   B

    B

    C   C 

    0

    0

    0

    0 1

    1

    1

    1

    2

    2

    2

    2

    2

    1

    01

    0

    2

    Y  

    Y  

    Y  

    P  P 

    Z   Z 

    0

    0

    0 1

    1

    1

    2

    2

    2

    Fig. 1 Fig. 2

    Solution 2.  Let the tangents to  γ   at  Ai  and  Ai+1  meet at  Di+2   (fig 1), and notice that thelatter has equal powers relative to   γ i   and   γ i+1   to deduce that it lies on their radical axis,

  • 8/17/2019 Stars 2015 Senior

    3/4

    Bi+2C i+2. Consequently, the lines C iDi  are concurrent at the radical centre of the  γ i, and theconclusion follows by the lemma below (see Figure 2).

    Lemma.   Let   P 0P 1P 2   be a triangle, and let   T i   be the touchpoint of the side   P i+1P i+2   and the incircle  γ   of the triangle  P 0P 1P 2. Let further  Z i  be a point on the arc  T i+1T i+2   of  γ   not containing  T i. Then the lines  T iZ i  are concurrent if and only if the lines  P iZ i   are concurrent.

    The lemma can be proved either projectively, by sending the point of intersection of  T 0Z 0and  T 1Z 1  to the incentre, or by a trigonometric version of Ceva’s theorem.

    Problem 3.   Let n be a positive integer and let  a1,  . . .,  an  be  n positive integers. Show that

    nk=1

    √ ak

    1 + a1 + · · · + ak <n2k=1

    1

    k.

    G. I. Natanson 

    Solution.   Set b0  = 1 and  bk  = 1 + a1 + · · · + ak,  k  = 1, . . . , n, to obtain a strictly increasingstring of positive integers 1 = b0 < b1  n2} ≥ 1 — if there is no  bk  > n2, let  m  = n + 1 —, to splitthe above sum into

    m−1k=1

     bk − bk−1

    bk+

    nk=m

     bk − bk−1

    bk,   (∗)

    where empty sums are zero. We show that the first sum does not exceed n2

    k=2 1/k, and thesecond is always less than 1.

    If   k   = 1, . . . , m −  1, write (bk −  bk−1)1/2/bk  ≤   (bk −  bk−1)/bk   = 1/bk  + · · · + 1/bk  ≤

    bk j=bk−1+1

     1/j, to deduce that the first sum in (∗) does not exceed 

    m−1k=1

    bk j=bk−1+1

     1/j   =

    bm−1k=2   1/k ≤n2k=2 1/k.

    Finally, if  k =  m, . . . , n, write (bk − bk−1)1/2/bk  < b−1/2k  

  • 8/17/2019 Stars 2015 Senior

    4/4

    Problem 4.   Let   S   be a finite planar set no three points of which are collinear, and letD(S, r) = {{x, y} :  x, y ∈ S,   dist(x, y) = r}, where  r   is a positive real number, and dist(x, y)is the Euclidean distance between the points  x and y. Show that

    r>0

    |D(S, r)|2 ≤ 3|S |2(|S | − 1)/4.

    H. Lefmann, T. Thiele 

    Solution.  Given a point  x  in  S  and a real number  r, let S (x, r) = {y :  y ∈ S,   dist(x, y) = r},and notice that the  S (x, r),  r ≥ 0, partition  S .

    The number of non-degenerate isosceles triangles with vertices in   S   and apex at   x   isr>0

    |S (x,r)|2

    , so the total number of non-degenerate isosceles triangles with vertices in  S   is

    N   =

    x∈S 

    r>0

    |S (x,r)|2

    , equilateral triangles with vertices in  S  being counted three times

    each. Now,

    N  =

    x∈S r>0|S (x, r)|

    2 =

    r>0x∈S |S (x, r)|

    2 ≥r>0

    |S |   1

    |S |

    x∈S  |S (x, r)|

    2

    =r>0

    |S |2|D(S,r)|

    |S |

    2

    =  2

    |S |r>0

    |D(S, r)|2 −r>0

    |D(S, r)| =   2|S |r>0

    |D(S, r)|2 −|S |

    2

    ,

    by Jensen’s inequality applied to the convex function  t → t2 = t(t − 1)/2,  t ∈ R.On the other hand, given two distinct points   x  and  y   in   S , there are at most two non-

    degenerate isosceles triangles with vertices in  S , base xy, and apex at a third point in S \{x, y}:the apex must lie on the perpendicular bisector of the segment  xy, and since no three pointsin  S  are collinear, there are at most two such. Hence  N 

     ≤ 2|S |2 .

    Combining the lower and upper bounds for  N  and rearranging terms yields the requiredinequality.

    3