Slides Parte2 Rev2010

Embed Size (px)

Citation preview

  • 8/9/2019 Slides Parte2 Rev2010

    1/71

    Joo Goes (DEE) - 2010

    Design of CMOS Amplifiers

    December, 2008 (revised, Jan. 2010)

  • 8/9/2019 Slides Parte2 Rev2010

    2/71

    Joo Goes (DEE) - 2010

    Contents:

    Basic amplifier topologies

    Current-mirrors

    Basic cascode topologies and differential-pair

    Single-stage transconductance amplifiers

    Two-stage Miller-compensated amplifiers

    Advanced two-stage amplifier topologies

  • 8/9/2019 Slides Parte2 Rev2010

    3/71

    Joo Goes (DEE) - 2010

    Basic Amplifier Topologies

  • 8/9/2019 Slides Parte2 Rev2010

    4/71

    Joo Goes (DEE) - 2010

    Basic Amplifier Topologies(common-source amplifier)

    Vdd

    vin

    vout

    M1

    M2MB

    I

    Gain stage with high input impedance

    ( )

    21

    1

    211

    gdsgds

    gm

    rdsrdsgmAv

    +

    =

    =

    For low frequencies:

  • 8/9/2019 Slides Parte2 Rev2010

    5/71

    Joo Goes (DEE) - 2010

    Vdd

    vin

    vout

    M1

    M2MB

    I

    ( )( )

    2121'

    210

    '10

    1010

    1

    gdgddbdbLL

    Lgd

    gd

    CCCCCC

    rdsrdsR

    sCCR

    sCRgmRsAv

    ++++=

    =

    ++

    +=

    For high-frequencies we have:

    The output impedance is given by:210 rdsrdsR

    Basic Amplifier Topologies(common-source amplifier)

  • 8/9/2019 Slides Parte2 Rev2010

    6/71

    Joo Goes (DEE) - 2010

    Voltage buffer; DC level shifter;

    11121

    1 +++

    =gmgmbgdsgds

    gmAv

    In low-frequencies and consideringbody effect:

    Vdd

    MB

    M1

    M2

    vin

    vout

    I

    Basic Amplifier Topologies(common-drain amplifier or source-follower)

  • 8/9/2019 Slides Parte2 Rev2010

    7/71

    Joo Goes (DEE) - 2010

    For high-frequencies:

    11121

    0

    11

    gmgmgmbgdsgdsR

    +++=

    The zero has negative real part!!Stability problems may arise.

    The output impedance is given by:

    Vdd

    MB

    M1

    M2

    vin

    vout

    I

    ( )( ) ( )

    1221'

    '11211

    11

    gsgddbsbLL

    Lgs

    gs

    CCCCCC

    sCCgmbgdsgdsgm

    sCgmsAv

    ++++=

    +++++

    +=

    Basic Amplifier Topologies(common-drain amplifier or source-follower)

  • 8/9/2019 Slides Parte2 Rev2010

    8/71

    Joo Goes (DEE) - 2010

    Since we have

    For the emitter-follower:

    For the source-follower:

    This means that, for the same current, the emitter-followerhas a 4 times lower impedance than the source-follower!(Assuming VDSsat= VGS -VTn= 200 mV).

    TV

    Icgm=:TJBs

    10

    1

    gmR

    ( )ovd

    D

    V

    Igm

    =

    2:MOSs

    Basic Amplifier Topologies(common-drain amplifier or source-follower)

  • 8/9/2019 Slides Parte2 Rev2010

    9/71

    Joo Goes (DEE) - 2010

    Low input-impedance Current-gain stage

    +

    +

    1

    2

    1

    21

    1

    11rdsrds

    gmrin

    gdsgds

    gmAv

    In low-frequencies:

    Vdd

    vbias

    vout

    M1

    M2MB

    I

    vin

    rin

    Basic Amplifier Topologies(common-gate amplifier)

  • 8/9/2019 Slides Parte2 Rev2010

    10/71

    Joo Goes (DEE) - 2010

    Basic Amplifier Topologies(Summary of single-transistor amplifier topologies)

    Amplifier

    configuration

    Voltage gain,

    AV

    Input

    impedance, Rin

    Output

    impedance, Rout

    Common-source ( )outdsm rrg || High High

    Common-gate ( )outdsm rrg || Low High

    Common-drain

    (source-follower)

    1 High Low

  • 8/9/2019 Slides Parte2 Rev2010

    11/71

    Joo Goes (DEE) - 2010

    Basic Amplifier Topologies(Enhanced Voltage Followers)

    (a) (b) (c)

    Enhanced Voltage Followers: (a) NMOS-type supper-source follower (SSF); (b)

    NMOS-Flipped-voltage follower (FVF); (c) NMOS enhanced voltage follower with

    current feedback.

    Basically it employs, in a fully differential implementation, two NMOS ordinary source

    followers (SFs) and negative feedback is applied from the drain of the NMOS devices

    to the low-impedance nodes of the amplifier (sources of the NMOS). The current

    sources force the input transistors (NMOS) to conduct a fixed bias current. Thus these

    NMOS device operate as simple SFs and copy the input signal at their gates to the

    output. The second devices (PMOS) act as a class-A amplifier in a closed-loop

    configuration. Due to the feedback, the output impedance can be made very small.

  • 8/9/2019 Slides Parte2 Rev2010

    12/71

    Joo Goes (DEE) - 2010

    Current-Mirrors

  • 8/9/2019 Slides Parte2 Rev2010

    13/71

    Joo Goes (DEE) - 2010

    Improved current-mirrors(Basic current-mirror with degenerated-source)

    Main goal: increase rout!

    ( )RSgmrdsrds

    RSRSgmrdsrout

    +

    ++=

    22

    2

    22

    1

    1

    At low-frequencies:

    Vdd

    M1 M2

    Iout

    rout

    I

    RS RS

  • 8/9/2019 Slides Parte2 Rev2010

    14/71

    Joo Goes (DEE) - 2010

    Main goal: increase rout!

    Disadvantage: Output dynamic-range decreases!

    (Vout> 2*Vdsat+VTn)

    2

    441 rdsgmrdsrout

    For low-frequencies:

    Vdd

    M1 M2

    I

    M3 M4

    Iout

    rout

    Improved current-mirrors(Wilson Current-mirror)

  • 8/9/2019 Slides Parte2 Rev2010

    15/71

    Joo Goes (DEE) - 2010

    ( )442

    4424

    1

    1

    gmrdsrds

    rdsgmrdsrdsrout

    ++=

    In low-frequencies:

    Vdd

    M1 M2

    I

    M3 M4

    Iout

    rout

    Improved current-mirrors(Cascode Current-mirror)

    Main goal: increase rout!

    Disadvantage: Output dynamic-range decreases!

    (Vout> 2*Vdsat+VTn)

  • 8/9/2019 Slides Parte2 Rev2010

    16/71

    Joo Goes (DEE) - 2010

    Improved Cascode-current-mirrors(Wide larger output dynamic-range)

    M6

    M7 M8

    Vdd

    MB

    Vdd

    Ibias= Iin/ k

    IinIout

    W / L

    (n+1)2

    *k

    W / L

    (n)2

    W/LW/L

    Improved dynamic-range

    Vout > 2*Vdsat if n=1!

    Systematic offset problemdue to an asymmetry in the mirror!

    (VDS7 > VDS8, since the drain

    impedances are different)!

  • 8/9/2019 Slides Parte2 Rev2010

    17/71

    Joo Goes (DEE) - 2010

    Much better solution! Improved output dynamic-range

    Vout > (n+1)*Vdsat!

    M7 e M8 biased in the limit oftriode/saturation region and M7

    and M5 act like a single diode.

    M5 M6

    M7 M8

    Vdd

    MB

    Vdd

    Ibias= Iin/ k

    IinIout

    W / L

    (n+1) 2*k

    W / L

    (n)2

    W / L

    (n)2

    W/LW/L

    Improved Cascode-current-mirrors(Wide larger output dynamic-range)

  • 8/9/2019 Slides Parte2 Rev2010

    18/71

    Joo Goes (DEE) - 2010

    [Hosticka, 1979, Bult, 1990,Sackinger, 1990].

    Use an extra amplifier in afeedback loop to keep VDS8constant.

    Vdd

    M7 M8

    I

    M6

    Iout

    rout

    -

    +Vbias

    ( ) ( )Ardsrdsgmrout + 1866

    Improved Cascode-current-mirrors(Gain-boosting techniques)

  • 8/9/2019 Slides Parte2 Rev2010

    19/71

    Joo Goes (DEE) - 2010

    2nd. option:

    Use regulated-cascode employing asingle transistor amplifier.

    Vdd

    M7 M8

    I

    M5 M6

    Iout

    rout

    Vdd Vdd

    Mx2 Mx1

    Ibias Ibias

    Improved Cascode-current-mirrors(Gain-boosting techniques)

  • 8/9/2019 Slides Parte2 Rev2010

    20/71

    Joo Goes (DEE) - 2010

    Basic cascode Topologies

    and differential-pair

  • 8/9/2019 Slides Parte2 Rev2010

    21/71

    Joo Goes (DEE) - 2010

    Advanced amplifier topologies(telescopic-cascode amplifier)

    Vbiasvoltage should obey to:

    Vbias> Vdsat-M1 +VGS-M2= Vdsat-M1 ++ VTn+ Vdsat-M2

    For maximum output dynamic-range:

    Vbias= Vdsat-M1 + VTn+ Vdsat-M2

    M2

    M1vin

    vout

    CLVbias

    Vdd

    Ibias

  • 8/9/2019 Slides Parte2 Rev2010

    22/71

    Joo Goes (DEE) - 2010

    It is basically a common-gate amplifier cascoded

    with a common-source amplifier:

    Rule: Output impedance, rout, for 2 devices, M1 andM2 in cascode configuration is given by: rds1multiplied by the gain of M2 (gm2.rds2)!

    M2

    M1vin

    vout

    CLVbias

    Vdd

    Ibias

    ( )( )

    ( )( ) ( )( )

    ( )Rougly!

    2

    22211

    source-currentcascodeauseweifonly,2

    22

    212

    2

    2

    2

    2

    =

    rdsgm

    routrdsgmrdsrdsgm

    vsvout

    vinvsAv

    rdsgm

    routrdsrdsgmrout

    fonte

    M

    M

    fonte

    Advanced amplifier topologies(telescopic-cascode amplifier)

  • 8/9/2019 Slides Parte2 Rev2010

    23/71

    Joo Goes (DEE) - 2010

    Similar circuit but with a PMOS cascodetransistor

    (++) input and output common-mode levelscan be equal;

    (--) Slower, because the is a PMOS devicein the signal path;

    (--) Worse power dissipation since thereare 2 current branches;

    M2M1

    vin

    vout

    CL

    Vbias

    Vdd

    Ibias1

    Ibias2

    Advanced amplifier topologies(folded-cascode amplifier)

  • 8/9/2019 Slides Parte2 Rev2010

    24/71

    Joo Goes (DEE) - 2010

    The differential-pair

    For low frequencies we have:

    M1 M2V+ V-

    ID1 ID2

    Ibiasroutgm

    vin

    routvingmAv

    vingmiiiout

    gmgmgmvingm

    gmgm

    vini

    DDd

    dd

    D

    =

    =

    ==

    ===

    +

    =

    21

    2112

    2

    1

    1

    1since,

  • 8/9/2019 Slides Parte2 Rev2010

    25/71

    Joo Goes (DEE) - 2010

    Basic differential amplifier(with active loads)

    At low-frequencies:

    ( )

    42

    1

    421

    gdsgds

    gm

    rdsrdsgmAv

    +=

    =

    M1 M2

    vin

    Ibias

    Vdd

    M3 M4

    vout

    rout

  • 8/9/2019 Slides Parte2 Rev2010

    26/71

    Joo Goes (DEE) - 2010

    Single-stage operational transconductanceamplifiers (OTAs)

  • 8/9/2019 Slides Parte2 Rev2010

    27/71

    Joo Goes (DEE) - 2010

    Operational Amplifiers

    V+

    V-

    +-

    VoV+-V-

    A(V+-V-)

    I=0

    I=0

    ri

    ro

    -

    +

    v1

    vo

    v2

    Z1

    Z2

    Z3

    Z41

    1

    22

    1

    21

    43

    4:generalIn

    vZ

    Zv

    Z

    ZZ

    ZZ

    Zvo

    +

    +=

    Ideally:

    Open-Loop gain,A, infinite;

    Input Impedance, ri,infinite and outputimpedance, ro, zero.

  • 8/9/2019 Slides Parte2 Rev2010

    28/71

    Joo Goes (DEE) - 2010

    Operational Amplifiers

    ( Op-Amps )

    For low finites open-loop gains, A, one must take into account the error

    added by this parameter in order to define its specification.

    In switched-capacitor (SC) circuits, since no resistors are used, the outputimpedance is purely capacitive. Therefore, a single-stage

    transconductance operational amplifier (OTA) might be used.

    OTAs such as the folded-cascode, telescopic-cascode or mirror-cascodecan be considered amplifiers with a dominant pole and, hence, thedynamic analysis is simple as well as its stability.

  • 8/9/2019 Slides Parte2 Rev2010

    29/71

    Joo Goes (DEE) - 2010

    Operational Amplifiers(definitions)

    DC Differential gain, Ad: Open-loop low-frequency gain measured when a

    differential input signal is applied; Typically: Ad= 40 to 120 dB;

    Common-mode gain, Ac: Open-loop low-frequency gain measured when acommon-mode input signal is applied; Typically: Ac= 20 to 40 dB;

    Common-mode rejection ratio, CMRR: CMRR = Ad/Ac.Typically: CMRR= 40 to 80 dB;

    Power-supply rejection ratio, PSRR: PSRR = Ad/Aps.

    Typically: PSRR= 90 dB at DC and decreases when frequency increases;

  • 8/9/2019 Slides Parte2 Rev2010

    30/71

    Joo Goes (DEE) - 2010

    Operational Amplifiers(definitions)

    Input offset voltage, Vos: Amount of voltage one has to apply at the inputsin order to reach zero voltage at the output;Typically Vos= 1 to 10 mV;

    Output swing, OS: Maximum amplitude allowed at the outputs to get lowharmonic distortion;

    Slew-rate, SR: (dvo/dt) max; Depends on the biasing currents and loads;Measured by appying an input step with reasonable amplitude;

    Typically: SR= 10 to 1000 V/us;

  • 8/9/2019 Slides Parte2 Rev2010

    31/71

    Joo Goes (DEE) - 2010

    Operational Amplifiers(definitions)

    Gain-Bandwidth Product, GBW: frequency at which the open-loop gain is0 dB;

    Phase Margin, PM: Margin to 180 between the input and the output atthe unity-gain frequency. Usually it is desired PM > 60 to guaranteemonotonic response in unity-gain configuration;

    Settling-time, ST: defined to 0.1% accuracy at unity-gain configuration;(related to the GBW).

  • 8/9/2019 Slides Parte2 Rev2010

    32/71

  • 8/9/2019 Slides Parte2 Rev2010

    33/71

    Joo Goes (DEE) - 2010

    Single-stage transconductance amplifier (OTAs)(Telescopic-cascode)

    (++) High DC gain,

    (++) Low current consumption(only a single current branch);

    (--) small output swing(5 transistors in stack);

    (--) Normally different input and output

    DC common-mode levels

    M1 M2v+ v-

    M3 M4

    M5 M6

    M7 M8

    M9VB1

    VB2

    VDD

    vout

    ( )

    2

    2

    11 rdsgm

    A

  • 8/9/2019 Slides Parte2 Rev2010

    34/71

    Joo Goes (DEE) - 2010

    Single-stage transconductance amplifier (OTAs)(Mirror-cascode)

    (++) High DC gain,

    (++) equal input and output common-modevoltages;

    (++) Better output swing;

    (--) Higher current consumption(2 current branches);

    (--) Dynamic performance (speed) verydependent on the dynamic current mirror

    M1 M2v+ v-

    M9VB1

    VDD

    VB2

    vout

    M3 M4

    M5 M6

    M7 M8

    M10 M11M12 M13

    ( )

    2

    2

    11 rdsgmA

  • 8/9/2019 Slides Parte2 Rev2010

    35/71

    Joo Goes (DEE) - 2010

    Single-stage transconductance amplifier (OTAs)(Folded-Cascode)

    (++) High DC gain,

    (++) equal input and output common-modevoltages

    (++) Better output swing;

    (--) Higher current consumption(2 current branches);

    M1 M2

    M9VB1

    VDD

    M10 M11VB2

    vout

    VB3M3 M4

    M5 M6

    M7 M8

    I

    I/2

    I

    I/2I/2

    I

    I/2

    ( )

    2

    2

    11 rdsgm

    A

  • 8/9/2019 Slides Parte2 Rev2010

    36/71

  • 8/9/2019 Slides Parte2 Rev2010

    37/71

    Joo Goes (DEE) - 2010

    Single-Stage OTAs(folded-cascode)

    ( )

    ( ) [ ][ ]

    ( )( )

    ( )

    ( )( )

    ( )sVFC

    AISR

    HzFC

    SgmGBW

    Cs

    gmAv

    rdsgmrdsrdsrdsgmrdsgmAv

    Crdsgmrdsrdsrdsgmrdss

    rdsgmrdsrdsrdsgmrdsgm

    Crouts

    routgm

    sV

    sV

    Av

    L

    D

    L

    L

    LLin

    out

    /10

    2

    )]()[())((

    )]()[())((1

    )]()[())((

    1

    64

    1

    1

    441016681

    44101668

    4410166811

    =

    =

    +

    =+

    ==

    :bygivenisSRThe

    :bygivenisGBW

    :sfrequenciehmedium/higAt

    :frequencylowAt

  • 8/9/2019 Slides Parte2 Rev2010

    38/71

    Joo Goes (DEE) - 2010

    Single-Stage OTAs(Mirror-Cascode with biasing circuitry)

    M1 M2

    M9VB1

    VDD

    M10 M11

    vout

    VB3M3M4

    M5 M6

    M7 M8

    I/2

    I

    k*I/2 k*I/2

    I/2VB3I/10

    I/10 I/10I/10

    MB1 MB3

    MB5

    MB4

    MB7

    AMPOP CASCODE ESPELHADO

    I/10

    MB6VB2

    VB2

    CIRCUITO DE POLARIZAO

    M10a M11a

    M3a M4a

    MB2

  • 8/9/2019 Slides Parte2 Rev2010

    39/71

    Joo Goes (DEE) - 2010

    ( )

    ( ) { }

    ( )( )

    ( )

    ( )

    ( ) ( )sV

    FC

    AIK

    SR

    HzFC

    SgmKGBW

    GBW

    Cs

    gmKAv

    KCrouts

    routgmK

    sV

    sVAv

    L

    L

    L

    Lin

    out

    /102

    :bydefinedisrate-Slew

    2

    :bygivenisgainunityin)(productbandwidth-Gain

    :sfrequenciehighAt

    4,3,2normally,1

    6

    1

    1

    1

    =

    =

    +

    ==

    Single-Stage OTAs(Mirror-Cascode)

  • 8/9/2019 Slides Parte2 Rev2010

    40/71

    Joo Goes (DEE) - 2010

    Frequency response of single-stage OTAs(telescopic-cascode versus folded/cascode)

    ( )

    ( )

    ( )

    !60havetoorderin,

    :yielding,

    :thateddemonstratbecanItpoles.dominant-nonthebydefinedalwaysis

    ionconfiguratcascodeaintechnologygivenaformaximumThe

    ~2

    .max

    .max

    4

    3.max

    2

    22

    ,2

    PMGBW

    L

    V

    GBW

    p

    M

    dsatpnp

    =

    =

    Example: Vdsat= 0.25V; Lmin= 0.6 m; n = 0.06 m2/V.s; p = 0.02 m2/V.s; LM2= 1.2 m (to avoid short-channel effects).

    GBWmx. = ?

    (Answer. 620 MHz, telescopic-cascode and 206 MHz folded-cascode)

  • 8/9/2019 Slides Parte2 Rev2010

    41/71

    Joo Goes (DEE) - 2010

    Single-stage OTAs(folded-cascode amplifier with gain-boosting)

    Main OTA

    SATn SATp

    Biasingcircuitry

  • 8/9/2019 Slides Parte2 Rev2010

    42/71

    Joo Goes (DEE) - 2010

    Single-Stage OTAs(Using MATCAD to design Single-Stage OTAs: #1)

    Units

    uA 10 3

    mA:= um 10 6

    m:= fF 10 15

    farad:= q 1.6 10 19

    coul:= pF 10 12

    farad:=

    Initial DataIB 1000 uA:= CL 24 pF:= VDD 1.2V:=

    VDsat1 100 mV:= VDsat6 100 mV:= VDsat8 100 mV:= VDsat4 100 mV:= VDsat11 100mV:=

    L1 0.5 um:= L4 0.5 um:= L6 0.5 um:= L8 0.5 um:= L11 0.5 um:=

    Vbs1 100 mV:= Vbs11 100 mV:= Vbs4 100 mV:= Vbs6 100 mV:=

    Technology Definitions

    VTN

    0.38 volt:= KN

    500 uA volt 2

    :=

    KB 1.38 10 23

    joule

    K:=

    VTP 0.33 volt:= KP 100 uA volt 2

    :=

    KB300 K

    q 0.026 V=

    CGSD0 0.30 fF

    um:= overlap capacitance

    CGOX 12.3fF

    um2

    := gate capacitance per unity area

    Sd_s 0.4 um:= drain/source minimumdrawing area

    CJN 0.722 fF

    um2

    := CJP 0.953 fF

    um2

    := diode capacitance per unity area

    PBN 0.62 volt:= PBP 0.684 volt:= Junction potential

    MJN 0.264:= MJP 0.295:= Adjust coeficient

    CJSWN 0.0993fF

    um:= CJSWP 0.105

    fF

    um:= Lateral capacitance per perimeter unit

    MJSWN 0.105:= MJSWP 0.135:= Ajusting coeficient

  • 8/9/2019 Slides Parte2 Rev2010

    43/71

    Joo Goes (DEE) - 2010

    Single-Stage OTAs(Using MATCAD to design Single-Stage OTAs: #2)

    Transistor's Equations

    gm IDVDsat,( ) if VDsat KB300 K

    q 2

    =

    =

    0dt

    d:aslongasslimitation,,Rate"-Slew"nobewillThere

    .7001.0ln

    :needwe0.1%,ansmaller therrorsettlingaFor

    .1

    :bygiventhenis,response,-stepthe

    OTAFor thecircuit.theofconstant-timetherepresentswhere

    :likeresponse-stepahaveion weapproximatpole-singleaIn

  • 8/9/2019 Slides Parte2 Rev2010

    48/71

    Joo Goes (DEE) - 2010

    -

    ++-

    Cf

    Ci

    CpCload

    VoutVin

    Any SC circuit in a given phase can always be representedin the form:

    Single-Stage OTAs(Exponential Linear Settling)

  • 8/9/2019 Slides Parte2 Rev2010

    49/71

    Joo Goes (DEE) - 2010

    ( )

    ( ) ( )

    ( )

    ( ) ( )( ) ( )

    uc

    uu

    udBc

    p

    f

    A

    wsAsA

    sAsAsA

    CpCiCloadCL

    CfCpCi

    Cf

    CfsCpCis

    CpCis

    ==

    ===

    +

    =+

    =

    ++=

    ++

    =

    ++

    +=

    11

    pole.loop-closedtheoffrequency

    frequency,gain-unitytheiswhere

    1

    where,1

    feedbackparallel-(series

    11

    1

    :asfactorfeedbackthedefinecanweoperationSCtheofphaseeachIn

    c

    0

    3

    1

    0

    Single-Stage OTAs

    (Exponential Linear Settling)

  • 8/9/2019 Slides Parte2 Rev2010

    50/71

    Joo Goes (DEE) - 2010

    Advantages: better substrate-noise rejection; better PSRR;

    better output swing (dynamic range is improved by 2) better robustness to charge-injection.

    Drawbacks: Passives are duplicated and there is a need o a CMFB circuit

    -

    +

    v1vo

    Z1

    Z2

    -

    +

    v1+ vo+Z1

    Z2

    v1- vo-Z1

    Z2

    +-

    single-ended fully-differential

    Single-Stage OTAs(Fully-differential Realizations)

  • 8/9/2019 Slides Parte2 Rev2010

    51/71

  • 8/9/2019 Slides Parte2 Rev2010

    52/71

    Joo Goes (DEE) - 2010

    Common-Mode feedback circuits (CMFB)

    1 Continuous-time version:

    VddVdd Vdd

    Ibias

    Vref = Vdd/2

    Vcontrol

    20 k 20 k

    1.5 pF 1.5 pF

    Vout+ Vout-

    Single-Stage OTAs(Fully-differential Realizations)

  • 8/9/2019 Slides Parte2 Rev2010

    53/71

    Joo Goes (DEE) - 2010

    1

    1

    1 2

    2

    2

    Cs Cc

    Cs Cc

    Vcontrol

    Vref = Vdd/2

    Vref = Vdd/2

    Vout+

    Vout-

    Vdd

    Vbias

    Common-Mode feedback circuits (CMFB)

    2 SC version:

    Single-Stage OTAs(Fully-differential Realizations)

  • 8/9/2019 Slides Parte2 Rev2010

    54/71

    Joo Goes (DEE) - 2010

    Two-stage Miller-Compensated Amplifiers

  • 8/9/2019 Slides Parte2 Rev2010

    55/71

    Joo Goes (DEE) - 2010

    Two-Stage Amplifiers(Basic Topology)

    -

    +Vin A1 -A2 1 Vout

    Cc

    Andar diferencial

    de entrada

    2 andar de ganho

    (fonte-comum)

    buffer de sada

    (Classe A, B ou AB)

    T St A lifi

  • 8/9/2019 Slides Parte2 Rev2010

    56/71

    Joo Goes (DEE) - 2010

    ( )( )76

    42

    1

    72

    2,12,11

    21

    rdsrdsgmA

    rdsrdsgmroutgmA

    AAA

    V

    V

    VVV

    =

    ==

    =

    M5

    M1 M2

    M3 M4

    Cc

    M7

    M6

    Vin-Vin+

    Vout

    Vbias

    1Rc

    v1

    Two-Stage Amplifiers

    (DC gain)

    Two Stage Amplifiers

  • 8/9/2019 Slides Parte2 Rev2010

    57/71

    Joo Goes (DEE) - 2010

    ( )

    ( )

    ( ) ( )

    ( )

    Cc

    I

    Cc

    I

    Cc

    I

    dt

    voutdSR

    CcgmwwjAwGBW

    Ccs

    gm

    ACcs

    gmA

    vin

    voutsA

    ACcsCeqsZout

    CeqsrdsrdsZout

    Zoutgmvin

    vA

    ACcCeq

    DDCc

    uuVu

    V

    VV

    V

    V

    V

    2,15.max

    .max

    2,1

    2,1

    2

    2,1

    2

    2

    2,11

    2

    2

    10dBa

    .11

    :freqs.hmedium/higfor,1

    42

    1

    1991]SedraTheorem,[Miller1

    :isecapacitancequivalentresultingthev1,nodeIn

    ====

    ===

    =

    =

    =

    ==

    +=

    Two-Stage Amplifiers

    (Medium/High frequencies)

    Two Stage Amplifiers

  • 8/9/2019 Slides Parte2 Rev2010

    58/71

    Joo Goes (DEE) - 2010

    M5

    M1 M2

    M3 M4

    Cc

    M7

    M6

    Vin-Vin+

    Vout

    Vbias

    Rc

    v1

    1 Polo

    2 Polo

    If the 2 poles are close to each othera compensation capacitor is required

    (Cc);

    The Miller compensation techniqueconsists in adding Cc(assuming Rc= 0)in order to make Pole-splitting;

    The Miller capacitance, Cc, moves thefirst pole to lower frequencies;

    The series-shunt feedback moves the

    second pole to higher frequencies.

    Two-Stage Amplifiers

    (Frequency response and Compensation)

    Two-Stage Amplifiers

  • 8/9/2019 Slides Parte2 Rev2010

    59/71

    Joo Goes (DEE) - 2010

    gm1*vinR1 C1

    Rc Cc

    gm7*v1R2 C2

    v1Vout

    ( )

    ( )

    CLCgdCdbCdbC

    CgsCdbCdbC

    rdsrdsR

    rdsrdsR

    +++=

    ++=

    =

    =

    6672

    7421

    762

    241

    Two-Stage Amplifiers

    (Frequency response and Compensation)

    Two-Stage Amplifiers

  • 8/9/2019 Slides Parte2 Rev2010

    60/71

    Joo Goes (DEE) - 2010

    ( )

    ( )

    ( ) ( )( ) ( )[ ]( )2121211122211

    1

    21

    01122

    1

    0111

    11

    :and1nodestoKVLappyingand0Assuming

    2

    7

    7

    71

    7

    1

    CCCcCCRRsCcCRCcCRCcgmRRs

    gmCcs

    RgmRgmvin

    voutA

    vgmCcsvvoutCsRvout

    vingmCcsvoutvCsR

    v

    voutvRc

    V

    ++++++++

    ==

    =++

    +

    =++

    +

    =

    Two Stage Amplifiers

    (Frequency response and Compensation)

    Two-Stage Amplifiers

  • 8/9/2019 Slides Parte2 Rev2010

    61/71

    Joo Goes (DEE) - 2010

    Cc

    gmw

    CCCcCC

    gm

    CcCCcCCC

    Ccgm

    CcRRgm

    z

    p

    p

    7

    77

    2

    7

    1

    12211221

    21

    1

    :partrealpositivewithzeroaandpoles2fact,inhas,circuitThe

    =

    ++=

    ++

    Two Stage Amplifiers

    (Frequency response and Compensation)

    Two-Stage Amplifiers

  • 8/9/2019 Slides Parte2 Rev2010

    62/71

    Joo Goes (DEE) - 2010

    ( ) ( )

    Cc

    gmRRgmgm

    CcRRgm

    fAGBW

    CRC

    gm

    CR

    Rgm

    RgmCCcCCc

    Vu

    11

    7

    p1

    7p2

    p1

    71

    21221

    1

    dB0a

    :thatmakesP1,pole,dominantThe

    22

    1

    2

    11

    1

    :inresulting,2

    1e

    1

    1,2,1

    :havewedesignsprcaticalIn

    =

    =

    =

    >>>>>

    Two Stage Amplifiers

    (Frequency response and Compensation)

    Two-Stage Amplifiers

  • 8/9/2019 Slides Parte2 Rev2010

    63/71

    Joo Goes (DEE) - 2010

    CcRcgm

    Rc

    CcRc

    gmgmCCc

    gmgm

    Ccgm

    Cgm

    CcgmGBW

    z

    zp

    =

    >

    >>

    ==

  • 8/9/2019 Slides Parte2 Rev2010

    64/71

    Joo Goes (DEE) - 2010

    Better output swing

    Always stable after proper compensation for CL< CLmx;

    Very simple biasing circuit;

    Lower power dissipation when feedback factors, ,,,,Are small;

    Slower (50% of the speed is lost due to the compensation);

    Requires Ccand Rcfor compensation. Rc can be madeusing a transistor;

    Two Stage Amplifiers

    (Frequency response and Compensation)

  • 8/9/2019 Slides Parte2 Rev2010

    65/71

    Joo Goes (DEE) - 2010

    Advanced Two-Stage Topologies

    Two-stage cascode-compensated OTA (1)

  • 8/9/2019 Slides Parte2 Rev2010

    66/71

    Joo Goes (DEE) - 2010

    Two stage cascode compensated OTA (1) VDD

    M1

    M2

    M7

    M6

    VDDVDD

    VSS

    M5

    M4

    M8

    VDD

    VSS

    Ccomp

    VSS

    VDD

    VSS

    VBp1 VBp1 VBp2

    VBn

    VBnc

    vinpvinnvoutn voutp

    na

    nb

    IcasIout

    nc

    M3

    vcm

    Icmfb

    Mcp

    VSS

    VDD

    VBpc

    VBn

    VREFPMc

    +

    2

    cmfb

    bias

    II

    f

    Cas

    m

    I

    f

    Out

    m

    I

    PBI PBI

    f

    Cas

    m

    I

    f

    CasBias

    m

    II

    +

    2

    f

    CasBias

    m

    II

    +

    2

    1 2

    1

    2

    12

    12

    Bias

    Main OTA

    SC CMFB

    Folded-cascode first-stagefollowed by two common-source

    second-stages;Cascoded-Miller compensation.

    Two-stage hybrid-compensated OTA (2)

  • 8/9/2019 Slides Parte2 Rev2010

    67/71

    Joo Goes (DEE) - 2010

    Two stage hybrid compensated OTA (2)

    Bias

    Main OTA

    SC CMFBs

    f

    Cas

    m

    I

    f

    Out

    m

    I2

    f

    Bias

    m

    I

    f

    Out

    m

    I

    PBI PBI

    f

    Cas

    m

    I

    f

    Cas

    m

    I

    f

    CasBias

    m

    II

    +

    2

    1 2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    2

    Folded-cascode first-stagefollowed by fully-differentialcommon-source second-stage;Hybrid cascoded-Miller compensation.

    Two-stage OTA with positive feedback (3)

  • 8/9/2019 Slides Parte2 Rev2010

    68/71

    Joo Goes (DEE) - 2010

    Two stage OTA with positive feedback (3)

    Main OTA

    SC CMFBs

    1

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    2

    M7

    M8

    VDDVDD

    VSS

    M5

    M4

    M6

    VDD

    VSS

    VDD

    VB5

    VB4vinpvinnvoutn voutp

    nb

    IBias

    nc

    M1VB5

    M2

    2IOut

    M9

    VSS

    VB9

    n1

    n2

    ICas

    Ccomp/2

    Ccomp/2

    VCM2

    VCM1

    VDD

    na M3

    Folded-cascode first-stagefollowed by fully-differentialcommon-source second-stage;Hybrid cascoded-Millercompensation. Local positive-feedback applied to the NMOScascode devices of the firststage.

    [Randall Geiger and others,ISCAS03, CICC03]

    Design of multi-stage OTAs

  • 8/9/2019 Slides Parte2 Rev2010

    69/71

    Joo Goes (DEE) - 2010

    Design of multi stage OTAs(How to extract the equations for the Optimizer? Step #1)

    Step #1: Derive the small-signal model of half-circuit making a minimumof simplifications;

    Basic 3rd. Orderexample

    Design of multi-stage OTAs

  • 8/9/2019 Slides Parte2 Rev2010

    70/71

    Joo Goes (DEE) - 2010

    Design of multi stage OTAs(How to extract the equations for the Optimizer? Step #2)

    Step #2: Separate all nodesusing the Y-parameterstechnique

    Design of multi-stage OTAs

  • 8/9/2019 Slides Parte2 Rev2010

    71/71

    Joo Goes (DEE) - 2010

    es g o u t stage O s(How to extract the equations for the Optimizer? Steps #3 to #5)

    Step #3: Find node equations (voltages, va, vb, vc=vo, etc and current);

    Step #4: Solve, collect, simplify with using a symbolic solver and

    get the open-loop transfer function (vo/vin);

    Step #5: Port the open-loop transfer function into the Optimizer